ITERATIONS OF MEAN-TYPE MAPPINGS AND INVARIANT MEANS

JANUSZ MATKOWSKI

To the memory of Professor Győrgy Targonski

Abstract. It is shown that, under some general conditions, the sequence of iterates of every mean-type mapping on a finite dimensional cube converges to a unique invariant mean-type mapping. Some properties of the invariant means and their applications are presented.

Introduction

The sequence of iterates of a selfmap of a metric space often appears in fixed point theory and, in general, the assumed conditions imply its convergence to a constant map the value of which is a fixed point. In this context the questions whether there are nontrivial selfmaps with non-constant limits of the sequences of iterates, and what are the properties of their limits, seem to be interesting.

To give an answer, in section 2, we consider a class of mean-type self-mappings M of a finite dimensional cube I^p , where $I \subseteq \mathbb{R}$ is an interval and $p \geq 2$ a fixed integer, showing that (under some general assumptions) the sequence of iterates $(M^n)_{n=1}^{\infty}$ converges to a unique non-constant mapping K which is an invariant mean-type with respect to M (shortly M-invariant). Since the coordinate functions of M are means, every point of the diagonal of I^p is a fixed point of M. In section 3 we apply these results to determine the limits of the sequence of iterates for some special

Received: March 10, 1999 and, in final form, April 13, 1999. AMS (1991) subject classification: Primary 26A18, 39B12, 54H25. classes of mean-type mappings. In section 4 we present some examples of nonexpansive mean-type mappings and we show that the mean-type mapping M = (A, G) (for which the sequence of iterates converges) is neither nonexpansive nor expansive.

The subject considered here is related to the papers by J. Borwein [2], and P. Flor, F. Halter-Koch [4] where a problem concerning some recurrence sequences, posed by J. Aczél [1], was considered.

1. Means and auxiliary results

Let $I \subset \mathbb{R}$ be an interval, and $p \in \mathbb{N}$, $p \geq 2$ fixed. A function $M : I^p \to \mathbb{R}$ is said to be a *mean* on I^p if for all $x = (x_1, \ldots, x_p) \in I^p$,

$$\min(x_1,\ldots,x_p) \leq M(x_1,\ldots,x_p) \leq \max(x_1,\ldots,x_p);$$

in particular, $M: I^p \to I$, and, for all $x \in I$,

$$M(x,\ldots,x)=x.$$

A mean M on I^p is called *strict* if whenever $x = (x_1, \ldots, x_p) \in I^p$ such that $x_i \neq x_j$ for some $i, j \in 1, \ldots, p$, then

$$\min(x_1,\ldots,x_p) < M(x_1,\ldots,x_p) < \max(x_1,\ldots,x_p);$$

in particular we have the following

REMARK 1. Let $M: I^p \to I$ be a strict mean and let $(x_1, \ldots, x_p) \in I^p$. If

$$M(x_1,...,x_p) = \min (x_1,...,x_p)$$
 or $M(x_1,...,x_p) = \max (x_1,...x_p)$
then $x_1 = ... = x_p$.

LEMMA 1. Let $p \in \mathbb{N}$, $p \geq 2$, be fixed. Suppose that $M_i : I^p \to \mathbb{R}$, $i = 1, \ldots, p$, are continuous means on I^p such that at most one of them is not strict. Let the functions $M_{i,n} : I^p \to I$, $i = 1, \ldots, p$, $n \in \mathbb{N}$, be defined by

(1)
$$M_{i,1} := M_i, \quad i = 1, ..., p,$$

(2)
$$M_{i,n+1}(x_1,\ldots,x_p) := M_i(M_{1,n}(x_1,\ldots,x_p),\ldots,M_{p,n}(x_1,\ldots,x_p)).$$

Then

1⁰ for every $n \in \mathbb{N}$ and for each i = 1, ..., p, the function $M_{i,n}$ is a continuous mean on I^p ;

 2^0 there is a continuous mean $K : I^p \to I$ such that for each i = 1, ..., p,

$$\lim_{n \to \infty} M_{i,n} \left(x_1, \ldots, x_p \right) = K \left(x_1, \ldots, x_p \right), \qquad x_1, \ldots, x_p \in I;$$

 3^0 if M_1, \ldots, M_p are strict means, then so is K.

PROOF. Part 1⁰ is obvious. To prove 2⁰ assume that, for instance, M_p is strict, and define $\alpha_n, \beta_n: I^p \to I, n \in \mathbb{N}$, by

$$\alpha_n := \min \left(M_{1,n}, \ldots, M_{p,n} \right), \qquad \beta_n := \max \left(M_{1,n}, \ldots, M_{p,n} \right).$$

The functions α_n , β_n are continuous means. Since M_1, \ldots, M_p are means we have

$$\alpha_n \leq M_{i,n+1} \leq \beta_n, \qquad i = 1, \dots, p; \ n \in \mathbb{N},$$

and, consequently,

$$\alpha_n \leq \alpha_{n+1} \leq \beta_{n+1} \leq \beta_n, \qquad n \in \mathbb{N}.$$

Now we show the following

CLAIM. For every $x_1, \ldots, x_p \in I$, either (a) there is some $k \in \mathbb{R}$ such that

$$\alpha_n(x_1,\ldots,x_p)=\beta_n(x_1,\ldots,x_p), \qquad n\in\mathbb{N}, \ n\geq k;$$

or

(b) for all $n \in \mathbb{R}$,

$$\alpha_n (x_1, \ldots, x_p) < \alpha_{n+1} (x_1, \ldots, x_p) \text{ or } \beta_{n+1} (x_1, \ldots, x_p) < \beta_n (x_1, \ldots, x_p)$$

This claim is obvious if $x_1 = \ldots = x_p$. Take arbitrary $x_1, \ldots, x_p \in I$ such that $x_i \neq x_j$ for some $i, j \in 1, \ldots, p$. Suppose, for an indirect argument, that the statement (b) does not hold, i.e. that there is a $k \in \mathbb{N}$ such that

$$\alpha_k \left(x_1, \ldots, x_p \right) = \alpha_{k+1} \left(x_1, \ldots, x_p \right) < \beta_{k+1} \left(x_1, \ldots, x_p \right) = \beta_k \left(x_1, \ldots, x_p \right).$$

By the definition of α_k and β_k we hence get

$$\min (M_{1,k}, \dots, M_{p,k}) = \min (M_{1,k+1}, \dots, M_{p,k+1})$$

< max $(M_{1,k+1}, \dots, M_{p,k+1}) = \max (M_{1,k}, \dots, M_{p,k}),$

and, consequently, there are $i, j, r, s \in \{1, ..., p\}, i \neq r, j \neq s$, such that

$$M_{i,k} = \min (M_{1,k}, \dots, M_{p,k}) = \min (M_{1,k+1}, \dots, M_{p,k+1}) = M_{j,k+1}$$

$$< M_{r,k} = \max (M_{1,k}, \dots, M_{p,k}) = \max (M_{1,k+1}, \dots, M_{p,k+1}) = M_{s,k+1},$$

(where the values of the occurring functions are taken at the chosen point (x_1, \ldots, x_p)). Hence, since

$$M_{j,k+1}(x_1,...,x_p) = M_j(M_{1,k}(x_1,...,x_p),...,M_{p,k}(x_1,...,x_p)),$$

$$M_{s,k+1}(x_1,...,x_p) := M_s(M_{1,k}(x_1,...,x_p),...,M_{p,k}(x_1,...,x_p)),$$

and at least one of the means M_j and M_s is strict, applying Remark 1, we infer that

$$M_{1,k}(x_1,\ldots,x_p)=\ldots=M_{p,k}(x_1,\ldots,x_p).$$

Hence, by the definition of $M_{i,n+1}$, i = 1, ..., p, and the fact that the restriction of every mean on I^p to the diagonal of I^p is the identity function on I, we obtain

$$M_{i,n}(x_1,...,x_p) = M_{j,k}(x_1,...,x_p), \qquad n \ge k, \quad i, j \in \{1,...,p\}.$$

Now the definitions of α_n and β_n give

$$lpha_n \left(x_1, \ldots, x_p
ight) = eta_n \left(x_1, \ldots, x_p
ight), \qquad n \in \mathbb{N}, \ n \geq k,$$

showing that relation (a) is true. This completes the proof of our claim.

Since the sequences (α_n) and (β_n) are monotonic and bounded, there exist $\alpha, \beta: I^p \to I$ defined by

$$\alpha := \lim_{n \to \infty} \alpha_n, \qquad \beta := \lim_{n \to \infty} \beta_n.$$

We shall show that $\alpha = \beta$. For an indirect argument suppose that there exist $x_1, \ldots, x_p \in I$ such that

$$\alpha\left(x_{1},\ldots,x_{p}\right) < \beta\left(x_{1},\ldots,x_{p}\right).$$

We can assume, without any loss of generality, that, for each $j \in \{2, ..., p\}$, M_j is a strict mean. Then for every $j \in \{2, ..., p\}$ we have

$$\alpha\left(x_{1},\ldots,x_{p}\right) < M_{j}\left(\gamma_{1}\left(x_{1},\ldots,x_{p}\right),\ldots,\gamma_{p}\left(x_{1},\ldots,x_{p}\right)\right) < \beta\left(x_{1},\ldots,x_{p}\right),$$

where

$$\gamma_i\left(x_1,\ldots,x_p
ight)=lpha\left(x_1,\ldots,x_p
ight) \qquad ext{or} \qquad \gamma_i\left(x_1,\ldots,x_p
ight)=eta\left(x_1,\ldots,x_p
ight)$$

and $\gamma_r(x_1, \ldots, x_p) \neq \gamma_s(x_1, \ldots, x_p)$ for some $r, s \in \{1, \ldots, p\}$. Take arbitrary positive $\delta > 0$. Then there is $n(\delta)$ such that for all $n \ge n(\delta)$,

$$\alpha(x_1,\ldots,x_p)-\delta < M_{i,n}(x_1,\ldots,x_p) < \beta(x_1,\ldots,x_p)+\delta, \qquad i=1,\ldots,p,$$

Hence, choosing δ small enough, by the continuity of M_i , we infer that

$$\alpha(x_1,\ldots,x_p) < M_{j,n+1}(x_1,\ldots,x_p) < \beta(x_1,\ldots,x_p),$$

$$j=2,\ldots p, n\geq n(\delta).$$

It follows that for every $n > n(\delta)$ either

$$lpha\left(x_{1},\ldots,x_{p}
ight)$$

or

$$\alpha(x_1,\ldots,x_p) < \beta_n(x_1,\ldots,x_p) < \beta(x_1,\ldots,x_p),$$

which contradicts the definition of α and β . Thus we have shown that

$$\alpha = \beta \qquad \text{in } I^p.$$

Since α_n , β_n are continuous, (α_n) is increasing and (β_n) is decreasing, the function α is lower semicontinuous, and β is upper semicontinuous on I^p . It follows that the function $K: I^p \to I$ defined by

$$K(x_1,\ldots,x_p):=\alpha(x_1,\ldots,x_p), \qquad x_1,\ldots,x_p \in I,$$

is continuous on I^p . It is obvious that K is a mean on I^p .

LEMMA 2. Let $p \in \mathbb{N}$, $p \geq 2$, be fixed. Suppose that $M_i : I^p \to \mathbb{R}$, $i = 1, \ldots, p$, are continuous means on I^p such that for some $j \in \{1, \ldots, p\}$, M_j is strict and either

$$(3) M_i \leq M_j, i = 1, \dots, p,$$

or

(4) $M_j \leq M_i, \quad i = 1, \dots, p.$

Then the functions $M_{i,n}: I^p \to I$, i = 1, ..., p, $n \in \mathbb{N}$, defined by (1)-(2) in Lemma 1 satisfy the conclusions 1^0-3^0 of Lemma 1.

PROOF. Assume that condition (3) is satisfied. Without any loss of generality we can assume that j = p, i.e. that

$$M_i \leq M_p, \qquad i=1,\ldots,p.$$

Part 1^0 is obvious. To prove 2^0 define α_n , β_n , α and β , in the same way as in the proof of Lemma 1. Of course we have

$$\begin{aligned} \beta_n &= M_{p,n}, \qquad \beta_{n+1} \leq \beta_n, \qquad (n \in \mathbb{N}), \qquad \beta = \lim_{n \to \infty} M_{p,n}, \\ \alpha_n &= \min \left(M_{1,n}, \dots, M_{p-1,n} \right), \qquad \alpha_n \leq \alpha_{n+1}, \quad (n \in \mathbb{N}), \\ \alpha &= \lim_{n \to \infty} \alpha_n, \qquad \alpha \leq \beta. \end{aligned}$$

Suppose that there is a point $(x_1, \ldots, x_p) \in I^p$ such that

$$lpha\left(x_{1},\ldots,x_{p}\right)$$

Since M_p is a strict mean we hence get

$$\alpha(x_1,\ldots,x_p) < M_p\left(\alpha\left(x_1,\ldots,x_p\right),\ldots,\alpha\left(x_1,\ldots,x_p\right),\beta\left(x_1,\ldots,x_p\right)\right) \\ < \beta\left(x_1,\ldots,x_p\right).$$

Now the continuity of M_p implies that, for sufficiently large n,

$$\alpha(x_1,\ldots,x_p) < M_{p,n}(x_1,\ldots,x_p) < \beta(x_1,\ldots,x_p).$$

This contradiction proves that $\alpha = \beta$. The remaining argument is similar to that of Lemma 1.

Since in the case when condition (4) is satisfied the reasoning is analogous, the proof is completed. $\hfill \Box$

2. The main results

Let $I \subseteq \mathbb{R}$ be an interval and let $p \in \mathbb{N}$, $p \geq 2$, be fixed. A function M: $I^p \to \mathbb{R}^p$, $\mathbf{M} = (M_1, \ldots, M_p)$, is called a mean-type mapping if each coordinate function M_i , $i = 1, \ldots, p$, is a mean on I^p ; in particular, M: $I^p \to I^p$. A mean type mapping $\mathbf{M} = (M_1, \ldots, M_p)$ is strict if each of its coordinate functions M_i is a strict mean.

REMARK 2. Note that the restriction of an arbitrary mean-type mapping M: $I^p \to I^p$ to the diagonal of the cube I^p coincides with the identity function i.e., for every $x \in I$,

$$\mathbf{M}(x,\ldots,x)=(x,\ldots,x)\,.$$

It follows that for any function K: $I^p \to I^p$, $\mathbf{K} = (K_1, \ldots, K_p)$, with equal coordinates, i.e. such that $K_1 = \ldots = K_p = K$, we have

$$\mathbf{M} \circ \mathbf{K} = \mathbf{K}.$$

The first result on the convergence of the sequences of iterates of the mean-type mappings reads as follows.

THEOREM 1. Let an interval $I \subseteq \mathbb{R}$ and $p \in \mathbb{N}$, $p \geq 2$, be fixed. If $\mathbf{M}: I^p \to \mathbb{R}^p$, $M = (M_1, \ldots, M_p)$, is a continuous mean-type mapping such that at most one of the coordinate means M_i is not strict, then:

1⁰ for every $n \in \mathbb{N}$, the n-th iterate of M is a mean-type mapping;

2⁰ there is a continuous mean $K: I^p \to I$ such that the sequence of iterates $(\mathbf{M}^n)_{n=1}^{\infty}$ converges (pointwise) to a continuous mean-type mapping $\mathbf{K}: I^p \to I^p, \mathbf{K} = (K_1, \ldots, K_p)$, such that

$$K_1 = \ldots = K_p = K;$$

 3^0 K is an M-invariant mean-type mapping i.e.,

$$\mathbf{K} \circ \mathbf{M} = \mathbf{K}$$

or, equivalently, the mean K is M-invariant i.e., for all $x_1, \ldots, x_p \in I$,

 $K\left(M_1(x_1,\ldots,x_p),\ldots,M_p(x_1,\ldots,x_p)\right)=K\left(x_1,\ldots,x_p\right);$

 4^0 a continuous M-invariant mean-type mapping is unique;

 5^0 if M is a strict mean-type mapping then so is K;

 6^0 if $I = (0, \infty)$ and M is positively homogeneous, then K is positively homogeneous.

PROOF. Define $M_{i,n}: I^p \to I, i = 1, ..., p, n \in \mathbb{N}$, by formulas (1)-(2). By induction it is easy to verify that

$$\mathbf{M}^n = (M_{1,n}, \dots, M_{p,n}), \qquad n \in \mathbb{N}.$$

Now, applying Lemma $1.1^0 - 2^0$, we get the conclusions 1^0 and 2^0 . Thus, for all $(x_1, \ldots, x_p) \in I^p$, we have

$$\mathbf{K}(x_1,\ldots,x_p)=\lim_{n\to\infty}\mathbf{M}^n(x_1,\ldots,x_p).$$

Hence, making use of (2) and the continuity of K, we get

$$\mathbf{K} = \lim_{n \to \infty} \mathbf{M}^{n+1} = \mathbf{M}(\lim_{n \to \infty} \mathbf{M}^n) = \mathbf{M} \circ \mathbf{K}.$$

Since $\mathbf{K} = (K_1, \ldots, K_p)$ where $K_1 = \ldots = K_p = K$, this relation is equivalent to

$$K(M_1(x_1,\ldots,x_p),\ldots,M_p(x_1,\ldots,x_p))=K(x_1,\ldots,x_p),$$

for all $(x_1, \ldots, x_p) \in I^p$, and the proof of 3^0 is completed.

To prove 4^0 take an arbitrary continuous mean-type mapping L: $I^p \rightarrow I^p$ that is M -invariant. Thus we have $L = L \circ M$, and, by an obvious induction,

$$\mathbf{L} = \mathbf{L} \circ \mathbf{M}^n, \qquad n \in \mathbb{N}.$$

Hence, letting $n \to \infty$, making use of 2^0 and the continuity of L gives

$$\mathbf{L} = \lim_{n \to \infty} \mathbf{L} \circ \mathbf{M}^n = \mathbf{L} \circ (\lim_{n \to \infty} \mathbf{M}^n) = \mathbf{L} \circ \mathbf{K}.$$

Since $\mathbf{K} = (K, \dots, K)$, in view of Remark 2, we hence get $\mathbf{L} = \mathbf{K}$ which proves the desired uniqueness of the M -invariant mean.

Part 5^0 is an immediate consequence of Lemma 1.3⁰. Since part 6^0 is obvious, the proof is completed.

REMARK 3. The assumption of Theorem 1 that at most one of the means $M_1, ..., M_p$ is not strict is essential. To show this consider the following

EXAMPLE 1. Take
$$p = 3$$
 and define $L, M, N : \mathbb{R}^3 \to \mathbb{R}$ by

$$L(x, y, z) := \min(x, y, z), M(x, y, z) := \frac{x + y + z}{3}, N(x, y, z) := \max(x, y, z).$$

Then $\mu := (L+N)/2$ is a mean and for all $x, y, z \in \mathbb{R}$,

$$\begin{split} L(x, y, z) &= L\left(L(x, y, z), \mu(x, y, z), N(x, y, z)\right) \\ \mu(x, y, z) &= M\left(L(x, y, z), \mu(x, y, z), N(x, y, z)\right) \\ N(x, y, z) &= N\left(L(x, y, z), \mu(x, y, z), N(x, y, z)\right). \end{split}$$

Thus, setting M := (L, M, N) and $K := (L, \mu, N)$, we have, $K = M \circ K$, i.e. K is an M-invariant mean-type mapping. However the coordinate means of K are not equal.

In Theorem 1 we assume that only one of the means M_1, \ldots, M_p is not strict. The next result shows that, under some additional conditions, this assumption can be essentially relaxed.

THEOREM 2. Let $p \in \mathbb{N}$, $p \geq 2$, be fixed. Suppose that $\mathbf{M}: I^p \to I^p$, $M = (M_1, \ldots, M_p)$, is a continuous mean-type mapping. Let $(\mathbf{M}^n)_{n=0}^{\infty}$ be the sequence of iterations of \mathbf{M} . If there is an $j \in 1, \ldots, p$ such that M_j is strict and either

$$(5) M_i \leq M_j, i = 1, \dots, p,$$

or

$$(6) M_i \leq M_i, i = 1, \dots, p,$$

then

1⁰ for every $n \in \mathbb{N}$, the iterate \mathbf{M}^n is a mean type mapping on I^p ;

2⁰ the sequence $(\mathbf{M}^n)_{n=1}^{\infty}$ converges (pointwise) to a mean type mapping $\mathbf{K}: I^p \to I^p, \mathbf{K} = (K_1, \ldots, K_p)$, such that

$$K_1 = \ldots = K_p;$$

 3^0 K is M-invariant i.e.,

$$\mathbf{K} \circ \mathbf{M} = \mathbf{K};$$

 4^0 a continuous M-invariant mean-type mapping is unique,

 5^0 if M is a strict mean-type mapping then so is K;

 6^0 if $I = (0, \infty)$ and M is positively homogeneous, then K is positively homogeneous.

PROOF. It is enough to apply Lemma 2 and argue along the same line as in the case of Theorem 1.

REMARK 4. Example 1 shows that the existence of a strict coordinate mean of a mean-type mapping M such that either condition (5) or (6) is satisfied is an essential assumption of Theorem 2.

3. Invariant means and applications of main results

According to Theorem 1 and Theorem 2, the problem to determine the limit of the sequence of iterates of a mean-type mapping M reduces to finding an M-invariant mean-type mapping (or an M-invariant mean). To show that this fact can be helpful in determining the limit of the sequence (M^n) we begin this section by presenting the following EXAMPLE 2. Take $I = (0, \infty)$ and p = 2. Let M: $I^2 \rightarrow I^2$ be defined by M = (A, H), where A and H are respectively the arithmetic and harmonic means:

$$A(x,y) = \frac{x+y}{2}, \qquad H(x,y) = \frac{2xy}{x+y}, \qquad x,y \in \mathbb{I}.$$

By Theorem 1 there exists a unique mean-type mapping $K: I^2 \to I^2$ which is invariant with respect to M. Let G be the geometric mean, $G(x, y) = (xy)^{1/2}, (x, y \in I)$. Since (cf. P. Kahlig, J.Matkowski [5])

$$G(A(x,y),H(x,y)) = \left(\frac{x+y}{2}\frac{2xy}{x+y}\right)^{1/2} = G(x,y), \qquad x,y > 0,$$

G is an M-invariant mean and, by the uniqueness of the invariant mean, we have K = (G, G). Moreover,

$$\lim_{n \to \infty} \mathbf{M}^n(x, y) = \lim_{n \to \infty} \left(\frac{x+y}{2}, \frac{2xy}{x+y} \right)^n = \left(\sqrt{xy}, \sqrt{xy} \right), \qquad x, y > 0.$$

This example can be easily deduced from more general facts presented below as Propositions 1-3 in which we consider some special classes of means.

Given $r \in \mathbb{R}, r \neq 0$, the function $M^{[r]}: (0,\infty)^2 \to (0,\infty)$,

$$M^{[r]}(x,y) := (\frac{x^r + y^r}{2})^{1/r}, \qquad x, y > 0,$$

is called the power mean.

Now we prove

PROPOSITION 1. Let $r \in \mathbb{R}, r \neq 0$, be fixed. Then

$$G(M^{[r]}(x,y), M^{[-r]}(x,y)) = G(x,y), \quad x, y > 0,$$

i.e., for all $r \in \mathbb{R}$, the geometric mean G is invariant with respect to the mean-type mapping $\mathbf{M} = (M^{[r]}, M^{[-r]})$. Moreover,

$$\lim_{n \to \infty} \mathbf{M}^n = (G, G).$$

PROOF. By simple calculation, we verify the invariance. The remaining part of the proposition follows from Theorem 1. $\hfill \Box$

For a fixed $r \in \mathbb{R}$ define $D^{[r]}: (0,\infty)^2 \to (0,\infty)$ by

$$D^{[r]}(x,y) := \begin{cases} \frac{x-y}{\log x - \log y}, & r = 0\\ \frac{r}{r+1} \frac{x^{r+1} - y^{r+1}}{x^r - y^r}, & -1 \neq r \neq 0, \quad (x,y > 0).\\ xy \frac{\log x - \log y}{x-y}, & r = -1 \end{cases}$$

 $D^{[r]}$ is called the difference quotient mean.

PROPOSITION 2. For all $r \in \mathbb{R}$,

$$G(D^{[r]}(x,y), D^{[-r-1]}(x,y)) = G(x,y), \qquad x, y > 0,$$

i.e., the geometric mean G is invariant with respect to the mean-type mapping $\mathbf{M} = (D^{[r]}, D^{[-r-1]})$. Moreover,

$$\lim_{n \to \infty} \mathbf{M}^n = (G, G).$$

(We omit an easy proof of Proposition 2, as well as Proposition 3, below).

For a fixed $r \in \mathbb{R}$ the function $G^{[r]}: (0,\infty)^2 \to (0,\infty)$ given by

$$G^{[r]}(x,y) := \frac{x^{r+1/2} + y^{r+1/2}}{x^{r-1/2} + y^{r-1/2}}, \qquad x, y > 0,$$

is the Gini mean (Bullen-Mitrinović-Vasić [3], p. 189). Note that $G^{[0]} = G$.

PROPOSITION 3. For all $r \in \mathbb{R}$,

$$G(G^{[r]}(x,y), G^{[-r]}(x,y)) = G(x,y), \qquad x, y > 0,$$

i.e., the geometric mean G is invariant with respect to the mean-type mapping $\mathbf{M} = (G^{[r]}, G^{[-r]})$. Moreover,

$$\lim_{n \to \infty} \mathbf{M}^n = (G, G).$$

In connection with Propositions 1-3 let us note a general

REMARK 5. Let $I \subset (0,\infty)$ be an interval. If $M: I^2 \to I$ is a mean then $N: I^2 \to \mathbb{R}$, defined by

$$N(x,y) := \frac{xy}{M(x,y)}, \qquad x,y \in I,$$

is a mean. Moreover, the geometric mean G is invariant with respect to the mean-type $\mathbf{M} := (M, N)$, and $\lim_{n \to \infty} \mathbf{M}^n = (G, G)$.

The next result (which is easy to verify) gives a broad class of mean-type mappings $M: I^2 \to I^2$ for which the M-invariant means are quasi-arithmetic.

PROPOSITION 4. Let $\phi : I \to \mathbb{R}$ be continuous and strictly monotonic. Suppose that $M : I^2 \to I$, is a mean. Then the function $N : I^2 \to I$ defined by

$$N(x,y) := \phi^{-1}(\phi(x) + \phi(y) - \phi(M(x,y)))$$

is a mean. Moreover, the quasi-arithmetic mean $K: I^2 \to I$, defined by $K(x,y) := \phi^{-1}(\frac{\phi(x) + \phi(y)}{2}),$

is M-invariant for a mean-type mapping M = (M, N).

Example 2 and Propositions 1-4 were concerned with the case p = 2. If $p \ge 3$ the situation is a little more complicated. However, the following counterpart of Proposition 4 is easily verified.

PROPOSITION 5. Let $p \geq 3, p \in \mathbb{N}$, and a continuous strictly increasing function $\phi: I \to \mathbb{R}$ be fixed. Suppose that $M_i: I^p \to I, i = 1, \dots, p-1$, are symmetric means which are increasing with respect to each variable. Then the function $M_p: I^p \to I$ defined by

$$M_p(x_1, \dots, x_p) := \phi^{-1} \left(\sum_{i=1}^p \phi(x_i) - \sum_{i=1}^{p-1} \phi(M_i(x_1, \dots, x_p)) \right)$$

is a mean if, and only if, the following two conditions are satisfied: (a) for all $x_2, \ldots, x_p \in I$,

$$x_2 < \ldots < x_p \Rightarrow \sum_{i=1}^{p-1} \phi(M_i(x_2, x_2, x_3, \ldots, x_p)) \le \sum_{i=2}^p \phi(x_i);$$

(b) for all $x_1, ..., x_{p-1} \in I$,

$$x_1 < \ldots < x_{p-1} \Rightarrow \sum_{i=1}^{p-1} \phi(x_i) \le \sum_{i=1}^{p-1} \phi(M_i(x_1, \ldots, x_{p-1}, x_{p-1})).$$

Moreover, the quasi-arithmetic mean $K: I^p \rightarrow I$, defined by

$$K(x_1, \ldots, x_p) := \phi^{-1}(\frac{1}{p} \sum_{i=1}^p \phi(x_i)), \quad x_1, \ldots, x_p \in I,$$

is M-invariant for the mean-type mapping $\mathbf{M} = (M_1, \ldots, M_p)$.

EXAMPLE 3. Taking p = 3, $I = (0, \infty)$, $\phi(x) = x^2(x > 0)$, $M_1 = A$, $M_2 = R$, where A is the arithmetic mean and R is the square-root mean, i.e.

$$A(x,y,z) := rac{x+y+z}{3}, \quad R(x,y,z) := \left(rac{x^2+y^2+z^2}{3}
ight)^{1/2},$$

it is easy to verify that the conditions (a)-(b) of Proposition 5 are fulfilled. Therefore $M_3 = N$,

$$N(x, y, z) := \frac{1}{3} [3(x^2 + y^2 + z^2) + (x - y)^2 + (y - z)^2 + (z - x)^2]^{1/2}$$

is a mean and the mean-type mapping $M: (0, \infty)^3 \to (0, \infty)^3$, M = (A, R, N), is K-invariant with K = R, i.e.

$$R(A(x,y,z),R(x,y,z),N(x,y,z))=R(x,y,z),\qquad x,y,z>0.$$

Moreover, in view of Theorem 1 (or Theorem 2),

$$\lim_{n\to\infty}\mathbf{M}^n=(R,R,R).$$

4. Mean-type mappings and nonexpansivity. Examples

According to Remark 2, every mean-type mapping restricted to the diagonal is the identity map. The identity of I^p is an example of a mean-type mapping which, being an isometry, is of course nonexpansive. The following example is less trivial:

EXAMPLE 4. The map M: $I^p \to I^p$, defined by

$$\mathbf{M}(x_1, x_2, \ldots, x_p) := (x_1, x_1, x_2, \ldots, x_{p-1}), \qquad x_1, \ldots, x_p \in I,$$

is, of course, a nonexpansive (with respect to the Euclidean norm) mean-type mapping, and we have

$$\lim_{n\to\infty}\mathbf{M}^n(x_1,\ldots,x_p)=\mathbf{M}^{p-1}(x_1,\ldots,x_p)=(x_1,x_1,\ldots,x_1).$$

The next example shows that there are mean-type mappings which are neither nonexpansive nor expansive.

EXAMPLE 5. Take p = 2 and $I = (0, \infty)$. Then the mean-type mapping M: $(0, \infty)^2 \rightarrow (0, \infty)^2$, M= (A, G), where A and G are, respectively, the

arithmetic and geometric mean, is neither nonexpansive nor expansive in the sense of the Euclidean norm. In fact, for $x, y \in (0, \infty)^2$ such that

$$x = (a, a + h),$$
 $y = (b, b + h),$ $a, b, h > 0,$ $a \neq b,$

we have

$$\mathbf{M}(x) = \left(a + \frac{h}{2}, \sqrt{a(a+h)}\right), \quad \mathbf{M}(y) = \left(b + \frac{h}{2}, \sqrt{b(b+h)}\right),$$
$$\|x - y\|^2 = 2(a-b)^2,$$

$$\| \mathbf{M}(x) - \mathbf{M}(y) \|^{2} = 2(a-b)^{2} + 2ab + ah + bh - 2\sqrt{ab(a+h)(b+h)},$$

and, since

$$2\sqrt{ab(a+h)(b+h)} < 2ab+ah+bh, \quad a,b,h > 0,$$

(which can be easily verified by taking the second power of both sides) we infer that

$$\parallel \mathbf{M}(x) - \mathbf{M}(y) \parallel > \parallel x - y \parallel$$
.

On the other hand, taking

$$x, y \in (0, \infty)^2, x = (a, b), y = (ta, tb), \qquad a, b, t > 0, t \neq 0,$$

we have

$$\mathbf{M}(x) = \left(\frac{a+b}{2}, \sqrt{ab}\right), \qquad \mathbf{M}(y) = \left(t\frac{a+b}{2}, t\sqrt{ab}\right),$$

 $||x-y||^2 = (t-1)^2(a^2+b^2), \qquad ||\mathbf{M}(x)-\mathbf{M}(y)||^2 = (t-1)^2[(\frac{a+b}{2})^2+ab],$

and, clearly,

$$\parallel \mathbf{M}(x) - \mathbf{M}(y) \parallel < \parallel x - y \parallel.$$

Actually we have shown that M is neither nonexpansive nor expansive in each of the sets $\{x = (a, b) : a, b > 0, a < b\}$ and $\{x = (a, b) : a, b > 0, a > b\}$. Note that M(a, b) = M(b, a).

5. Remark on iterative functional equations

In the theory of iterative functional equations (cf. M. Kuczma [6]) a very important role is played by the following

FACT. Let $I \subseteq \mathbb{R}$ be an interval and $a \in \mathbb{R}$ a point belonging to the closure of I. If $f: I \to \mathbb{R}$ a continuous function such that

(7)
$$0 < \frac{f(x) - a}{x - a} < 1, \qquad x \in I \setminus \{a\},$$

then $f: I \to I$, and for every $x \in I$,

$$\lim_{n \to \infty} f^n(x) = a.$$

Note that condition (7) can be written in the equivalent form

$$\min(x,a) < f(x) < \max(x,a), \qquad x \in I \setminus \{a\}.$$

This observation leads immediately to the following finite-dimensional counterpart of the above fact (which is easily verified):

REMARK 6. Let $p \in \mathbb{N}$ be fixed. Suppose that $I \subseteq \mathbb{R}$ is an interval and $a \in \mathbb{R}$ a point belonging to the closure of I. If $\mathbf{f} : I^p \to \mathbb{R}^p$, $\mathbf{f} = (f_1, \ldots, f_p)$ is a continuous map such that

$$\min (x_1, \ldots, x_p, a) < f_i (x_1, \ldots, x_p) < \max (x_1, \ldots, x_p, a),$$
$$x_i \neq a, \quad i = 1, \ldots, p,$$

then f: $I^p \to I^p$, and for every $x \in I^p$,

$$\lim_{n\to\infty}\mathbf{f}^n(x)=(a,\ldots,a).$$

Acknowledgement. The author is indebted to the referee for his valuable remarks.

References

- [1] J. Aczél, Problem 291, Aequationes Math. 46 (1993), 199.
- [2] J. Borwein, Problem 291, Solution 1, Aequationes Math. 47 (1994), 115-118.
- [3] P. S. Bullen, D. S. Mitrinović, P. M. Vasić, Means and their inequalities, Mathematics and its Applications, D. Reidel Publishing Company, Dordrecht-Boston-Lancaster-Tokyo 1988.
- [4] P. Flor, F. Halter-Koch, Über Folgen, die bezüglich eines Mittels recurrent sind, Results in Mathematics 26 (1994), 264-273.
- P. Kahlig, J. Matkowski, On the composition of homogeneous quasi arithmetic means, J. Math. Anal. Appl. 216 (1997), 69-85.
- [6] M. Kuczma, Functional equations in a single variable, Monografie Matematyczne 46, PWN - Polish Scientific Publishers, Warszawa 1968.

INTITUTE OF MATHEMATICS SILESIAN UNIVERSITY BANKOWA 14 PL-40-007 KATOWICE POLAND

e-mail: matkow@omega.im.wsp.zgora.pl