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To the memory of Professor Győrgy Targonski 

A b s t r a c t . It is shown that, under some general conditions, the sequence of itera­
tes of every mean-type mapping on a finite dimensional cube converges to a unique 
invariant mean-type mapping. Some properties of the invariant means and their ap­
plications are presented. 

In t roduct ion 

The sequence of iterates of a selfmap of a metric space often appears in 
fixed point theory and, in general, the assumed conditions imply its conver­
gence to a constant map the value of which is a fixed point. In this context 
the questions whether there are nontrivial selfmaps with non-constant limits 
of the sequences of iterates, and what are the properties of their limits, seem 
to be interesting. 

To give an answer, in section 2, we consider a class of mean-type 
self-mappings M of a finite dimensional cube Ip, where / C R is an in­
terval and p > 2 a fixed integer, showing that (under some general assump­
tions) the sequence of iterates ( M n ) ^ = 1 converges to a unique non-constant 
mapping K which is an invariant mean-type with respect to M (shortly 
M-invariant). Since the coordinate functions of M are means, every point 
of the diagonal of P is a fixed point of M . In section 3 we apply these 
results to determine the limits of the sequence of iterates for some special 
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212 Janusz Matkowski 

classes of mean-type mappings. In section 4 we present some examples of 
nonexpansive mean-type mappings and we show that the mean-type map­
ping M = {A,G) (for which the sequence of iterates converges) is neither 
nonexpansive nor expansive. 

The subject considered here is related to the papers by J . Borwein [2], 
and P. Flor, F . Halter-Koch [4] where a problem concerning some recurrence 
sequences, posed by J . Aczel [1], was considered. 

1. M e a n s and auxi l ia ry results 

Let / C K be an interval, and p e N , p > 2 fixed. A function M : P -> R 
is said to be a mean on P if for all x = (x\,..., xp) £ P, 

min (xi,..., xp) < M(x\,..., xp) < max {x\,.. .xp); 

in particular, M : P —> / , and, for all x € /, 

M(x,..., x) — x. 

A mean M on P is called strict if whenever x = (xi,..., xp) € P such that 
Xi ^ Xj for some i, j e 1,..., p, then 

min ( x i , . . . , xp) < M{x\,.. .,xp) < max (xi,.. .xp); 

in particular we have the following 

R E M A R K 1. Let M : P ->• I be a strict mean and let (xi,...,xp) 6 P. 

If 

M (xi,..., xp) — min (xi,..., xp) or M (x^,..., xp) — max {xx,.. .xp) 

then xi = ... = xp. 

L E M M A 1. Let p G N , p > 2, be fixed. Suppose that Mi : P —>• K , 

i = 1,.. . , p, are continuous means on P such that at most one of them is 
not strict. Let the functions M , , n : P ->• /, i — 1,..., p, n € N , be defined by 

(1) MiA:=Mi, » = l , . . . , p , 

(2) M j , n + i (xi , . . . ,a;p) := M{ ( M i , „ ( a ; 1 , . . . , z p ) , . . . , Mp,n(xi,..., xp)). 



Iterations of mean-type mappings and invariant means 213 

Then 
1° for every n £ N and for each i = 1,.. .,p, the function Mi,n is a 

continuous mean on Ip; 
2° there is a continuous mean K : P -» / such that for each i = 

1,.. .,p, 

lim Min (xi,.. .,xp) — K (x\,.. .,xp) , xi,.. .,xp e I; 
n—too 

3° if Mi,..., Mp are strict means, then so is K. 
P R O O F . Part 1° is obvious. To prove 2° assume that, for instance, Mp 

is strict, and define an, f3n : P -> /, n G N , by 

an := min ( M i , „ , . . . , M P i „ ) , /3n := max ( M i , „ , . . . , M p , „ ) . 

The functions an, (3n are continuous means. Since M i , . . . , Mp are means we 
have 

an < M , - , n + i < 0n, i = 1, • • •, p; n£N, 

and, consequently, 

an < a n + 1 < f3n+i </3n, n€ N . 

Now we show the following 

C L A I M . For every xi,..., xp € I, either 
(a) there is some k eR such that 

an(xi,...,xp) = f3n(x1,...,xp), n € N , n>k; 

or 
(b) for all n 6 R, 

an (xl,...,xp) < an+i (xi, ...,xp) or f3n+l (xi,...,xp) < /3n (xu. ..,xp) 

This claim is obvious if xx = ... = xp. Take arbitrary xi,...,xp £ / 
such that Xi ̂  Xj for some i, j £ 1,..., p. Suppose, for an indirect argument, 
that the statement (b) does not hold, i.e. that there is a k G N such that 

ak(xi,..., Xp) - ak+i (xi,..., xp) < (3k+i (xi,.. • ,xp) = (3k (xx,..., xp). 

By the definition of ak and (3k we hence get 

min ( M i ) f c , . . . , M P i f c ) = min ( M i ) f c + i , . . . , M p , f c + i ) 
< max ( M i , f c + i , . . . , M p i f c + i ) = max ( M i , f c , . . . , M P | f c ) , 
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and, consequently, there are i, j, r, s G { 1 , . . .,p}, i ^ r, j ^ s, such that 

Mitk = min ( M 1 ) f c , . . . , M P ) f c ) = min ( M u . + 1 , . . . , M p , f c + 1 ) = Mjtk+\ 

< Mr<k = max {Ml<k)..., M P , A . . ) — max ( M i ^ + i , . . . , Mp^Ą-\) — MStk+i, 

(where the values of the occurring functions are taken at the chosen point 
( x j , . . . , xp)). Hence, since 

M j i f c + i (xi,...,xp) = Mj {Mltk(xl}.. .,xp),. ..,Mp,k(xi,...,xp)), 

MStk+i (xu..., xp) := Ms ( M 1 ) f e (xu ..., xp),..., MVtk (xi,..., xp)), 

and at least one of the means Mj and M s is strict, applying Remark 1, we 
infer that 

Mi,k(xi,...,Xp) = ... = Mp,k (xu .. .,xp). 

Hence, by the definition of M , ; n + i , i = l,...,p, and the fact that the 
restriction of every mean on P to the diagonal of P is the identity function 
on / , we obtain 

Miin{x1,...,Xp) = Mj}k{xi,...,xp), n>k, i, j 6 { 1 , . . .,p}. 

Now the definitions of an and /3n give 

an (xi,..., xp) = j3n (xi,..., Xp), n G N , n > k, 

showing that relation (a) is true. This completes the proof of our claim. 
Since the sequences (an) and (/3n) are monotonie and bounded, there 

exist a, P : P —t I defined by 

a :— lim a „ , := lim f}n. 
n—¥oo n—yoo 

We shall show that a = /3. For an indirect argument suppose that there exist 
x\,..., xp G / such that 

a ( x i , . . .,xp) < (3 (xi,.. .,xp). 

We can assume, without any loss of generality, that, for each j G { 2 , . . . , p}, 
Mj is a strict mean. Then for every j G { 2 , . . . , p) we have 

a ( x ! , . . . , xp) < Mj (71 ( x x , . . . , xp),..., 7 P (xt,..., x p ) ) < (3 ( x i , . . . , x p ) , 

where 

ji ( x i , . . . , x p ) = a ( x i , . . . , x p ) or 7* ( i i , . . . , xp) - (3 ( x 1 ; . . . , x p ) 
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and jr (xi,...,xp) ^ ys (x\,..., xp) for some r, s 6 {1,. . . ,p}. Take arbi­
trary positive 6 > 0. Then there is n(S) such that for all n > n(S), 

a(xi,.. .,xp) - 6 < Mit1l (xi,...,xp) < /3(xi,.. .,xp)+ 6, i=l,...,p, 

Hence, choosing 6 small enough, by the continuity of M j , we infer that 

a(xi,...,Xp) < M J > + i (xi,...,xp) < (3(xi,...,Xp), 

j = 2,...p, n>n(5). 
It follows that for every n > n(S) either 

a ( z i , • • •, xp) < ft,, (xi,..., xv) < (3 (xi,..., xp) 

or 

a ( x i , . . . , xp) < f3n (xi,..., Xp) < fi (xi,..., xp), 

which contradicts the definition of a and p. Thus we have shown that 

a = P in P. 

Since an, pn are continuous, (an) is increasing and (Pn) is decreasing, the 
function a is lower semicontinuous, and P is upper semicontinuous on P. It 
follows that the function K : P -> I defined by 

A. {x\,... i Xp) .— ot {x \i..., xp) i X \ , . . . i Xp G / , 

is continuous on P. It is obvious that K is a mean on P. • 

L E M M A 2. Let p £ N, p > 2, be fixed. Suppose that Mi : P ->• E , 
i = 1,... , p, are continuous means on P such that for some j € { 1 , . . . , p}, 
Mj is strict and either 

(3) Mi < Mj, t = l , . . . , p , 

or 

(4) M j < M j , t = l , . . . , p . 

T/ien i/je functions M j ) T l : P -¥ I, i = I,.. .,p, n G N , defined by (l)-(2) 
in Lemma 1 satisfy the conclusions l°-3° of Lemma 1. 

P R O O F . Assume that condition (3) is satisfied. Without any loss of 
generality we can assume that j = p, i.e. that 

Mi < Mp, i =!,.. . ,/>. 
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Part 1° is obvious. To prove 2° define an, f3n, a and (3, in the same way as 
in the proof of Lemma 1. Of course we have 

Pn = Mp,n, pn+l < pn, {n e N), P = lim M p , n . 

an = mm ( M x , n , . . . , M p _ i ) T l ) , ftn < a n + 1 , (n 6 N), 

a = lim an, a < p. 

Suppose that there is a point (x\,..., xp) £ Ip such that 

a(xi,...,xp) < P(xu...,xp). 

Since Mp is a strict mean we hence get 

a(xi,..., xp) < Mp (a (xi,..., xp),..., a (xt,..., xp), P (x-i,..., xp)) 

< P(xi,...,xp). 

Now the continuity of Mp impUes that, for sufficiently large n, 

a(xi,...,xp) < M P i „ {xi,...,xp) < P(xi,...,Xp). 

This contradiction proves that a = p. The remaining argument is similar to 
that of Lemma 1. 

Since in the case when condition (4) is satisfied the reasoning is analo­
gous, the proof is completed. • 

2. T h e main results 

Let I C E be an interval and let p € N , p > 2, be fixed. A function 
M : Ip -> Rp, M = ( M i , . . . , M p ) , is called a mean-type mapping if each 
coordinate function M j , i = is a mean on Ip; in particular, M : 
jp JP_ A mean type mapping M = (Mi,...,Mp) is strict if each of its 
coordinate functions Mi is a strict mean. 

R E M A R K 2. Note that the restriction of an arbitrary mean-type map­
ping M : Ip —>• Ip to the diagonal of the cube Ip coincides with the identity 
function i.e., for every x £ I, 

M ( x , . . . , x) = (x,..., x). 
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It follows that for any function K : P ->• P, K = {K\,.. - ,KP), with equal 
coordinates, i.e. such that K\ = ... = Kp = K, we have 

M o K = K . 

The first result on the convergence of the sequences of iterates of the 
mean-type mappings reads as follows. 

T H E O R E M 1. Let an interval ICR and p G N , p > 2, be fixed. If 
M : P —)• Rp, M — ( M i , . . . , M p ) , is a continuous mean-type mapping such 
that at most one of the coordinate means M,- is not strict, then: 

1° for every n G N , the n-th iterate of M is a mean-type mapping; 
2° there is a continuous mean K : P —> / such that the sequence of 

iterates ( M " ) ^ L X converges (pointwise) to a continuous mean-type mapping 
K : P -> P, K = (Ki,..., Kp), such that 

Ki = ... = Kp = K; 

3° K is an M.-invariant mean-type mapping i.e., 

K o M = K , 

or, equivalently, the mean K is M-invariant i.e., for all xi,..., xp G / , 

K ( M i ( x i , . . . , Xp),..., Mp (xi,..., xp)) = K (xi,..., Xp); 

4 ° a continuous M.-invariant mean-type mapping is unique; 
5° if M is a strict mean-type mapping then so is K ; 
6° if I — (0, oo) and M is positively homogeneous, then K is positively 

homogeneous. 

P R O O F . Define M ; ) H : P I, i = 1,.. .,p, n G N , by formulas (l)-(2). 
By induction it is easy to verify that 

M n = ( M i , n , . . . , M p , n ) , n G N . 

Now, applying Lemma 1.1° - 2 ° , we get the conclusions 1° and 2°. Thus, for 
all [x\,..., xp) G P, we have 

K ( x x , . . .,Xp) = lim Mn(xi,.. .,Xp). 
n—¥oo 

Hence, making use of (2) and the continuity of K , we get 

K = lim M n + 1 = M ( lim M n ) = M o K . 
n—¥oo n—yoo 
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Since K = ( A " i , . . . , Kp) where K\ = ... = Kv = A' , this relation is equiva­
lent to 

K(Mi(xi,. ..,xp),. ..,Mv{xx,. ..,Xp)) = K(xi,. ..,xp), 

for all (x\,..., Xp) G Ip, and the proof of 3° is completed. 
To prove 4° take an arbitrary continuous mean-type mapping L : Ip —>• 

Ip that is M -invariant. Thus we have L = L o M , and, by an obvious 
induction, 

L = L o M ' \ n G N . 

Hence, letting n —>• oo, making use of 2° and the continuity of L gives 

L = lim L o M n = L o ( l i m M " ) = L o K . 
n—>oo n—¥oo 

Since K = ( A ' , . . . , A' ) , in view of Remark 2, we hence get L = K which proves 
the desired uniqueness of the M -invariant mean. 

Part 5° is an immediate consequence of Lemma 1.3°. Since part 6° is 
obvious, the proof is completed. 

R E M A R K 3. The assumption of Theorem 1 that at most one of the means 
M i , . . , Mp is not strict is essential. To show this consider the following 

E X A M P L E 1. Take p = 3 and define L, M , TV : E 3 ->• E by 

L(x, y, z) := min (x, y, z), M(x, y, z) := , N(x, y, z) := max (x, y, z). 

Then /x := (L + N)/2 is a mean and for all x, y, z € E , 

L(x,y,z) = L (L(x,y,z),n{x,y,z),N(x,y,z)) 

H(x, y,z) = M (L(x, y, z),n{x, y, z),N{x, y, z)) 

N(x, y,z) = N (L{x, y, z),[i(x, y,z),N(x, y, z)). 

Thus, setting M : = (L,M,N) and K : = (L,u.,N), we have, K = M o K , i.e. 
K is an M-invariant mean-type mapping. However the coordinate means of 
K are not equal. 

In Theorem 1 we assume that only one of the means M i , . . . , Mp is not 
strict. The next result shows that, under some additional conditions, this 
assumption can be essentially relaxed. 
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T H E O R E M 2. Let p £ N, p > 2, be fixed. Suppose that M : Ip ->• Ip, 
M = ( M i , . . . , M p ) , is a continuous mean-type mapping. Let ( M N ) £ L 0 

the sequence of iterations o / M . / / there is an j £ 1,... ,p such that Mj is 
strict and either 

(5) Mj < M j , i = l,...,p, 

or 

(6) Mj < Mi, i=l,...,p, 

then 
1° for every n £ N, the iterate M n is a mean type mapping on Ip; 
2° the sequence ( M * ) ™ , converges (pointwise) to a mean type map­

ping K : Ip —• Ip, K = (K\,..., Kp), such that 

Ki = ... = Kp; 

3° K is ^.-invariant i.e., 

K o M = K ; 

4° a continuous ^.-invariant mean-type mapping is unique, 
5° j / M is a strict mean-type mapping then so is K ; 
6° if I — (0, oo) and M is positively homogeneous, then K is positively 

homogeneous. 

P R O O F . It is enough to apply Lemma 2 and argue along the same line 
as in the case of Theorem 1. 

R E M A R K 4. Example 1 shows that the existence of a strict coordinate 
mean of a mean-type mapping M such that either condition (5) or (6) is 
satisfied is an essential assumption of Theorem 2. 

3. Invariant means and applications of main results 

According to Theorem 1 and Theorem 2, the problem to determine 
the limit of the sequence of iterates of a mean-type mapping M reduces to 
finding an M-invariant mean-type mapping (or an M-invariant mean). To 
show that this fact can be helpful in determining the limit of the sequence 
( M n ) we begin this section by presenting the following 
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E X A M P L E 2. Take / = (0, oo) and p - 2. Let M : I2 -» P be defined by 
M = (A, H), where A and H are respectively the arithmetic and harmonic 
means: 

. , , x + y T r . . 2xy 
A{x,y) = —^-, H(x,y) = —z-, x,y£l. 

2 x + y 

By Theorem 1 there exists a unique mean-type mapping K : I2 —> I2 which 
is invariant with respect to M . Let G be the geometric mean, G(x,y) = 
( x y ) 1 / 2 , (x,y € I). Since (cf. P. Kahlig, J.Matkowski [5]) 

G(A(x, y),H(x, y)) = ( ^ ^ J ^ = G(x, y), x, y > 0, 

G is an M-invariant mean and, by the uniqueness of the invariant mean, we 
have K = (G, G). Moreover, 

lim M n ( x , y ) = lim ( ^ ± 1 , ^ - ) ={Jxy,y/Zy), x , y > 0 . 
n-¥oo n->oo \ 2 X + y) 

This example can be easily deduced from more general facts presented 
below as Propositions 1-3 in which we consider some special classes of means. 

Given r <G R , r # 0, the function M M : (o, oo)2 -» (0, oo), 

is called the power mean. 

Now we prove 

P R O P O S I T I O N 1. Let r € R , r / 0 , be fixed. Then 

G(M^(x, y), M^r\x, y)) = G(x, y), x, y > 0, 

i.e., for all r £ R, the geometric mean G is invariant with respect to the 
mean-type mapping M = {M^r\M\~r^). Moreover, 

lim M " = ( G , G ) . 

P R O O F . By simple calculation, we verify the invariance. The remaining 
part of the proposition follows from Theorem 1. • 
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For a fixed r G E define £>M : (o, oo)2 -> (0, co) by 

x-y 
log x-lOg y ' 

r = 0 

DW{x,y):={ ^XZ-C\ - l # r # 0 , ( x , y > 0 ) . 

CT

lo6 g - l o g v r = - l 

Z)M is called the difference quotient mean. 

P R O P O S I T I O N 2. For all r G E , 

G(£>M(x, y), D ^ - 1 ^ , y)) = G ( x , y), x, y > 0, 

i.e., the geometric mean G is invariant with respect to the mean-type mapping 
M = ( D W , D [ - r - 1 ] ) . Moreover, 

lim M n = ( G , G ) . 
n-*oo 

(We omit an easy proof of Proposition 2, as well as Proposition 3, be­
low). 

For a fixed r G E the function G M : (0, co) 2 -> (0, oo) given by 

is the Gini mean (Bullen-Mitrinovic-Vasic [3], p. 189). Note that G ^ = G . 

P R O P O S I T I O N 3. For all r G E , 

G ( G M ( X , y), G ^ X , y)) = G(x, y), x, y >0 , 

i.e., t/ie geometric mean G is invariant with respect to the mean-type mapping 
M = ( G M , G l - r l ) . Moreover, 

lim Mn = ( G , G ) . 
n->oo 

In connection with Propositions 1-3 let us note a general 

R E M A R K 5. Let / C (0, co) be an interval. If M : I2 -> / is a mean then 
N : I2 -> E , defined by 
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is a mean. Moreover, the geometric mean G is invariant with respect to the 
mean-type M : = (M,N), and lim M n = (G,G). 

The next result (which is easy to verify) gives a broad class of mean-type 
mappings M : I2 —»• I2 for which the M-invariant means are quasi-arithmetic. 

P R O P O S I T I O N 4. Let <f> : I —> R be continuous and strictly monotonie. 
Suppose that M : I2 I, is a mean. Then the function N : I2 -> / defined 
by 

N(x, y) := 4>~l {4>{x) + cf>(y) - <j>(M(x, y)) 

is a mean. Moreover, the quasi-arithmetic mean K : I2 —> /, defined by 

is M - i n variant for a mean-type m&pping M = ( M , TV). 

Example 2 and Propositions 1-4 were concerned with the case p = 2. 
If p > 3 the situation is a little more complicated. However, the following 
counterpart of Proposition 4 is easily verified. 

P R O P O S I T I O N 5. Let p > S,p € N , and a continuous strictly increasing 
function (j> : I K be fixed. Suppose that M,- : Ip —> /, i — 1,... ,p — 1, are 
symmetric means which are increasing with respect to each variable. Then 
the function Mp : Ip I defined by 

v p - i 
M p ( a ; 1 , . ..,xp) := <£(&;) - ^ ^ ( M ^ Z i , , • • -,xp))) 

i=l i=l 
is a mean if, and only if, the following two conditions are satisfied: 

(a) for all X2,.. •, xp £ I, 

P - I P 

x2 < . . . < Xp => Y^<f>(Mi{x2,x2,x3,.. .,xp)) < Y^4>{xi); 

i=l i=2 

(b) for all xi,..., xp-i € /, 

p—i p—i 

Xi < ...< X p _ i => ^2<j)(xi) < Y2HMi(Xl, -iXp-UXp-i)). 
j= l 4=1 

Moreover, the quasi-arithmetic mean K : Ip -4 /, defined by 

1 P 

K(xi,,...,Xp) := </>_1(-^</>(x,)), x i , . . . , x p e / , 

is W/L-invariant for the mean-type mapping M = ( M i , . . . , Mp). 
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E X A M P L E 3. Taking p = 3,1 = (0, oo), <£(x) = x2(x > 0 ) , M i = 
A, Mi = R, where A is the arithmetic mean and R is the square-root mean, 

A{x, y, z) := X + ^ + 2 , R(x, y, z) := + 3 + ^ ) 

it is easy to verify that the conditions (a)-(b) of Proposition 5 are fulfilled. 
Therefore M3 = N, 

N(x, y, z) := i [ 3 (x 2 + y2 + z2) + (x - y)2 + (y - z)2 + (z - x)2fl2, 

is a mean and the mean-type mapping M : (0, oo) 3 (0, oo) 3, M = (A, R, N), 
is /{"-invariant with K = R, i.e. 

R{A(x, y,z),R(x,y,z),N{x,y,z)) = R(x,y,z), x,y,z> 0. 

Moreover, in view of Theorem 1 (or Theorem 2), 

Jim M n = (R, R, R). 

4. M e a n - t y p e mappings and nonexpansivity. Examples 

According to Remark 2, every mean-type mapping restricted to the 
diagonal is the identity map. The identity of P is an example of a mean-type 
mapping which, being an isometry, is of course nonexpansive. The following 
example is less trivial: 

E X A M P L E 4. The map M : P -> P, denned by 

M(xi,x2,...,xp) := {xi,xx,x2,...,xp-i), xx,..., xp € I, 

is, of course, a nonexpansive (with respect to the Euclidean norm) mean-type 
mapping, and we have 

lim M n ( x i , . . .,xp) = M p - 1 ( a ; i , . . . , a ; p ) = (xu x1:... ,xx). 
n—¥oo 

The next example shows that there are mean-type mappings which are 
neither nonexpansive nor expansive. 

E X A M P L E 5. Take p = 2 and / = (0, 00). Then the mean-type mapping 
M : (0,co) 2 -» (0,oo) 2, M = (A,G), where A and G are, respectively, the 
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arithmetic and geometrie mean, is neither nonexpansive nor expansive in 
the sense of the Euclidean norm. In fact, for x, y 6 (0, oo) 2 such that 

x = (a, a + h), y = (b,b+h), a,b,h>0, a^b, 

we have 

M(z)=(a+±y/a(a + h)y M(y) = (b + y/^b+hfj , 

| | x - y | | 2 = 2 ( a - 6 ) 2 , 

|| M ( x ) - M(y ) | | 2 = 2(a - 6) 2 + 2a6 + ah + bh - 2^ab(a +h)(b + h), 

and, since 

2sjab(a +h)(b + h) < 2ab + ah + bh, a,b,h>0, 

(which can be easily verified by taking the second power of both sides) we 
infer that 

|| M ( x ) - M(y) ||>|| x - y || . 

On the other hand, taking 

x, y € (0, oo) 2, x = (a, b), y = (ta, tb), a,b,t > 0,t ^ 0, 

we have 

M ( x ) = ( i ± * , v ^ ) , M(y) = (t£±*,tVSi) , 

|| x - y | | 2 = ( t - l ) 2 ( « 2 + 6 2 ) , || M ( x ) - M ( y ) | | 2= (t- 1 ) 2 [ ( ^ ) 2 + ab], 

and, clearly, 
|| M ( x ) - M ( y ) | | < | | x - y | | . 

Actually we have shown that M is neither nonexpansive nor expansive in 
each of the sets {x = (a, b) : a, b > 0, a < b) and {x — (a, b) : a, b > 0, a > b}. 
Note that M(a, b) =M(b, a). 
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5. R e m a r k on i terative functional equations 

In the theory of iterative functional equations (cf. M . Kuczma [6]) a 
very important role is played by the following 

F A C T . Let I C R be an interval and a £ R a point belonging to the 
closure of I. If f : / —>• R a continuous function such that 

(7) 0 < F { X ) ~ A < 1, xel\{a}, 
x — a 

then f : I —ł I, and for every x £ I, 

lim fn(x) = a. 

Note that condition (7) can be written in the equivalent form 

min (x, a) < f(x) < max (x, a), x £ I\ {a}. 

This observation leads immediately to the following finite-dimensional co­
unterpart of the above fact (which is easily verified): 

R E M A R K 6. Let p £ N be fixed. Suppose that / C R is an interval and 
a £ R a point belonging to the closure of / . If f : Ip R P , f= ( / i , . . . , fp) is 
a continuous map such that 

min (xi,.. .,xp,a) < (xi,..., xp) < max (xi,..., xp, a), 

Xi ^ a, i-l,...,p, 

then f: Ip —>• Ip, and for every x £ Ip, 

lim f l(a;) = ( a , . . . , a). 

n—>oo 

Acknowledgement . The author is indebted to the referee for his va­
luable remarks. 
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