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Abstract. It is shown that, under some general conditions, the sequence of itera-
tes of every mean-type mapping on a finite dimensional cube converges to a unique
invariant mean-type mapping. Some properties of the invariant means and their ap-
plications are presented.

Introduction

The sequence of iterates of a selfmap of a metric space often appears in
fixed point theory and, in general, the assumed conditions imply its conver-
gence to a constant map the value of which is a fixed point. In this context
the questions whether there are nontrivial selfmaps with non—constant limits
of the sequences of iterates, and what are the properties of their limits, seem
to be interesting.

To give an answer, in section 2, we consider a class of mean—type
self-mappings M of a finite dimensional cube I?, where / C R is an in-
terval and p > 2 a fixed integer, showing that (under some general assump-
tions) the sequence of iterates (M™)32; converges to a unique non—constant
mapping K which is an invariant mean-type with respect to M (shortly
M-invariant). Since the coordinate functions of M are means, every point
of the diagonal of /” is a fixed point of M. In section 3 we apply these
results to determine the limits of the sequence of iterates for some special
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classes of mean—type mappings. In section 4 we present some examples of
nonexpansive mean—type mappings and we show that the mean-type map-
ping M= (A, G) (for which the sequence of iterates converges) is neither
nonexpansive nor expansive.

The subject considered here is related to the papers by J. Borwein [2],
and P. Flor, F. Halter-Koch [4] where a problem concerning some recurrence
sequences, posed by J. Aczél [1], was considered.

1. Means and auxiliary results

Let ] C Rbe an interval, and p € N, p > 2 fixed. A function M : I» - R
1s said to be a mean on I” if for all z = (z1,...,z,) € I?,

min (z1,...,2,) < M(21,...,2p) < max(zy,...2y);

in particular, M : I? — I, and, for all z € I,

A mean M on I? is called strict if whenever @ = (z1,...,2,) € I? such that
z; # z; for some ¢, j € 1,...,p, then

min (z1,...,2,) < M(21,...,2,) < max(zy,...2,);

in particular we have the following

REMARK 1. Let M : I? — | be a strict mean and let (21,...,2,) € I”.
If
M (z1,...,2p) = min (z1,...,2p) or M (z1,...,2,) = max (z1,...Tp)
then 2; = ... =z,.

LEMMA 1. Let p € N, p > 2, be fized. Suppose that M; : I" — R,
1 =1,...,p, are continuous means on I? such that at most one of them is
not strict. Let the functions M; , : IP = 1,1 =1,...,p, n € N, be defined by

(1) Mi,l = Mi i=1,...,p,

(2) Mingr(z1,...,2p) = My (Myn(z1,. .., 2p), .., Mp (1, ..., 2p))
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Then

1°  for every n € N and for each i = 1,...,p, the function M;, is a
continuous mean on IP;

20 there is a continuous mean K : IP — [ such that for each i =

1,...,p,

Ji—r>nooMi’" (X150 zp) = K (21,...,2p), T1,...,2p € I
30 if My,..., M, are strict means, then so is K.

PRrOOF. Part 1° is obvious. To prove 2° assume that, for instance, M,
is strict, and define o, 8, : [P = I, n € N, by

ay i=min (M pn, ..., My ), Br :=max (My n,..., Mp ).

. . . ,
The functions o, (3, are continuous means. Since My, ..., M, are means we

have
anSMi,n+1Sﬂm i=1,...,p; nGN,

and, consequently,

oy < Oy < ﬂn+l < ﬁna n € N.

Now we show the following

CLAIM. For every zy,...,z, € I, either
(a) there is some k € R such that

an (1., Tp) = P (T1,...,%p), neN, n>k;

or
(b) for all n € R,

n (T1ye ey Tp) < Qpg1 (X101 2p) OF Brgr (T1y-+,2p) < Bu (1,...,2Zp)
This claim is obvious if #; = ... = z,. Take arbitrary zy,...,2, € |
such that z; # z; for some ¢, j € 1,..., p. Suppose, for an indirect argument,

that the statement (b) does not hold, i.e. that there is a k¥ € N such that
(647 (:131,...,:1),,) = Ok41 (zl,...,z,,) < ﬂk+1 ((L’],...,:L’p) = ﬂk (wl,...,x,,) .
By the definition of o and §; we hence get

min (Ml,k, .o .,Mp,k) = min (Ml,k+11 ey Mp,k-i-l)
< max (Mq g1,y Mp k1) = max (My gy ..., Mp i),
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and, consequently, there are ¢, j, r, s € {1,...,p}, s #r, j # s, such that

Mi,k: = min (Ml,k, .o .,Mpyk) = min (M1,k+1, . -,Mp,k+l) = Mj,k+1
< My = max (My g, .. "M?”k) = max (My ky1,..., Mp 1) = M ki1,

(where the values of the occurring functions are taken at the chosen point
(z1,...,2,)). Hence, since

Mj‘k+1 ($1,...,l‘p) = Mj (Ml,k (:1:1,...,:1:,,),...,Mp,k(zl,...,xp)),

Ms ki1 (@1, @p) i= My (My g (21, ..., 2p) .oy My g (Z1,...,2p)),

and at least one of the means M ; and M, is strict, applying Remark 1, we
infer that

Mlyk(xl,...,xp):...:Mpyk(xl,...,x,,).

Hence, by the definition of M; .41, i = 1,...,p, and the fact that the
restriction of every mean on I” to the diagonal of I? is the identity function
on I, we obtain

Mi,n(:z:l,...,xp):Mj,k(:vl,...,:cp), nzk, i,jE{l,...,p}.
Now the definitions of a,, and £, give
an (1, -y Tp) = B (T1, ..., 2p), n €N, n>k,

showing that relation (a) is true. This completes the proof of our claim.
Since the sequences (a,) and (8,) are monotonic and bounded, there
exist o, §: I? — I defined by

a:= lim a,, B = lim G,.
n—00

n~+00

We shall show that o = . For an indirect argument suppose that there exist
T1,...,%p € I such that

a(Ty,...,2p) < B(x1,...,2p).

We can assume, without any loss of generality, that, for each j€A{2,...,p}h
M; is a strict mean. Then for every j € {2,...,p} we have

a(T1y.0 5 @p) < M (1 (%1, 2p) 5oy Yp (B0, - -, 7)) <B(x1,...,2p),

where

Vi (T1, .00, 2p) = @ (T1,.. ., Tp) or Vi (21,000, 2p) = B (21, ..., T,)
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and v, (z1,...,%p) # ¥s (21,...,2p) for some r, s € {1,...,p}. Take arbi-
trary positive § > 0. Then there is n(§) such that for all n > n(é),

a(zy,...,2p) ~ 8 < M;, (21,...,2,) < B(21,...,2p) +6, i=1,...,p,
Hence, choosing § small enough, by the continuity of M;, we infer that
a(zy,...,2p) < Mjpy1(@1,...,2p) < B(21,...,2p),

J=2,...p, n>n(é).
It follows that for every n > n(d) either

a(z1,...,2p) < oy (T1,...,2p) < B(21,...,7p)
or
a(Tyy.. .y @p) < By (@1, .,2p) < B(21,...,2p),
which contradicts the definition of o and 3. Thus we have shown that

a=0 in I®,

Since a,, B, are continuous, (a,) is increasing and (3,,) is decreasing, the
function « is lower semicontinuous, and (3 is upper semicontinuous on 7. It
follows that the function K : I? — I defined by

K(zy,...,2p) = a(z1,...,2p), Ti,...,zp €1,
is continuous on I?. It is obvious that K is a mean on I”. O

LEMMA 2. Let p € N, p > 2, be fizred. Suppose that M; : I? — R,
t=1,...,p, are continuous means on I* such that for some j € {1,...,p},
M; is strict and either

(3) M; < M;, i=1,...,p,
or
(4) MjSMi, i=1,...,p.

Then the functions M;, : [P = I, i =1,...,p, n € N, defined by (1)-(2)
in Lemma 1 satisfy the conclusions 1°-3° of Lemma 1.

ProoF. Assume that condition (3) is satisfied. Without any loss of
generality we can assume that j = p, i.e. that

M; <M, i=1,..p.
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Part 1° is obvious. To prove 2° define a,, 8., o and §, in the same way as
in the proof of Lemma 1. Of course we have

Bn = Mp n, Br+1 < Bu, (n € N), g = lim My .

n->00
ap, = min (Ml,n, .. -aMp—l,n) 3 ap < An41, (n € N)a
o= lim a,, a<B.
n—+00

Suppose that there is a point (z1,...,2,) € I” such that

a(z1,...,2p) < B(21,...,Tp).

Since M, is a strict mean we hence get

a(x1,. ., Tp) < Mp (@ (21,0, 2p) ..y (@1,...,2p), B (21, .., Tp))
<ﬁ(.’l]1,...,$p).

Now the continuity of M, implies that, for sufficiently large =,

(T, ..., 2p) < Mpn(21,...,2p) < B(21,...,2,).

This contradiction proves that o = 3. The remaining argument is similar to
that of Lemma 1.

Since in the case when condition (4) is satisfied the reasoning is analo-
gous, the proof is completed. 0

2. The main results

Let I C R be an interval and let p € N, p > 2, be fixed. A function
M: I?P - R?, M= (M,...,M,), is called a mean-type mapping if each
coordinate function M;, ¢ = 1,...,p, is a mean on /?; in particular, M:
I?P — IP. A mean type mapping M= (M,,..., M,) is strict if each of its
coordinate functions M; is a strict mean.

REMARK 2. Note that the restriction of an arbitrary mean-type map-
ping M: I? — IP to the diagonal of the cube I? coincides with the identity
function i.e., for every z € I,
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It follows that for any function K: I? — I?, K= (K4,..., K,), with equal
coordinates, i.e. such that K; =...= K, = K, we have

MOK:K

The first result on the convergence of the sequences of iterates of the
mean-type mappings reads as follows.

THEOREM 1. Let an interval I C R and p € N, p > 2, be fized. If
M:I? - RP, M = (M,...,M,), is a continuous mean—type mapping such
that at most one of the coordinate means M; is not strict, then:

1°  for every n € N, the n—th iterate of M is a mean-type mapping;

2% there is a continuous mean K : IP — I such that the sequence of

iterates (M"™)22, converges (pointwise) to a continuous mean—type mapping

K:I? — I?, K= (Ky, ..., K}), such that
Ki=...=K, =K,
3% K is an M~invariant mean-type mapping i.e.,
KoM=K,
or, equivalently, the mean K is M—-invariant i.e., for all z,,...,z, € I,
K(Mi(21,...,2p), .-y Mp (21,...,2,)) = K (z1,...,%p);
4% a continuous M—invariant mean—type mapping is unique;
59 if M is a strict mean—type mapping then so is K;

8° if I = (0,00) and M is positively homogeneous, then K is positively
homogeneous.

Proor. Define M; , : IP — I,i=1,...,p, n € N, by formulas (1)-(2).
By induction it is easy to verify that

M" = (Myn,...,M,,), mneN.

Now, applying Lemma 1.1° —2°, we get the conclusions 1° and 2°. Thus, for
all (z1,...,zp) € I?, we have

K(z1,...,2p) = lim M"(2y,...,2p).

~»00

Hence, making use of (2) and the continuity of K, we get

K = lim M™!' =M(lim M")=MoK.

=00 n—+00
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Since K= (K, ..., K,) where K; = ... = K, = K, this relation is equiva-
lent to

K(Mi(z1,...,2p)y. .o, Mp(21,...,2p)) = K(21,...,2p),

for all (z1,...,2,) € I?, and the proof of 3° is completed.

To prove 4° take an arbitrary continuous mean-type mapping L: I? —
I? that is M -invariant. Thus we have L= L o M, and, by an obvious
induction,

L:LOM”, TLEN.

Hence, letting » — oo, making use of 2° and the continuity of L gives

= lim LoM"=Lo(lim M")=LoK.

n—oo n—oo

Since K= (K,..., K), in view of Remark 2, we hence get L=K which proves
the desired uniqueness of the M -invariant mean.

Part 5° is an immediate consequence of Lemma 1.3°. Since part 6° is
obvious, the proof is completed.

REMARK 3. The assumption of Theorem 1 that at most one of the means
M, .., M, is not strict is essential. To show this consider the following

EXAMPLE 1. Take p = 3 and define L, M, N : R® -5 R by

L(z,y, z) := min (z,y,2), M(z,y,2) := %j_—i, N(z,y, z) := max (z,y, 2).

Then p := (L + N)/2is a mean and for all z,y, z € R,
L(z,y,2) = L (L(2,y,2), p(z,y,2), N(2,y,2))

ple,y, 2) = M (L(z,y,2), u(2,y,2), N(z,y, 2))
N(w,y, Z) =N (L(CIJ, Y, z),u(z,y,z),N(z,y,z)).

Thus, setting M:= (L, M, N) and K:= (L, s, N), we have, K=M o K, i.e.
K is an M-invariant mean-type mapping. However the coordinate means of
K are not equal.

In Theorem 1 we assume that only one of the means M, ..., M, is not
strict. The next result shows that, under some additional conditions, this
assumption can be essentially relaxed.
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THEOREM 2. Let p € N, p > 2, be fized. Suppose that M: IP — [P,
M = (My,...,M,), is a continuous mean-type mapping. Let ( M™)52, be

the sequence of iterations of M. If there is an j € 1,...,p such that M; is
strict and either

(5) M; < M;, i=1,...,p,
or

(6) : M; < M;, i=1,...,p,
then

19 for every n € N, the iterate M™ is a mean type mapping on IP;

20 the sequence (M™%, converges (pointwise) to a mean type map-
ping K: I? — I?, K= (Ky, ..., K}), such that

I(l =...= I(p,
39 K is M—invariant i.e.,
KoM =K;

4% g continuous M~invariant mean-type mapping is unique,

5%  if M is a strict mean-type mapping then so is K;

6° if I = (0,00) and M is positively homogeneous, then K is positively
homogeneous.

PRrROOF. It is enough to apply Lemma 2 and argue along the same line
as in the case of Theorem 1.

REMARK 4. Example 1 shows that the existence of a strict coordinate
mean of a mean-type mapping M such that either condition (5) or (6) is
satisfied is an essential assumption of Theorem 2.

3. Invariant means and applications of main results

According to Theorem 1 and Theorem 2, the problem to determine
the limit of the sequence of iterates of a mean-type mapping M reduces to
finding an M-invariant mean-type mapping (or an M-invariant mean). To
show that this fact can be helpful in determining the limit of the sequence
(M™) we begin this section by presenting the following
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EXAMPLE 2. Take I = (0,00) and p = 2. Let M: I? — I? be defined by
M= (A, H), where A and H are respectively the arithmetic and harmonic
means:
2zy

H(z,y) = pra z,y €l

z+y
2 ¥

Az, y) =

By Theorem 1 there exists a unique mean-type mapping K: I> — I* which
is invariant with respect to M. Let G be the geometric mean, G(z,y) =
(zy)'/%, (z,y € I). Since (cf. P. Kahlig, J.Matkowski [5))

1/2
(L'+y 2$y) :G(x,y), w’y>0’

G(A((L‘,Z/),H(xay)): ( 2 $+y

G is an M-invariant mean and, by the uniqueness of the invariant mean, we
have K= (G, G). Moreover,

lim M"(z,y) = lim (w—;—y wa> = (vVZY,/ZY) , z,y > 0.

n—00 n—00 ! T+ Y

This example can be easily deduced from more general facts presented
below as Propositions 1-3 in which we consider some special classes of means.

Given r € R, r # 0, the function M{" : (0,00)? — (0, 00),

r " +y" r
M[](z,y) = (Ty)l/ 9 "an>0)‘

is called the power mean.

Now we prove
PRroPOSITION 1. Letr € R,r # 0, be fized. Then
G(MY)(z,y), MV (z,y)) = G(z,y), =,y>0,

i.e., for all r € R, the geometric mean G is invariant with respect to the
mean-type mapping M= (M 1, M ["”]). Moreover,

lim M" = (G,G).

n—o0

PRrROOF. By simple calculation, we verify the invariance. The remaining
part of the proposition follows from Theorem 1. 0
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For a fixed r € R define DU : (0,00)% — (0, 00) by

Iog —1og 3’ r=0

D\ (z,y) = { v ~1#7r#0, (z,y>0).
zyl—g———-g—o 2:1}0 ¥, r=-1

DUl is called the difference quotient mean.
ProprosITION 2. For all r € R,
G(D(z,y), D" (2, y)) = G(z,y),  z,y>0,

i.e., the geometric mean G is invariant with respect to the mean-type mapping
M= (D", pl=r=11). Moreover,

lim M" = (G, G).

n—o0

(We omit an easy proof of Proposition 2, as well as Proposition 3, be-
low).
For a fixed r € R the function Gl : (0,00)? — (0, 00) given by

wr+1/2 + yr+l/2

G[r](w) y)‘:= (I)r—l/2 + yr—1/2 !

z,y >0,

is the Gini mean (Bullen-Mitrinovi¢-Vasi¢ [3], p. 189). Note that Gl = G.
PRropPoOsSITION 3. For all r € R,
G(G[r](x’y)aG[_r]($7y))=G(way)a z,y>0,

i.e., the geometric mean G is invariant with respect to the mean-type mapping

M= (G, GI="1). Moreover,

lim M" = (G, Q).

n—0oo

In connection with Propositions 1-3 let us note a general

REMARK 5. Let I C (0,00) be an interval. If M : I? — [ is a mean then
N : I? 5 R, defined by

z,y €I,
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is a mean. Moreover, the geometric mean G is invariant with respect to the
mean-type M:= (M, N), and lim M" = (G, Q).
n—roo
The next result (which is easy to verify) gives a broad class of mean-type
mappings M: I? — I? for which the M-invariant means are quasi-arithmetic.

PROPOSITION 4. Let ¢ : I = R be continuous and strictly monotonic.
Suppose that M : I* — I, is a mean. Then the function N : I* — I defined
by

N(z,y) = ¢~ (¢(z) + ¢(y) - #(M(z,))

is a mean. Moreover, the quasi-arithmetic mean K : I* — I, defined by

(o) g (O350

is M-invariant for a mean-type mapping M= (M, N).
Example 2 and Propositions 1-4 were concerned with the case p = 2.

If p > 3 the situation is a little more complicated. However, the following
counterpart of Proposition 4 is easily verified.

PROPOSITION 5. Let p > 3,p € N, and a continuous strictly increasing
function ¢ : I = R be fixred. Suppose that M; : IP - 1,i=1,...,p— 1, are
symmetric means which are increasing with respect to each variable. Then
the function M, : I? — I defined by

P p—1
My(zy,...,z,) := ¢_1(Z¢>(x,-) - ZqS(M,-(zl, Ve Tp)))

is a mean if, and only if, the following two conditions are satisfied:
(a) for all zq,...,zp € I,

p—1 p
Ty <...<Tp=> Z¢(Mi(12,m2,:c3,...,zp)) < Zd)(zi);
i=1 i=2
(b) for all zq,...,2p_1 €1,
p—1 p—1
1 < ... < Tp1 = z¢(x,) < Z¢(Mi($1, ey Tp—1, Tp—1))-
i=1 1=1

Moreover, the quasi-arithmetic mean K : I? — I, defined by

4

K(21,,...,2p) = gb_l(%ZqS(mi)), Thyernzy €1,

=1

is M~invariant for the mean-type mapping M= (M, ..., M,).



Iterations of mean-type mappings and invariant means 223

EXAMPLE 3. Taking p = 3,1 = (0,00),¢(z) = z*(z > 0),M; =
A, M, = R, where A is the arithmetic mean and R is the square-root mean,

ie.
_ety+tz z2+y2+z2)1/2

Alw,y,2) = TTYEE D Re,y,2) = (

3 3

it is easy to verify that the conditions (a)-(b) of Proposition 5 are fulfilled.
Therefore M3 = N,

N(z,y,2) = zBE* + ¥ +22) + (2 —9)* + (y— 2)* + (2 — 2)']'7%,

Wl »=—

is a mean and the mean-type mapping M: (0, c0)® — (0,00)%, M = (4, R, N),
is K-invariant with K = R, i.e.

R(A((I}, Y, Z), R(-’II, Y, Z)’ N(III,y, Z)) = R((B, Y, Z)a z,y,z2> 0.
Moreover, in view of Theorem 1 (or Theorem 2),

lim M" = (R, R, R).

n—+r00

4. Mean—type mappings and nonexpansivity. Examples

According to Remark 2, every mean-type mapping restricted to the
diagonal is the identity map. The identity of /? is an example of a mean-type

mapping which, being an isometry, is of course nonexpansive. The following
example is less trivial:

EXAMPLE 4. The map M: I? — [P, defined by
M(z1,22,...,2p) == (T1,21,22,...,Tp_1), T1,...,Zp €1,

is, of course, a nonexpansive (with respect to the Euclidean norm) mean-type
mapping, and we have

JEnOOM"(xl,...,xp) =M (zy,...,2,) = (21,21, -, T1)-

The next example shows that there are mean-type mappings which are
neither nonexpansive nor expansive.

EXAMPLE 5. Take p = 2 and I = (0, 0c). Then the mean-type mapping
M: (0,00)2 — (0,00)%, M= (A,G), where A and G are, respectively, the
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arithmetic and geometric mean, is neither nonexpansive nor expansive in
the sense of the Euclidean norm. In fact, for =,y € (0, 00)? such that

z = (a,a+ h), y=(b,b+h), a,b,h >0, a#b,

we have

M) = (a4 5Va@r i), M) = (b+ 5, V5GHR),

2 -y |’=2(a-b)’
| M(2) — M(y) ||>= 2(a — b)® + 2ab + ah + bk — 21/ab(a+ k) (b+ h),

and, since

2¢/ab(a+ h)(b+ h) < 2ab+ ah + bh, a,b,h > 0,

(which can be easily verified by taking the second power of both sides) we
infer that

| M(z) - M(y) >z -yl -
On the other hand, taking

z,y € (O,oo)z,zz(a,b),yz(ta,tb), a,b,t > 0,t#0,

we have
M) = (G2 va), Mo = (),
lz—y lIP= (-1 @+5), || M(z)-M(y) 2= (¢ - 1)L b)2+ab],

and, clearly,
| M(z) - M(y) [I[<llz -y .

Actually we have shown that M is neither nonexpansive nor expansive in
each of the sets {z = (a,b) : a,b > 0,a < b} and {& = (a,b) : a,b > 0,a > b}.
Note that M(a,b) =M(b, a).
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5. Remark on iterative functional equations

In the theory of iterative functional equations (cf. M. Kuczma [6]) a
very important role is played by the following

FacT. Let I C R be an interval and ¢ € R a point belonging to the
closure of I. If f : I = R a continuous function such that

flz)—a

Tz —a

(7) 0< <1, zel\{a},

then f: I — I, and for every z € I,

I 7' =

Note that condition (7) can be written in the equivalent form
min (z,a) < f(z) < max(z,a), z € I\{a}.

This observation leads immediately to the following finite-dimensional co-
unterpart of the above fact (which is easily verified):

REMARK 6. Let p € N be fixed. Suppose that / C R is an interval and
a € R a point belonging to the closure of /. If f: [P — R?, f= (f,..., f,) is
a continuous map such that

min (z1,...,%p,a) < fi (Z1,...,2p) < max (zy,...,2p, a),
i #Fa, t=1,...,p

then f: I? — I?, and for every z € I?,

lim f*(z) = (a,...,a).

n—ro0
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