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Abstract. Consider a continuous and strictly increasing function f : [0, 1] — [0, 2],
and define Tyz = f(r){mod 1). Then T} is a monotonic mod one transformation
with two monotonic pieces, if and only if f(0) < 1 < f(1). It is proved that T} is

topologically transitive, if f is piecewise differentiable and é![lf | f '(x) > \/5
z€[0,1

Introduction

We consider a continuous strictly increasing function f : [0, 1] — [0, 2].
Define Tyz := f(z) (mod 1), and let Z; be the collection of all maximal open
subintervals U of [0,1] with f(U)NZ = 0. Obviously card Z; < 2. A finite
partition Z of [0,1] is a collection of finitely many pairwise disjoint open
intervals with | J, .z Z = [0, 1]. Note that Z/ is a finite partition. We assume
that there exists a finite partition Y of {0, 1], such that for every Y € Y the
function f|y is differentiable. If inf ,¢(,1) f/(2) > 1, then card 2 = 2.

The map 7' is called topologically transitive, if there exists an = € [0, 1],
such that {T,"2 : n € N} is dense in [0, 1]. Properties of topologically trans-
itive dynamical systems can be found in [5] or [13]. For general monotonic
mod one transformations T : [0,1] — [0, 1] it has been proved in [12] that
Ty is topologically transitive, if inf ¢p 1y f'(z) > 2. If Ty : [0,1] — [0,1] is
a monotonic mod one transformation with three intervals of monotonicity
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and inf ;¢4 f'(z) > 2, then it is proved in {12] that 7' is topologically
transitive. In our situation these results are not applicable, as there are no
monotonic mod one transformations 7'y with two monotonic pieces satisfying
inf ;0,17 f'(2) > 2, and the only monotonic mod one transformation 7' with
two monotonic pieces satisfying inf ;¢j9,1) f'(2) > 2is Tz = 22 (mod 1) (the
topological transitivity in this case is well known, see e.g. [13]).

As the main result of this paper we obtain in Theorem 1 that 7 is
topologically transitive, if inf ;¢jo,1) f'(z) > v/2. This paper is organized as
follows. In Section 1 we give some basic definitions. Then we describe the
Markov diagram (see also [1], [3] and [8]). We prove in Lemma 2 that the
topological transitivity of T is implied by a certain property of the Markov
diagram. Section 2 is devoted to counterexamples. For every A < /2 an
example of a monotonic mod one transformation Ty with two monotonic
pieces satisfying inf ;¢[o,1) f'(z) > A is given, where T is not topologically
transitive. The main result of this paper is contained in Section 3. A special
case, where Lemma 2 does not work, is investigated in Lemma 3. Otherwise
using Lemma 4 we can apply Lemma 2 and get Theorem 1.

1. Monotonic mod one transformations
and their Markov diagram

For a continuous strictly increasing function f : [0,1] — R set
1) Tyo = f(z) (mod1) = f(x) - [f(2)],

where [y] denotes the largest integer smaller than or equal to y. Furthermore
let Z; be the collection of all nonempty intervals among f~!(n,n + 1) for
an n € Z.

We call Z a finite partition of [0, 1], if Z consists of finitely many pa-
irwise disjoint open intervals with {J,.;Z =1[0,1]. If T :[0,1] = [0,1]is a
transformation and Z is a finite partition of [0, 1] satisfying T'| is strictly
monotone and continuous for all Z € Z, then T is called a piecewise mono-
tonic map with respect to Z. A map T : [0, 1] — [0, 1] is called a monotonic
mod one transformation, if there exists a continuous strictly increasing func-
tion f :[0,1] = R with 7' = T. Then Z; is a finite partition of [0, 1] and
T; is a piecewise monotonic map with respect to Z;. We say that a mono-
tonic mod one transformation T : [0, 1] — [0, 1] has n monotonic pieces, if
card Z; = n.

Consider a function f : [0,1] — R. The function f is called piecewise
differentiable, if there exists a finite partition Y of [0, 1], such that for every
Y € Y the function fly is differentiable. For a piecewise differentiable func-
tion define inf f' :=inf {f'(z) : ¢ € Uy, Y }. We call a monotonic mod one
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transformation T : [0, 1] — [0, 1] ezpanding, if f : [0,1] — R is continuous,
piecewise differentiable and inf f' > 1.

If X is a compact metric space and T : X — X is continuous, then
(X,T) is called a topological dynamical system. Let z € X. Then the w-limit
set of z is defined as the set of all limit points of the sequence (T"z),¢n,
and it is denoted by w(z). The map 7' is called topologically transitive, if
there exists an z € X with w(z) = X.

Suppose that 7" : [0, 1] — [0, 1] is a piecewise monotonic map. As T need
not be continuous, ([0, 1],T) need not be a topological dynamical system.
In order to get a topological dynamical system we use a standard doubling
points construction as in [6] (see [6] or [8] for the details).

The Markov diagram of a piecewise monotonic map 7 : [0,1] — [0, 1]
with respect to the finite partition Z of [0, 1] was introduced by Franz Ho-
fbauer (see e.g. [1] and [3]). It is an at most countable graph describing the
orbit structure of 7. Suppose that D C Z, for a Z; € Z. A nonempty C
is called successor of D, if there exists a Z € Z with C = TD N Z. In this
case we write D — C. Now let D be the smallest set with Z C D satisfying
‘D € D and D — C imply C € D. Then the oriented graph (D, —) is cal-
led the Markov diagram of T with respect to Z. We get that D is at most
countable and its elements are open subintervals of elements of Z.

Let C C D.If Co,Ch,...,C, € Cand Cj_y — C;j for j € {1,2,...,n},
then Cy - C; — ... —» C, is called a finite path in C. A subset C C D is
called irreducible, if for every C, D € C there exists a finite path Cy — C; —
... » C, in C with Cy = C and C,, = D. We call an irreducible C C D
mazimal irreducible, if no C' with C g C' C D is irreducible.

In the special case of a monotonic mod one transformation 7' : [0, 1} —
[0, 1] the Markov diagram of T’y has a special structure. For more details of
the Markov diagram of a monotonic mod one transformation see [2] (cf. also
[7])-

Now we consider expanding monotonic mod one transformations with
two monotonic pieces. If T : [0, 1] — [0, 1] is an expanding monotonic mod
one transformation with two monotonic pieces, then we may assume that
f :[0,1] = [0,2] is a continuous strictly increasing function. Furthermore
there exists a unique ¢ € (0,1) with f(c) = 1. For an interval C' C [0, 1]
denote by |C| the length of C'.

LEMMA 1. Let f:[0,1] — [0,2] be a continuous and piecewise differen-
tiable function, such that inf f' > 1. Denote by (D,—) the Markov diagram
of Tf with respect to Zy, and let D € D. Then there exists a finite path
Co = C1 = ... = Cy in D, such that Cy = D and C,, has two different
successors in D.
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PROOF. Set d := inf f’. Assume that Cy - C; — ... — C,, is a finite
path in D, such that C; has only one successor in D for all j € {0,1,...,
n — 1}. By the mean value theorem we obtain |C),| > d”|Cp|. As d > 1 this
implies the desired result. 0

For expanding monotonic mod one transformations with two monotonic
pieces we can prove the following result on the topological transitivity of Ty.

LEMMA 2. Let f:[0,1] — [0, 2] be a continuous and piecewise differen-
tiable function, such that inf f' > 1. Denote by (D,—) the Markov diagram
of Ty with respect to Z;. Suppose that for every D € D there exists a finite
path Co =+ Cy = ... - C, in D with Cy = D and C,, € Zys. Then Ty is
topologically transitive.

PRrROOF. For n € Ny set

Tf"O = lim Tf"a: and Tfnl = lim Tf”:c.

z—0t z—1-

Observe that 7((0,¢) = (T40,1) and Ty(c,1) = (0,Tf1). As inf f' > 1 we
get Tyl — T;0 > 0. Hence (0,c) — (c,1) or (¢,1) = (0,c). Assume that
(0,¢) = (c, 1) (the case (¢,1) = (0,¢) is analogous), and set E := (c, 1).
By our assumptions for every D € D there exists a finite path Cy — C; —
.. > Cpin D withCy= D and C,, = E.

Denote by C the set of all C' € D, such that there exists a finite path
Co—>Cy = ... C,inDwith Cy = F and C, = C. Then C is a maximal
irreducible subset of D. By Lemma 1 in {7] (cf. also [2]) C contains all D € D
with sup D = T, ™1 for an n € Ny, and using also Lemma 1 only finitely
many D € D with inf D = T,™0 for an n € Ny may be not contained in C.
Again using Lemma 1 in [7] we obtain that D \ C is finite and contains no
irreducible subset. Hence C is the unique maximal irreducible subset of D.

By Lemma 1 there exists an n € N and there exists a finite path Cy —
Cy = ... = Cy in D with Cy = E, such that C; has only one successor
in D for all j € {0,1,...,n — 2}, C,— has two different successors in D,
and inf C),, = Tf"_l(). Since T;0 < Tyl we get by induction that T,'0 €

[0, c], Tfjl € [0,c] and C; = (Tfj_IO,Tfjl) forall j € {1,2,...,n — 1},

T,70 < T,71 for all j € {1,2,...,n}, and C, = (T,"7'0,¢). Therefore
0 <1y !

Uj=0 Ci = [0,1]. It follows from Theorem 11 in [3] (cf. also Theorem 2 in

(8]) that T| 1, is topologically transitive, where L = | C. Observing that
Cj€Cforallj€{0,1,...,n} weget L = [0,1],and hence 7' is topologically
transitive. O
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2. Counterexamples

If f:[0,1] - R is a continuous and piecewise differentiable function
with inf f’ > 2, then Theorem 1 in [12] (or Corollary 1.1 in [12]) implies that
T is topologically transitive. In Section 3 of [12] an example of a continuous
and piecewise differentiable function f : [0,1] — R with inf f' > 2 is given,
such that T is not topologically transitive. Next consider a continuous,
strictly increasing and piecewise differentiable function f : [0,1] — R, such
that T'; has three monotonic pieces. It is proved in Theorem 2 of [12] that
Ty is topologically transitive, if inf f' > 2. The example given in (2) of [12]
shows that for every A < 2 there exists a continuous, strictly increasing and
piecewise differentiable function f : [0, 1] = R with inf f' > ), such that Ty
has three monotonic pieces and is not topologically transitive.

Consider a continuous, strictly increasing and piecewise differentiable
function f : [0,1] — R, such that 7, has two monotonic pieces. It will be
shown in Theorem 1 that T is topologically transitive, if inf f' > /2. Now
we give for every A < v/2 an example with inf f' > ), such that Ty is not
topologically transitive. Let A € (1,+/2). Define

(2) f(z) = Az + (1 - %) .

Then Ty : [0,1] — [0,1] is a monotonic mod one transformation with two
monotonic pieces satisfying inf f' = \. Set

AZ - A A A— A2
A=l ==ufi-35lo e =]
By the choice of A we have [0,1]\ A # (. Furthermore 7;A C A, and hence
Ty is not topologically transitive.

3. Topological transitivity of
monotonic mod one transformations

Suppose that f : [0,1] — R is a continuous, strictly increasing and
piecewise differentiable function with inf f' > /2, such that T; has two
monotonic pieces. We will prove that 7 is topologically transitive. To this
end we need the following result.

LEMMA 3. Assume that f:[0,1] = [0,2] is a continuous and piecewise
differentiable function with inf f' > \/2. Furthermore suppose that there exist
open intervals Ay, Az, Az, Ay C [0, 1] with Ay, Ay C (0,¢), Az, Ay C (c, 1),
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TiAy =TjAs = Ay U A3 U {c}, TyAy = Ay and TyAs = Ay. Then f(z) =
V2r+1-— —\}—2- for all z € [0,1], and Ty is topologically transitive.

ProoF. Note that |Tf2A2| > 2|A;|. Hence our assumptions imply |A;| =
|Az| and |A;] = |A4| = v/2|A;|. Using the mean value theorem we get that
for each j € {1,2, 3,4} there exists an «;, such that f(z) = v/22 + «; for all
T E Aj.

Define By := (0,¢)\ (A1 U A;) and B; := (¢, 1)\ (A3 U A4). Assume that
Bi # 0. Then our assumptions give Ty B; = B; and Ty B; = B;. This implies
Tf2B1 = B;. By the mean value theorem we obtain le2B1| > 2|By|, which
is a contradiction. Therefore B; = §) and analogously B, = (). Moreover we
have f(z) = v2z 4 o for all z € [0, 1].

Observe that inf Ay = 0, and hence inf A, = . Then inf A4 = (\/§+
l)or and o = inf A = \/—+3a—1Hencea_1———\7_§

The Markov diagram (D, —) of T; with respect to Z; satisfies D =
ZU{A1, A9, A3, As}. Furthermore {4;, A;, A3, A4} is a maximal irreducible
subset of D, A; U A, U A3 U Ay = [0,1], and there are no arrows A; — Z
in D with j € {1,2,3,4} and Z € Z;. Now Theorem 11 in [3] (cf. also
Theorem 2 in [8]) implies that 7' is topologically transitive. a

We will also need the following result.

LEMMA 4. Assume that f : [0,1] = [0,2] is a continuous and piecewise
differentiable function with inf f' > \/2. Suppose that f(z) # 2z + 1 — -\}—5
for an z € [0,1]. Denote by (D, ) the Markov diagram of Ty with respect to
Z¢. LetC € D withc € C. Then there exists a finite path Co — Cy = ... —

C, in D with Co = C and ¢ € C,, such that C, € Z; or |C,| > \/_|C|

PROOF. Set Cy := C'. If Cy has two different successors in D, then there
exists a Cy € Zy with Cy — C;. For the rest of this proof we assume that
Co has a unique successor C; in D. By Lemma 1 there exists a finite path
Co = Cy = ...= C;in D, such that C; has two different successors in D
and C; has a unique successor in D for j € {0,1,...,/ — 1}. Suppose that

[ > 1. By the mean value theorem we get |TfC,| > 9% |C| > 2f|C| Hence
there is a C,+1 € D with C; = Ci41,

It remains to consider the case [ = {. Let Zo, Zl €2y W1th C g Zy and
CnNnzy=0.

First assume that |T/C1NZ =|TyCiNZp|—|C| > 0 and
Cy := T;C1NZ,. Next we prove by induction that for every k € N there exists
a finite path Cy — C; — ... — Cyy in D with C C Cyy, such that Cyy, € Zy
or |Cyx| > |C|+2%714. In the case Cox—2 € Z; we get Coj—s C Coi—g, hence
we can find CQk_S g C2k—1 and Cgk_g g Cgk with CQk_Q — Cgk_l — Czk,
and therefore Cy; € Zf. If Cyx—p has two different successors in D, then
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Csox_o = Z1 and Zy — Zy, as Cy C Z; and C; has two different successors
in D. Otherwise C3;_, has a unique successor Cs;_; in D. Since the case
sup C = c is analogous we may assume inf C' = c. Therefore sup Caj_2 —
sup C > 25=%§. Setting Cyy := TyCak—1 N Zo the mean value theorem gives
sup Cax —sup Cy = Tf2 sup Cop_g — sz sup C' > 2(sup Cag—2 —sup C) >
2k-1§. As sup C, > sup C this gives |Cax| > |C] + 2%716.

Choose a k with |C|+ 251§ > \/—|C’|, and set n := 2k. Then C,, € Z;
or |Cp| > v/2|C|. Note that we have c € C,.

Next we consider the case |T/C) N Zy| < |C|, and set Cy :=T¢Cy N Z;.
Then |Cy| > |C], since |TyCy| > 2|C| by the mean value theorem. If C; has
two different successors in D, then there exists a C3 € Z; with C;, — C5. It
remains to consider the case that C; has a unique successor C3 in D. Assume
that also (53 has a unique successor in D. By Lemma 1 there exists a finite
path Dy — Dy — ... = D, in D with Dy = Cy, ¢ > 2, D; has a unique
successor in D for j 6 {O, 1,...,q— 1}, and D, has two different successors
in D. As |TyD,| > 2% |D0| by the mean value theorem, we get that D, has
a successor Dy with ¢ € Dgyy and |Dyy1| > V2| Dol > V2|C).

From now on we suppose that C3 has two different successors in D. If
|T¢Cs N Z1| > |Cy|, then a proof analogous to the proof above in the case
|TfC1 N Zp| > |C| shows the existence of a finite path Cp —» C1 = ... = C,
in D with ¢ € C,,, such that C, € Z; or |Cy| > V2|C2| > V2|C|. For the
rest of this proof we assume |T/C3 N Z;| < |C2| and set Cy := T(Cs N Zp.
As |T;Cs| > 2|Cy| by the mean value theorem, we get |Cy| > |Ca| > |C].
If Cy has two different successors in D, then there exists a Cs € Z; with
Cy4 -+ Cs. It remains to consider the case that Cy has a unique successor Cj
in D. Since C C Cy we get C; C Cs and Cj; has two different successors in
D, one of which is C,. Set C := TyC5 N Zp.

We claim that |Cg| > |Cy|. The mean value theorem implies

(3)  ICs| = |TCs| ~ [Col = |T;*Cal = |Ca] 2 2|C4] = |Cal 2 |Cil

as |Cy4| > |C3|. Assume that |Cs| = |Cy|. Then Cg = C4, and by (3) we get
ICgl = |C4| Since Tng NZy € Cy and

IT(C3 N Zy| = |T;Cs| = |Cu| = |T{2Cs| = |Cs| 2 2|Ca| = |Ca| = |Cr
by the mean value theorem, we get 7;C3 N Z; = C,. Hence C3 C Z,
C4 g Z(), Cz g Z], Cs g Zl, TfC:; = Tsz = Cz UC4 U {C}, TfC2 = C3 and
T;Cy = C5. By Lemma 3 f(z) = v2z+1- % for all z € [0, 1], contradicting
our assumption f(z) # v2z 41 — 7- for an z € [0, 1].

Therefore |Cg| > |Cy|- A proof analogous to the proof above in the case
|T;C1 N Zo| > |C| shows the existence of a finite path Cp — Cy — ... = C,,
in D with ¢ € C,, such that C, € Z; or |Cy| > v2|Cy| > V2|C]. i
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Now we are able to prove our main theorem.

THEOREM 1. Let f : [0,1] — [0,2] be a continuous and piecewise diffe-
rentiable function, such that inf f' > /2. Then Ty is topologically transitive.

PROOF. Assume at first that f(z) = V22 + 1 — \/Lz‘ for all z € [0, 1].
Then Lemma 3 gives that 7' is topologically transitive.

For the rest of this proof we assume that f(z) # 2z + 1 - % for an
z € [0,1]. Let (D, —) be the Markov diagram of 7 with respect to 2, and
let D € D. By Lemma 1 there exists a finite path Cy; - C; — ... = Cy
in D, such that Co = D and C,_; has two different successors in D. Hence
ceCy. Set ly:=gq.

Next we claim that for every & € N there exists a finite path Cy; —
Ci > ...—> Clk in D with Cyp = D and ¢ € Cy, such that Ci, € Z¢
or IC'lk| > (v2)¥|C,|. We prove this by induction. If Ci_, € Z;, then set
ly = lg—,. Otherwise we have |C),_,| > (V2)*|C,|. By Lemma 4 there
exists a finite path C},_, = Cj,_,41 = ... = C, in D with ¢ € C},, such
that C, € Z¢ or

ICol 2 V2UC, | > (VR)HIC,| -

Now choose a k € N with (v/2)*|C,| > 1, and set n := l;. Then Cy —
Ci - ... — Cy is a finite path in D with Cy = D. Since |C},| < 1 we obtain
Cn € Z;. Therefore T is topologically transitive by Lemma 2. 0

REMARK. If f : [0, 1] — [0, 2]is a continuous and piecewise differentiable
function with inf f' > 1, such that lim ,_,¢+ Tyz = 0 or lim ,,;- Tyz = 1,
then T is topologically transitive by Theorem 3 in [12] (see Corollary 3.1
n [12]).

The topological transitivity of 7'y has nice consequences for the beha-
viour of perturbations of T (see [9] and [11], perturbations of monotonic
mod one transformations are also investigated in [7] and [10]).

Finally we consider the density of periodic orbit measures. We say the
periodic orbit measures are dense, if for every nonempty subset U of the
set of all Ty-invariant Borel probability measures, which is open in the
weak star-topology, there exists an z € [0, 1] and an n € N with T,z =z,

such that pu, € U, where pu,(B ) = 7112] —o 1B(Tf z) for every Borel set

B C [0,1]. The following result is an easy consequence of Theorem 2 in [4]
and Theorem 1.

THEOREM 2. Let f :[0,1] — [0,2] be a continuous and piecewise diffe-
rentiable function, such that inf f' > /2. Then the periodic orbit measures
are dense.
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