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Abstract. The aim of this paper is to establish the existence of a "box-within-a-box" 
bifurcation structure for monotone families of Lorenz maps and to study its combi­
natorics. 

1. Introduction 

This is the first of two papers where we intend to describe all the ombi-
natorial structure of the bifurcation skeleton of Lorenz maps. Guckenheimer 
and Williams in [2] showed that, adding some new hypothesis, the study of 
the dynamics of a Lorenz flow (a Lorenz flow with this extra structure is 
usually called a geometric Lorenz flow) can be reduced to the study of the 
dynamics of a piecewise continuous interval map, with a unique disconti­
nuity and strictly increasing in each of the branches of continuity. We will 
be interested in universal families of Lorenz maps (see [6]). Leonov, in the 
early sixties, studied the existence of a "boxes in file" bifurcation structure 
for this kind of families of maps (see [3]). Unlike the bifurcation structure 
that we will study here, this structure is related with the irreducibility of 
the kneading invariant and gives a notion of degree of complexity. This two 
structures, acting together, control all the combinatorics of families of Lorenz 
maps. 
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In this paper, after presenting some preliminary definitions and results 
in section 2, we will, in section 3, present a Singer-like theorem that, as in 
the context of continuous maps, states that the critical orbits control all the 
attractive periodic orbits (see [8]). Considering this we describe the different 
possible kinds of bifurcation points. We finish this section with a pictorial 
presentation of the bifurcation skeleton. Finally, in section 4, using symbolic 
dynamics we will establish the existence of a box-within-a-box bifurcation 
structure in the space of kneading invariants of Lorenz maps and study its 
combinatorics. In a forthcoming paper we will study how this two structures 
(box-within-a-box and boxes in files) interact between them. 

D E F I N I T I O N 1. Let P < 0 < Q. A Lorenz map of class C from [P,Q] 
to [P, Q] is a pair (/_, /+) where 

1. / _ : [P,0) -> [P,Q] and /+ : (0,Q] -> [P,Q] are strictly increasing 
maps of class C. 

D E F I N I T I O N 2. Let A C R 2 be closed. A Lorenz family is a continuous 
map F : A ->• C, r > 0 

D E F I N I T I O N 3. A monotone Lorenz family is a C3 Lorenz family such 

1. (/_)A and (/+)A have negative Schwarzian derivative for all A 6 A. 
2. A = [0,1] x [0,1]. 
3. F : ( « , & ) - > {-1,1, ( / _ ) „ , ( / + ) J . 
4. If fll < b2 then (/_)0i {x) < (/_)6a (x) for all x G [-1,0] and if 

h < b2 then (/ +) 6 i (x) < (f+)b[ (x) for all [0,1]. 
5. (/_) (0) = 0, (0) = 1, (/+)„ (0) = -1 and (/+)1 (0) = 0. 
6. (/_ya (-1) > 1 and (/+)! (-1) > 1 for all (a, b) € [0, 1] X [0,1]. 
7. lim (/_)'0 (x) = lim (/+) (x) = 0 for all (a, b) e [0,1] x [0,1]. 

2. Preliminaries 

Fx = {Px,Qx,(f-)x,(U)x)-

that 

E X A M P L E 1. The family 

(-a - 1) x2 + a if x < 0 
(2 - b) x2 + b - 1 if x > 0 
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with (a, b) G [0,1] x [0,1], is a monotone Lorenz family. Prom now on all the 
graphics are related to this family of Lorenz maps. 

To simplify the notation we will represent an element of such a family 
as f(a,b) = (fa, fb) = ( ( / - ) „ , ( / + U with (a, b) G [0,1] X [0,1]. 

Given a monotone Lorenz family / = = (/a, /&) , define recursively 

/ M , a O = j ^ j *X
x<°Q zndr(a,b,x) = f(a,b,fn-1(a,b,x)). 

We can also define fn (a,b,x+) = lim fn(a,b,y) and / " (a,b,x~) = lim 

fn (a, b, y) where the limits are taken over all the y's such that / J (a, b, y) ^ 0 
for all j < n. 

Kneading theory is a standard tool for studying maps of the interval 
(see [7]) and has been developed for Lorenz maps in [9]. For simplicity we 
will take Lorenz maps / : [—1,1] —>• [-1,1] with discontinuity point 0. Let 
/ be a Lorenz map and let x G [— 1,0) U (0,1] such that / " (x) # 0 for all 
n G N. Define the kneading sequence k (x) G {L, R}^ of x to be the sequence 
&o (x), k\ (x), k2 (x), • • • where 

, , x ( L if x < 0 ko lx) = < „ 
K ' \R if x > 0 

and ki (x) = ko (/' (x)). Imposing the relation L < R, these sequences can 
be ordered using the standard lexicographical order, that is k (x) < k (y) if 
and only if 3 0 < r such that ki (x) = ki (y) for all i < r and kr (x) < kr (y). 
Furthermore, in the topology induced by the standard metric 

d{k (z),fc(y)) = £ | M z ) - f c * 001/2* 

1 v ' y y n \1 if ki (x) Ć ki (y) 

where 

the Umits 
k tx+) = lim k (y) and k (x~) = lim k (y) 

ylx ytx 

over the y's such that fn (y) ̂  0 for aU n G N , exist for all x G [-1,1]. The 
kneading invariant k (/) of f is the pair (k+ (/), k~ (/)) = (k (0+), k (0~)) 
(when we are in the context of Lorenz families we usually denote k (f(a,b)) 
as k (a, b)) . We have that: 

• If x G [-1,1] a n d / " (z) ^ 0 for all n G Nthen k(x~) = k(x) = k{x+). 

17 * 
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• For all x G [-1,1], k{x~) < k{x+). 
• xi V £ [— 1,1] and x < y => k (x+) < k (y _ ) . 

Taking now a monotone Lorenz family f(a,b) with (a, 6) G [0,1] x [0,1], 
we want to know which pairs of symbolic sequences can be the kneading 
invariant of some f(a,b)- We will call this set the set of admissible kneading 
invariants and will denote it by £ + . Let a be the usual shift operator, defined 
by 

a (k(,ki • • •) = k\k2k$ • • • . 

In [4] Hubbard and Sparrow show that if a pair of sequences (k+,k~) is 
admissible then k$ = R, k^ = L and 

(1) a (k+) < on (k+) < a (k~), a (k+) < an (k~) < a (k~) for n € N. 

Furthermore, in [5] Martens and Melo show that: if /(„,;,) with (a, b) G 
[0,1] x [0,1] is a monotone Lorenz family, then for any pair (k+,k~) that 
satisfies 1, there exists (a, b) G [0,1] x [0,1] such that k (a, b) = (k+ ,k~). In 
[4] it is also proved that, for all x G [-1,1], 

(2) a (jfc+ (/)) < an (kf (z*)) < a (*" (/)) for n G N 

and conversely, that any sequence satisfying 2 is the upper or lower kneading 
sequence of some point x G [—1,1]. 

From these results we can conclude that S + is exactly the set of pairs 
of sequences that satisfy 2, and also that the kneading invariant establishes 
exactly which sequences can occur as kneading sequences of some point of 
the interval. In section 4, we will study the structure of the set E + . 

3. Bifurcation 

It is well known that, for C 3 maps with negative Schwarzian derivative 
each attractive periodic orbit attracts at least one of the critical orbits (Sin­
ger Theorem, see [8]), so it is natural to expect that the same happens for 
Lorenz maps with the orbits / ' (0~) and fl (0+) playing the role of critical 
orbits. Indeed we have: 

T H E O R E M 1 (Singer like). Let f be a Lorenz map with negative Schwar­
zian derivative. Then: 

1. Each attractive or semi attractive periodic orbit attracts at least one 
of the critical orbits. 

2. If 0 + (resp. 0~) is attracted to a periodic point of period p, then k+ 

(resp. k~) is a periodic sequence of period p. 
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3. If k+ (resp. k ) is a periodic sequence of period p, then fnp (0+) 
(resp. fnp (Q~)) converges in n to an attractive periodic point. 

The proof of the theorem is based on the next three lemmas that we 
will state without proof, because their proofs are just standard applications 
of the minimum principle for maps with negative Schwarzian derivative (see 
[8] or [6]). 

Based on this theorem, to study bifurcations in the context of periodic 
orbits we just have to study the bifurcations of the critical orbits, whose 
combinatorics are given by the kneading invariants. 

R E M A R K . The kneading invariants also determine the combinatorics of 
the non-attractive periodic orbits. 

Let us now denote fn (ao,b0, x) by g (x). 

L E M M A 1. In each branch of continuity of g{x) there exists at most 
three fixed points of g (x). 

L E M M A 2. // x\ < x2 < x% are fixed points of g in the same branch of 
continuity, then g'(x2) > 1, g' (x\) < 1 and g' (x^) < 1. 

L E M M A 3. In a branch of continuity with just two fixed points x\ < x2, 
one of the following is verified: 

1. g' (xi) < 1 and g' (x2) > 1. 
2. g' (x\) — 1 and g' (x2) < 1. 
3. g' (x\) > 1 and g' (x2) < 1. 
4. g' (xi) < 1 and g' (x2) = 1. 

P R O O F O F T H E O R E M 1. The previous lemmas prove 1. To prove 2, let 
x0 < p such that / " {a0,b0,p) — p, fj (a0,b0,x0) - 0, j < n, fn (a0,b0,x 

z for all a: € {x0,p], /" (a0,bQ,x0) \(XQtP] continuous and ^ (a 0,&o,z) 

1 for all x € (xo,p). Then frn (ao, &o, XQ") converges monotonically to p 
when r - » oo and / J ' (ao,b0,x) \(Xo,P] is continuous for all j < n. There­
fore / J (a 0, ^>0) frn («o, #o )) = frn (a0i bo,0+) converges monotonically to 
fj (a0,b0)p). Let us now suppose that 0 € (fh (a 0 , 6 0 , 0 + ) , f h + j (a0,b0,p)) 
for some minimal k > 1, then 0 e (fk+j (ao.^Oi^o ) • f h + j {ao,b0,p)) and 
3ze(x0,p) s u c n that / f c + J (a 0, b0, z) = 0. Take r such that rn > k + j, then 
frn (ao, &o>x) has a discontinuity at z which is absurd. 

To prove 3, let k+ be periodic of period p, this implies that k+ = R and 
so fp (ao, & 0 1 0 + ) > 0, besides, 0 + and fp (ao, bo, 0 +) have the same itinerary, 
so fn (ao, bo, x) \(o,f(a0,bo,o+)) is continuous and monotonically increasing 
for all n and we obtain iteratively fnp {a0, b0,0+) < f { n + 1 ) p (a0,b0,0+) so 
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fnp (a 0 ,6o,0 +) converges in n to x0 and fp (a0,b0,x0 ) = lim fp(a0,b0, 
n—¥oo 

fnp (a0,6o,0+)) = lim f(n+^p (a 0,6 0,0+) = x0, that is x0 is periodic and 

attracts the interval ( 0 , 2 : 0 ) • • 

In the product of the phase space by the parameters space we have 
essentially three kinds of bifurcation points: 

1. (a 0 ,6 0 , x0) such that fn (a 0, b0, x0) = x 0 , (ao, &o, x0) = 1 and 

(a0,b0,x0) = 0 . 

Fig. 1. Graph of ffaJ)) with a = 0.5, 6 = 0.5 

2. (a 0 ,6 0 , x0) such that / " (a0, b0, x0) = xQ, (a 0, 60, x 0) = 1 and 

Cr (a0,6o,^o) / 0 . 

Fig. 2. Graph of / (
2

o i l ) with a = 0.618, 6 = 0.423 
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3. (a 0,& 0,0) such that / " (a o ,6 o ,0 ± ) = 0. 

Fig. 3 a. Graph of ffab) with a = 0.5, b = 0.6666 

Fig. 3 b. Graph of Ąa t ) with a - 0.618, 6 = 0.382 

R E M A R K . The points of the first type (transition from just one attrac­
tive periodic orbit to the case of Lemma 3) exist only if k+ — c-7 (k~) for 
some j < n and do not imply any change on the kneading invariant (that is, 
in some neighborhood of (ao,&o) the kneading invariant does not change). 
The points of the second type imply boxes in file-type changes on the kne­
ading invariant that we will not study in this paper. The points of the third 
type can imply boxes in file-type changes (if there is no other fixed point 
in the same branch of continuity (fig. 3 a), or in cases 2 and 4 of Lemma 
3), and box-within-a-box-type changes on the kneading invariant (transition 
from the case of Lemma 3 (fig. 3 b) or the cases 1 and 3 of Lemma 3 to 
one only repulsive periodic orbit of period n). Those are the main object of 
this paper. 

The projection of the set of points of type 3 in the parameters plane 
gives us the following picture that is usually called the bifurcation skele-
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ton: the curves fn (a 0 ,&o,0 +) = 0 are called the +bones and the curves 
/ " (ao,&o,0 -) = 0 are called the -bones; notice that we may have diffe­
rent bones with the same period (e. g. (LRRL)°° and (LRRR)°° are two 
different kneading sequences associated with 0~ (critical) with period 4). 
The bifurcation points in which we are mainly interested are those that are 
intersections of a +bone with a -bone. 

1.0 

0.8 

0.6 

b 

0.4 

0.2 

0.0 

0.0 0.2 0.4 0.6 0.8 1.0 
a 

Fig. 4. Part of the Bifurcation skeleton for the family of example (the -\-bones are those 
that end on the right side and the —bones are those that end at the bottom) 

4. Symbolic self similarity or box-within-a-box structure 

In this section, introducing a generalization of the * operation intro­
duced in [1] we will demonstrate the existence of subsets of £ + isomorphic 
to the full set E + , each of this subsets containing other subsets with this 
property, and that isomorphisms preserve the order in each of the horizontal 
and vertical "lines" of the symbolic square E + . From now on we will use 
capital letters to denote sequences or blocks of letters and small letters to 
denote elements of sequences or elements of blocks. 

R E M A R K . If (K+,I<~) = (k^kf • • •, k^&f • • •) is an admissible kne­
ading invariant, from 2 we can conclude that k^kf = RL and k^k^ = LR. 

file://-/-bones
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D E F I N I T I O N 4. Let K = ((k£ • • - ^ - 1 ) ° ° > ( ^ 0 " " ^ ' n - i ) 0 0 ) a n d ^ 
= (s+ • • •, S Q sj~ • • •) admissible kneading invariants. Define the product 

W if sf = R 

where 

A ? = 

T H E O R E M 2. // A' = ((Aijj" • • - k ^ ) 0 0 , (fc0 • • -^- . j ) 0 0 ) andS = (s$sf 
• • •, S Q Sj~ • • •) are admissible kneading invariants, then K*S is an admissible 
kneading invariant. 

P R O O F . Let K * S = (a0ax • • •, 60&i • • •)• We want to prove that for all 
p, a\a2 • • • < bp+ibp+2 • • • < & 1 & 2 • • • and aia2 • • • < a p + i a P + 2 • • • < & 1 & 2 • • •• 

Take = (|J {t < k : s~ = L}) n + (tf {t < k : s~ = #}) m. We wiU 
just prove the first two inequalities, for the case sj~ = L, because the rest of 
the proof is completely analogous. 

If p = nj~ and s£ = L, we have & p + 1 6 P + 2 • • • = fcf • • • • • • = R • • • > 
ai • • • — L • • •. To prove the other inequality, b\ • • • = k± • • • k~_xkQ • • •k^n_1 

• • • so, if sj~ • • • = sf • • •, 6 p + i 6 p + 2 • • • = & 1 & 2 • • •, if Sfc • • • < sj" • • • then 3 r 

such that V 0 <i< r , s^+i = sx+i and s^+r = L < sj~ + r = R, and 6 p + i & p + 2 

•••bn- _j fco ••• < &i •••&»!+,-l^o- If** = f l , 6 p + 1 = •••*;+_!••• = 
L • • • < b\ • • • = R • • -. To prove the other inequality, a\ • • • — k\ • • • A:+_j k^ 
• • - k~_x • • • so, if = R it is immediate, if sj~+i = X = sf, the proof 
follows from s^+1 • • • > sf • • •. 

Let us now take p such that, for some k, nj~_j < p < nj~. If s j - i = L , 
6 p + i • • • = kj~+1 • • • for some / £ {—1,1, 2, • • •, n — 2}. Since A ; ^ • • •k~_1k0~ • • • 
< k± • • • ko~ • • there exists s < n - I such that for all i < 5 , kj~+i = 
and kj~+s < kj (otherwise we would have kf+1 • • - k~_xkQ = k± • • -A;~- / - i 
kn_i and, as kn_l+1 • • • < fc1 • • •, then • • • A; n _ 1 A; 0 kx •••> kx •• •kn_l_l 

k~_[k~_l+1 • • • which is impossible). If s < n - I, the proof follows immedia­
tely. If s = n - /, then kj = R, so if = L, a p + i • • • = kj~+i • • • k'^k^ • • • < 
fcf • • • k~_xkj • • •. If = we want to compare the following two sequences 

(3) • • •kn_1kQ kf • •• 
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with kn_l+1 • • • > kf • • •. We will divide this part of the proof in four cases: 

1- 3 s<inin {m,i} such that kf < k~_t+s, and in this case the proof follows 
immediately. 

2. I < m and k~_l+1 • • - k~_x — kf • • -kf_t. In this case kf = L (other­
wise we have kf • • • kf_1kf • • • > k~_l+l • • • k~_xk^ •••), then since k£ = R 
and s1 = R, kl+1 • • •kn_lkfkf • • • kf_xkf • • • < kt • • • ^ N _ I _ 1 A ; N _ ( A ; N _ ( + 1 

" ' ' ^ n - i ^ o " ' ' 
3. / = m and k~_l+l •••k~_l = kf • • •kfl_1. In this case the proof 

follows from the fact that sj~ + 1 s^ + 2 • • • < s f s j • • 

4. m < / and k~_l+l • • •fc~_ ( + T O _ 1 = kf •••kfl_1. This implies that 

k~_i+m — R- If = L, as = R, the proof follows immediately. If 
sk+i — R w e w a n * to compare the sequences 

lc~ ...L-~ £•+£•+...£•+ b+ . . . 

" ' l ft,n-/-lfi,n-(A'n-M-l ftn-(+m-l "'n-f+m 

that is completely analogous to 3 so we can repeat all the previous process, 
but since m is finite there exists a (minimum) such that n — I + am > n 
and so, after at most a steps we will have one of the situations 1, 2 or 3. 

The second inequality is proved, let us now see the first one, that is, 
bp+i • • • > ai • • •. Since kj"+1 • • -k'^k^ • • • > kf • - -fcm-i&o ' ' ' there are 
three possible cases, as the case n — / = m and kf+i = kf for all i < m 
can not happen, since in that case we would have • • • kn—i^o ''' ^ 
Kl Km-1K0 

1- 3 s < m i n {n-/,m} such that kf < kf+s, and in this case the proof follows 
immediately. 

2. n — I < m and fc^j • • • = kf • • • kf_l_l. In this case kf_t = L, 
so if sj~ = R the proof follows immediately. If = L we want to compare 
the sequences 

Kl Kn-l-lKn-rn-l+l 

and the situation is analogous to 3. 
3. m < n - / and kf+1 • • •kj^m_l — kf • • • A J + . J . In this case kf+m = R, 

and, since sf = L, we have immediately kj~+l • • •k'^_m_lkj~jt_m • • • > kf • • • 

P R O P O S I T I O N 1. Let K = , = {{k+ • • - k ^ ) 0 0 , 

(*o •••kn-i)°°)> x = (^ + ,^ - ) andY = ( y + , y ~ ) admissible kneading 



Two-parameter families of discontinuous one-dimensional maps 267 

invariants such that X+ < Y+ and X~ <Y~. Then if K * X = (A+, A ) 
andK*Y = (B+,B~), A+ < B+ and A~ < B~. 

P R O O F . X+ < Y+ <=> 3 r such that xf = yf for all i < r and xf = 
L < yf = R, so A+ = K+K+ B+ = K0

+K[+ • • • where Kf = K[+ 

for all i < r and Kf = ^ " • ^ n - i = Lk^ •••k~_1 < R^t' "^m-i = 

' ' ' ^ m - i = K'r
+- The proof of the other inequality is analogous. 

R E M A R K . The proof of the inequality for the first members of the pair 
do not depend of the second members X~ and Y~ and vice versa. 

P R O P O S I T I O N 2. Let K = {{K+)°° , (K-)°°) = ((kf • • , 

o* • • -K-ID, s=((5+)°°, ( s -n = ((4 • -sur, (so • - vi) 0 0) 
and T = (tftf • • - ,t0 tx • • •) admissible kneading invariants then (K * S) * 
T = K*(S*T). 

P R O O F . Let XL = (X+,X~)L = X~, XR{X+,X~)R = X+ and 

Xyiy2 • • • (X+,X-)yiy2 ••• = XyxXy2 • • • then ( {K+,K~) * (5+ S~) ) * 

( T + . T - ) = {Ks+---Kst_1,Ks0-...Ks;_1) * (T+,T~) = •• 

, Xso" • • • Ks~_i) t+ (Ks+ • • • Ks+_t, Kej • • • Ks-_x)*+•••, 

(Ks+ • • • Ksf_x, KSQ • • • Ks;^) t„ (l<4 • • • K8+_X,KSQ • • • A's"_i) i f • • •)• 
On the other hand (K+,K~) * ((S+,S~) * ( T + . T - ) ) = ( A ' + , ./Y -) * 

(St+Stf • • •, 5to 5tJ" • • •) = (K (Stf) K (Stf) •••,/<• (5to ) A (5*J") • • • but, 
since 

(K8+-..K3+ Ks-.-.Ks- W ± - / ^ - ^ < - i tft = j R ( A s 0 K ^ . / C s o - j ^ - . . . ^ - ^ i f t ± = L 

and 

K K i t ± \ - l K S * '*tf = R _lK*t~'K°t-i = * 
A i M W - \ / f 5 - i f t f = L - \ A - 5 0 - - - - A ' S p - _ i i f * f = I ' 

the proposition is proved. 

Let K = (K+,K~) be an admissible kneading invariant and let 
C+ (K+,K~) = { ( 5 + , 5 - ) G S+ such that < 5+ and K~ < 5 " } ana­
logously let C- (K+, K-) = { ( 5 + , 5 - ) G E+ such that K+ > 5 + and 
K~ > 5~}. We can now state our main result. 

T H E O R E M 3. // K = ( ( A ' + ) ° ° , ( X ~ ) ° ° ) = ((fc0
+ • • . f c + ^ J 0 0 , 

(A)o~ • • ), ts an admissible kneading invariant, then 

C+ (ko • • (̂ o ' " '^n- l ) » ( ^ 0 " ' ^ n - l ) ) 

nC-((k+...ktl_l)00,kQ-...K_l(kf...kfl_l)00) = {K*S : 5 G S + } . 
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P R O O F . The inclusion D follows trivially from the previous proposition. 
In order to prove the other inclusion, we will take an admissible kne­

ading invariant (A, B) such that 

^0 ' " ( ^ 0 ' ' ' ^ n - l ) - ^ < (^0~ ' ' '^ti-l) 

( ^ 0 " " ' ^ n - l ) < & < ^ 0 ' ' ' ^ n - l (̂ o" ' ' ' ^ m - l ) 

and prove that A = AQA\ • • • Ap_\Ap • • B = BQB\ • • • Bv_\Bp • • • where 

f Afo if (ai)0 = L 
1 \fc+...fc+_ 1 if(a l-) 0 = fl 

o = / FC0~ • • • K-l i f (&i)o = L 

* \ A 0 + . . . * + _ 1 i f ( M 0 = « -

The proof follows by induction on p: it clearly holds if p = 0. Let us see 
p= 1: 

Since S 0 = A: 0 •••**_! , A < *o ' 1 " * n - i (*o ' ' - ^ - 1 ) ° ° #i < 
A;^ • • On the other hand, since Ao = k£ • • •k^n_l and A is minimal, 
B\ > AJQ" • • • A ; + _ ! so 5 i = k£ • • • A r + _ x . Analogously we see that A\ = 

^ 0 ' ' ' ^ n - l -
We will now suppose that the claim is valid for all q such that 1 < q < p 

and show that 

_ J AJQ" • • -k~_x i f ( 6 p + 1 ) 0 = L 
^ + 1 - \ A - 0 + . . . A - + _ 1 if (6p+i)0 = 

The proof for Ap+\ is analogous. 
If (bp+i)0 = L, since B is maximal J B P + I • • • < A;^ • • • k~_xk^ • • • 

Bp+i < ko~ • • • k~_x. If Bp = AJQ • • • k^_x then, because A is minimal BpBp+\ 
••• — k£ • • •k^l_lBp+\ • • • > • - • k^_xk0 •••kn_x--- => flp+i > A; 0 ••• 
K_x so B p + 1 = A;^ • • -k~_x. If Bp = k^ • (6P) 0 = £ so, since (&i)0 = 

3i<fc<P (maximum) s u c h t h a t ( M o = R and Bk = k+ • • • k+_x, then we have 

B f c • • • 5 p B p + 1 •. . = fc+ • • • A;+_j (fco • • • K-\Y~K BP+I • • •• U s i n g t h e hypo­
thesis and the fact that A is minimal (recall that (bp+x)0 = L and p-k + 1 < 

p), A = k+ • --k+_x (k' • ••k-_x)p~k+1 • • • so B p + l • • • > fc„ • • - A ^ •••=*. 

Bp+i = A?0 • • • A ; n _ 1 . 

If (6p+i) 0 = R, as A is minimal S p + i - - - > k£ • • • k^_x • • •. If 
Bp — kQ~---k~_x, since B is minimal B p B p + i - - - < BoB\--- = 

k0 ' " "^n-l^o" ' ' ' ^ ' m - l ' " " ^ ^P+l = ^ ' o " " ' ^ m - l - = ^ o " ' " ^ m - l 
then (6„ ) 0 = i?. Since (b 0) 0 = R, 30<fc<p(m aximum) s u c h t h a t (h)0 = L, 
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and Bk---BPBP+1--- = ^•••k~_l {^•••k+_1)p k • • , If k = 0, B < 
K-'-K-i (*o •••km-i)°° B p + l = k+---k+_l. If k > 0, p - k < p 
and using the hypothesis and the fact that B is maximal, B = k^ • • • k~_x 

(k+---k+ Y~k+1...=± R ̂  -i,+ ...k+ 

To finish the proof we will now show that ((a0)0 (ai) 0 • • •, (6 0) 0 (&i)0 • • •) 
is an admissible kneading invariant. 

Supposing ((ao)0 (ai) 0 • • •, (&o)o (Mo "'') n o * admissible, one of the fol­
lowing situations must happen. 

1. 3p>o such that (bp)0 (bp+1)0 ••> (&i)0 (b2)0 • • •. 
2. 3p>o such that (a p ) 0 ( a p + 1 ) 0 •• • > (&i)0 (62)0 •' 
3. 3p>o such that (ap)0 (a p+i) 0 • • • < (ai) 0 (a 2) 0 • • •• 
4. 3p>0 such that (6p) 0 ( & p + i ) 0 • • • < (a x) 0 (a 2) 0 • • •. 
Since all situations are very similar we will just make the proof for the 

first situation. 
The case 1 is equivalent to the existence an r > 0 such that (&p+i)0 = 

(6 4 + i ) 0 for all i < r and (bp+r)0 = R > (& r+i)0 = L. We can take p 
such that [bp-i)0 = L, because if (& p - i ) 0 = R then (6p-i) 0 (6P) 0 • • • > 
(6P) 0 (6p+i) 0 • • •• But in that case, B = • • • k~_xBi • • • Brk^ • • • k~_x ••• < 
ko • • -kn_xBp • • • 5p_|- r_iAJQ" • • • A?^_j • • •. 

R E M A R K . Since ( A ' * S) *T = K * (S *T), the box associated to K * S 

is inside the box associated to K and so on. 
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