CYCLES OF RATIONAL MAPPINGS IN ALGEBRAICALLY CLOSED FIELDS OF POSITIVE CHARACTERISTICS

Tadeusz Pezda

1. Let K be a field. Let us define \bar{K} as a formal set $K \cup\{\infty\}$ (which can be identified with $P^{1}(K)$). For convenience we put that the degree of a zero polynomial is zero (not $-\infty$). For relatively prime polynomials $f, g \in$ $K[X]$ of degrees n, m and leading coefficients a_{n}, b_{m}, respectively, we define a rational function $\phi(X)=\frac{f(X)}{g(X)}$ as a mapping $\phi: \bar{K} \mapsto \bar{K}$ as follows:

$$
\phi(\xi)=\left\{\begin{array}{rll}
f(\xi) / g(\xi) & \text { for } & \xi \in K, g(\xi) \neq 0 \\
\infty & \text { for } & \xi \in K, g(\xi)=0 \\
a_{n} / b_{m} & \text { for } & \xi=\infty, n=m \\
\infty & \text { for } & \xi=\infty, n>m \\
0 & \text { for } & \xi=\infty, n<m
\end{array}\right.
$$

where we put $1 / 0$ as ∞.
More generally for $(f, g) \neq(0,0)$ and $\phi=f / g$ we put $\phi=f_{1} / g_{1}$, where $f_{1}=f / d, g_{1}=g / d, d=\operatorname{gcd}(f, g)$.

A k-tuple x_{0}, \ldots, x_{k-1} of distinct elements of \bar{K} is called a cycle of ϕ of length k if

$$
\phi\left(x_{i}\right)=x_{i+1} \quad \text { for } i=0,1, \ldots, k-2 \quad \text { and } \quad f\left(x_{k-1}\right)=x_{0}
$$

The set of all positive integers which are not lengths of a cycle for ϕ will be denoted by Exc (ϕ).

Received on June 29, 1998.

1991 Mathematics Subject Classification. 11C08.
Key words and phrases: Rational functions, lacunar sets.

The case of a rational mapping not of the form $(a X+b) /(c X+d)$ over algebraically closed field of characteristic zero was solved by I. N. Baker [2], who showed that $\operatorname{Exc}(\phi)$ is always finite and gave all possible examples of $\operatorname{Exc}(\phi)$. However for positive characteristic the situation differs, in fact it was shown in [3] that for some polynomials ϕ the set $\operatorname{Exc}(\phi)$ is infinite.

The aim of this paper is to prove that for a large class of rational ϕ over algebraically closed field of positive characteristic the set $\operatorname{Exc}(\phi)$ is "lacunar", i.e. either $\operatorname{Exc}(\phi)$ is finite or $\operatorname{Exc}(\phi)=\left\{a_{1}<a_{2}<\ldots\right\}$ with $a_{i+1} / a_{i}>\lambda>1$ for all i.
2. We start with some simple properties of rational mappings. For $\phi, \psi \in$ $K(X)$ we define $\phi \circ \psi$ as a rational function which occurs by putting $\psi(X)$ for X in $\phi(X)$. So for $\phi(X)=f(X) / g(X), f(X)=a_{n} X^{n}+\cdots+a_{0}, g(X)=$ $b_{m} X^{m}+\cdots+b_{0}, \psi(X)=r(X) / s(X), \operatorname{gcd}(f, g)=\operatorname{gcd}(r, s)=1$ we get

$$
\phi \circ \psi(X)= \begin{cases}\frac{\left(a_{n} r^{n}+\cdots+a_{0} s^{n}\right) s^{m-n}}{b_{m} r^{m}+\cdots+b_{0} s^{m}} \text { for } & m \geqslant n \tag{1}\\ \frac{a_{n} r^{n}+\cdots+a_{0} s^{n}}{\left(b_{m} r^{m}+\cdots+b_{0} s^{m}\right) s^{n-m}} \text { for } & n>m\end{cases}
$$

Notice that the numerators and denominators in the last formula are co-prime. Notice also that we could define $\phi \circ \psi$ for non-proper (i.e. of shape $1 / 0$) functions.

Lemma 1. $(\phi \circ \psi)(\xi)=\phi(\psi(\xi))$ for all $\xi \in \bar{K}$ and rational ϕ, ψ.
Proof. Standard computation.
Lemma 2. If for $a, b, c, d \in K, a d-b c \neq 0$, then a homography $\phi(X)=$ $\frac{a X+b}{c X+d}$ is an invertible mapping $\phi: \bar{K} \mapsto \bar{K}$.

Proof. Obvious.
Definition. Two rational mappings ϕ, ψ are called associated ($\phi \sim \psi$), provided $\phi \circ h=h \circ \psi$ holds for some homography h.

Lemma 3. Every non-constant rational ϕ over algebraically closed field K is associated with ψ of shape $f(X) / g(X)$, where $\operatorname{deg} f>\operatorname{deg} g$.

Proof. Let $\phi(X)=f(X) / g(X), \operatorname{gcd}(f, g)=1, f(X)=a_{n} X^{n}+\cdots$, $g(X)=b_{m} X^{m}+\cdots$. As ϕ is non-constant $f, g \neq 0$. If $n<m$ and $\xi \neq 0$ then

$$
\frac{a_{n}(X+\xi)^{n}+\cdots}{b_{m}(X+\xi)^{m}+\cdots}-\xi=\frac{-\xi b_{m} X^{m}+\cdots}{b_{m} X^{m}+\cdots}
$$

So, we see that ϕ is associated with some $\psi=F / G, \operatorname{deg} F=\operatorname{deg} G$. Therefore we can restrict ourself to the case $n=m$. Let α be a root of $X g(X)-f(X), h(X)=(\alpha X+1) / X$. Then $\phi \sim h^{-1} \circ \phi \circ h$, and the last function has the needed property. In fact, it equals

$$
\frac{g\left(\alpha+\frac{1}{X}\right)}{f\left(\alpha+\frac{1}{X}\right)-\alpha g\left(\alpha+\frac{1}{X}\right)}=\frac{X^{m} g\left(\alpha+\frac{1}{X}\right)}{X^{m}\left(f\left(\alpha+\frac{1}{X}\right)-\alpha g\left(\alpha+\frac{1}{X}\right)\right)},
$$

and the degree of the numerator is m (owing to $g(\alpha) \neq 0$, which follows from $\operatorname{gcd}(f, g)=1$, and $f(\alpha)-\alpha g(\alpha)=0)$, whereas the degree of the denominator is smaller.

3.

Theorem. Let K be an algebraically closed field of positive characteristic, and ϕ a rational function over K associated with $\psi(X)=$ $f(X) / g(X)$, where $\operatorname{deg} g<\operatorname{deg} f-\sqrt{\operatorname{deg} f}$. Then $\operatorname{Exc}(\phi)$ is lacunar.

Proof. Let us define for a natural n the set

$$
Z(n)=\{j: j \mid n, j<n\} .
$$

Because of $\phi \sim \psi$ we have $\operatorname{Exc}(\phi)=\operatorname{Exc}(\psi)$ and so it suffices to consider $E x c(\psi)$. Put $F=\operatorname{deg} f, G=\operatorname{deg} g, d=F-G, F=(F-G)^{1+\Delta}$. Our assumptions imply $d>1$ and $0 \leqslant \Delta<1$. For $j=1,2, \ldots$ denote by ψ_{j} the j-th iterate of $\psi, \psi_{j}(X)=\frac{A_{(j)}(X)}{B_{(j)}(X)}$, and $\operatorname{gcd}\left(A_{(j)}, B_{(j)}\right)=1$.

By simple induction we get

$$
\begin{equation*}
\operatorname{deg} A_{(j)}=F^{j}, \operatorname{deg} B_{(j)}=F^{j}-(F-G)^{j} . \tag{2}
\end{equation*}
$$

Assume that there are no cycles of length $n, k, n>k$ for ψ. Let us consider (like in [1]) the function

$$
\begin{equation*}
T(X)=\frac{\psi_{n}(X)-X}{\psi_{n-k}(X)-X}=\frac{\left(A_{(n)}-X B_{(n)}\right) B_{(n-k)}}{\left(A_{(n-k)}-X B_{(n-k)}\right) B_{(n)}}=\frac{R(X)}{Q(X)}=\left(\frac{r(X)}{q(X)}\right)^{p^{\mu}}, \tag{3}
\end{equation*}
$$

where $\operatorname{gcd}(R, Q)=1, p$ is the characteristic of K, M is as big as possible, i.e. $(r / q)^{\prime} \neq 0$.

Notice, that $\operatorname{gcd}\left(A_{(n)}-X B_{(n)}, B_{(n)}\right)=\operatorname{gcd}\left(A_{(n-k)}-X B_{(n-k)}, B_{(n-k)}\right)=1$. Put $m=\operatorname{deg} Q$, so in view of (2) we have $\operatorname{deg} R=d^{n}-d^{n-k}+m, \quad \operatorname{deg} r=p^{-M}\left(d^{n}-d^{n-k}+m\right), \quad \operatorname{deg} q=p^{-M} m$.

Lemma 4. Under the above assumptions

i) $\#\{\xi \in K: T(\xi)=0\}$

$$
\begin{equation*}
\leqslant F^{n-k}-(F-G)^{n-k}+\sum_{j \in Z(n)} F^{j}, \tag{4}
\end{equation*}
$$

ii) $\#\{\xi \in K: T(\xi)=1\}$

$$
\begin{equation*}
\leqslant 2 F^{n-k}-(F-G)^{n-k}+\sum_{j \in Z(k)}\left(F^{n-k+j}+F^{n-k}-(F-G)^{n-k}\right) . \tag{5}
\end{equation*}
$$

Proof. i) If $\xi \in K$ and $T(\xi)=0$, then we have $R(\xi)=0$ and $\left(\left(A_{(n)}-X B_{(n)}\right) B_{(n-k)}\right)(\xi)=0$.

$$
\begin{equation*}
\#\left\{\xi: B_{(n-k)}(\xi)=0\right\} \leqslant F^{n-k}-(F-G)^{n-k} \tag{6}
\end{equation*}
$$

If $\left(A_{(n)}-X B_{(n)}\right)(\xi)=0$ then $B_{(n)}(\xi) \neq 0$ so $\frac{A_{(n)}(\xi)-\xi B_{(n)}(\xi)}{B_{(n)}(\xi)}=0$ and $\psi_{n}(\xi)=\xi$.

As there are no cycles of length n then $\psi_{j}(\xi)=\xi$ for some $j \in Z(n)$. That means $\frac{A_{(j)}(\xi)}{B_{(j)}(\xi)}=\xi$ and $A_{(j)}(\xi)-\xi B_{(j)}(\xi)=0$. So

$$
\begin{equation*}
\#\left\{\xi:\left(A_{(n)}-X B_{(n)}\right)(\xi)=0\right\} \leqslant \sum_{j \in Z(n)} F^{j} \tag{7}
\end{equation*}
$$

(6) and (7) give the statement.
ii) If $\xi \in K$ is such that $T(\xi)=1$ then $R(\xi)=Q(\xi) \neq 0$ and

$$
\begin{equation*}
\left(\left(A_{(n)}-X B_{(n)}\right) B_{(n-k)}\right)(\xi)=\left(\left(A_{(n-k)}-X B_{(n-k)}\right) B_{(n)}\right)(\xi) . \tag{8}
\end{equation*}
$$

So $B_{(n)}(\xi)=0$ implies $B_{(n-k)}(\xi)=0$. Hence
(9) $\#\left\{\xi:\left(\left(A_{(n-k)}-X B_{(n-k)}\right) B_{(n)}\right)(\xi)=0\right\} \leqslant 2 F^{n-k}-(F-G)^{n-k}$.

For $\xi \in K: T(\xi)=1$ and $\left(\left(A_{(n-k)}-X B_{(n-k)}\right) B_{(n)}\right)(\xi) \neq 0$ we have

$$
\frac{A_{(n)}-X B_{(n)}}{B_{(n)}}(\xi)=\frac{A_{(n-k)}-X B_{(n-k)}}{B_{(n-k)}}(\xi), \frac{A_{(n)}}{B_{(n)}}(\xi)=\frac{A_{(n-k)}}{B_{(n-k)}}(\xi),
$$

and finally $\psi_{k}\left(\psi_{n-k}(\xi)\right)=\psi_{n-k}(\xi)$.

There are no cycles of length k for ψ, so there is $j \in Z(k)$ such that $\psi_{j}\left(\psi_{n-k}(\xi)\right)=\psi_{n-k}(\xi)$. So for some $j \in Z(k)$ we have $\psi_{n-k+j}(\xi)=\psi_{n-k}(\xi)$.

Observe that $\psi_{n-k}(\xi) \neq \infty$. Indeed, otherwise we would have $B_{(n-k)}(\xi)=0$ and by (8) also $B_{(n)}(\xi)=0$ which is not possible. Moreover we have

$$
\frac{A_{(n-k+j)}}{B_{(n-k+j)}}(\xi)=\frac{A_{(n-k)}}{B_{(n-k)}}(\xi)
$$

and finally

$$
\left(A_{(n-k+j)} B_{(n-k)}-A_{(n-k)} B_{(n-k+j)}\right)(\xi)=0 .
$$

Therefore

$$
\begin{aligned}
& \#\left\{\xi: T(\xi)=1,\left(\left(A_{(n-k)}-X B_{(n-k)}\right) B_{(n)}\right)(\xi) \neq 0\right\} \\
\leqslant & \sum_{j \in Z(k)}\left(F^{n-k+j}+F^{n-k}-(F-G)^{n-k}\right) .
\end{aligned}
$$

This and (9) give the statement.
In the text below $C, \tilde{C}, C_{1}, C_{2}, \ldots$ mean some absolute constants.
Corollary. $\#\{\xi: T(\xi) \in\{0,1\}\} \leqslant C F^{n-k / 2}$.
Proof. As $G<F-\sqrt{F}$ then $F \geqslant 2$. We have

$$
F^{n-k}-(F-G)^{n-k}+\sum_{j \in Z(n)} F^{j} \leqslant F^{n-k}+C_{1} F^{n / 2} \leqslant C_{2} F^{n-k / 2}
$$

and (as $k \leqslant 2 F^{k / 2}$)

$$
\begin{aligned}
2 F^{n-k}-(F-G)^{n-k} & +\sum_{j \in Z(k)}\left(F^{n-k+j}+F^{n-k}-(F-G)^{n-k}\right) \\
& \leqslant C_{3}\left(F^{n-k}+F^{n-k / 2}+k F^{n-k}\right) \\
& \leqslant C_{4} F^{n-k / 2} .
\end{aligned}
$$

Remark. If $\xi \in K$ is a zero of $R / Q($ where $\operatorname{gcd}(R, Q)=1)$ then $R(X)=$ $(X-\xi)^{w} R_{1}(X), R_{1}(\xi) \neq 0, w$-multiplicity of ξ (as a root of R / Q). In that case ξ has multiplicity $\geqslant w-1$ (as a root of $\left.(R / Q)^{\prime}\right)$.

Remark. If $R / Q=(r / q)^{p^{\mu}}$, then $\frac{R}{Q}(\xi)=1 \Longleftrightarrow \frac{r}{q}(\xi)=1$.

These remarks and the Corollary imply that the total number of $\xi \in K$ such that $\frac{r}{q}(\xi)$ equals 0 or 1 (counted with multiplicities) does not exceed $C F^{n-k / 2}+\operatorname{deg} r+\operatorname{deg} q-1$, (remembering that $(r / q)^{\prime}=\frac{r^{\prime} q-r q^{\prime}}{q^{2}} \neq 0$).

On the other hand the total number of zeros and units of r / q equals $2 \operatorname{deg} r$. So we obtained $2 \operatorname{deg} r \leqslant C F^{n-k / 2}+\operatorname{deg} r+\operatorname{deg} q-1$.

Hence deg $r-\operatorname{deg} q \leqslant C F^{n-k / 2}, p^{-M}\left(d^{n}-d^{n-k}\right) \leqslant C F^{n-k / 2}$, and finally

$$
\begin{equation*}
(F-G)^{n} \leqslant \tilde{C} p^{M} F^{n-k / 2}, \tag{10}
\end{equation*}
$$

as $d \leqslant F$.
Lemma 5. For functions R, Q, ψ and numbers M, p, k, n, d defined $j u s t$ below the formula (3) we have
i) if p does not divide d then $p^{M} \leqslant C(\psi) k$;
ii) if $p \mid d$ then $p^{M} \leqslant d^{n-k}$.

Proof. As $p^{M} \mid \operatorname{deg} R-\operatorname{deg} Q$ then $p^{M} \mid d^{n-k}\left(d^{k}-1\right)$.
i) $p^{M} \mid d^{k}-1$, so $p^{M} \leqslant C(\psi) k$ could be proved by considering the Newton binomial coefficients. It was also used (and proved) in [4].
ii) Obvious.

To end the proof we will consider the following two cases separately.
Case 1. p does not divide d.
The formula (10) and Lemma 5(i) give

$$
(F-G)^{n} \leqslant \tilde{C} C(\psi) k F^{n-k / 2} \leqslant F^{n-\frac{t}{2}(1-\delta)}
$$

for every $\delta>0$ and $k \geqslant k(\delta, \psi)$. Hence for sufficiently large k we have $n \leqslant(1+$ $\Delta)$
$\left(n-\frac{k}{2}(1-\delta)\right)$ and $n / k \geqslant \frac{1+\Delta}{2 \Delta}(1-\delta)$.
As $\frac{1+\Delta}{2 \Delta}>1$ then for sufficiently small δ we have $\frac{1+\Delta}{2 \Delta}(1-\delta)>1$.
Case 2. p|d.
The formula (10) and Lemma 5(ii) give

$$
(F-G)^{n} \leqslant \tilde{C}(F-G)^{n-k} F^{n-k / 2} \leqslant(F-G)^{n-k+(1+\Delta)\left(n-\frac{k}{2}(1-\delta)\right)}
$$

for every $\delta>0$ and sufficiently large k. That means that for sufficiently small $\delta>0$ and large k we have

$$
n / k \geqslant \frac{1}{1+\Delta}+\frac{1-\delta}{2}>1
$$

The two already considered cases imply that for sufficiently large k we have $n / k \geqslant \lambda(\psi)>1$, where $n, k \in \operatorname{Exc}(\psi), n>k$. This ends the proof.

References

[1] I. N. Baker, The existence of fixpoints of entire functions, Math. Zeit. 73 (1960), 280-284.
[2] I. N. Baker, Fixpoints of polynomials and rational functions, J. London Math. Soc. 39 (1964), 615-622.
[3] T. Pezda, Cycles of polynomials in algebraically closed fields of positive characteristic, Colloq. Math. 67 (1994), 187-195.
[4] T. Pezda, Cycles of polynomials in algebraically closed fields of positive characteristic, II, Colloq. Math. 71 (1996), 23-30.

Institute of Mathematics
Wroceaw University
Plac Grunwaldzki 2-4
PL-50-384-Wroctaw
Poland
e-mail:
pezda@math.uni.wroc.pl

