Prace Naukowe Uniwersytetu Śląskiego nr 1751, Katowice

CYCLES OF RATIONAL MAPPINGS IN ALGEBRAICALLY CLOSED FIELDS OF POSITIVE CHARACTERISTICS

TADEUSZ PEZDA

1. Let K be a field. Let us define \bar{K} as a formal set $K \cup \{\infty\}$ (which can be identified with $P^1(K)$). For convenience we put that the degree of a zero polynomial is zero (not $-\infty$). For relatively prime polynomials $f,g \in K[X]$ of degrees n,m and leading coefficients a_n,b_m , respectively, we define a rational function $\phi(X) = \frac{f(X)}{g(X)}$ as a mapping $\phi: \bar{K} \mapsto \bar{K}$ as follows:

$$\phi(\xi) = \left\{ \begin{array}{ll} f(\xi)/g(\xi) & \text{for} \quad \xi \in K, g(\xi) \neq 0 \\ \\ \infty & \text{for} \quad \xi \in K, g(\xi) = 0 \\ \\ a_n/b_m & \text{for} \quad \xi = \infty, n = m \\ \\ \infty & \text{for} \quad \xi = \infty, n > m \\ \\ 0 & \text{for} \quad \xi = \infty, n < m, \end{array} \right.$$

where we put 1/0 as ∞ .

More generally for $(f,g) \neq (0,0)$ and $\phi = f/g$ we put $\phi = f_1/g_1$, where $f_1 = f/d$, $g_1 = g/d$, $d = \gcd(f,g)$.

A k-tuple $x_0, ..., x_{k-1}$ of distinct elements of \bar{K} is called a cycle of ϕ of length k if

$$\phi(x_i) = x_{i+1}$$
 for $i = 0, 1, ..., k-2$ and $f(x_{k-1}) = x_0$.

The set of all positive integers which are not lengths of a cycle for ϕ will be denoted by $Exc(\phi)$.

Received on June 29, 1998.

¹⁹⁹¹ Mathematics Subject Classification. 11C08.

Key words and phrases: Rational functions, lacunar sets.

The case of a rational mapping not of the form (aX + b)/(cX + d) over algebraically closed field of characteristic zero was solved by I. N. Baker [2], who showed that $Exc(\phi)$ is always finite and gave all possible examples of $Exc(\phi)$. However for positive characteristic the situation differs, in fact it was shown in [3] that for some polynomials ϕ the set $Exc(\phi)$ is infinite.

The aim of this paper is to prove that for a large class of rational ϕ over algebraically closed field of positive characteristic the set $Exc(\phi)$ is "lacunar", i.e. either $Exc(\phi)$ is finite or $Exc(\phi) = \{a_1 < a_2 < ...\}$ with $a_{i+1}/a_i > \lambda > 1$ for all i.

2. We start with some simple properties of rational mappings. For $\phi, \psi \in K(X)$ we define $\phi \circ \psi$ as a rational function which occurs by putting $\psi(X)$ for X in $\phi(X)$. So for $\phi(X) = f(X)/g(X)$, $f(X) = a_n X^n + \cdots + a_0$, $g(X) = b_m X^m + \cdots + b_0$, $\psi(X) = r(X)/s(X)$, $\gcd(f,g) = \gcd(r,s) = 1$ we get

(1)
$$\phi \circ \psi(X) = \begin{cases} \frac{(a_n r^n + \dots + a_0 s^n) s^{m-n}}{b_m r^m + \dots + b_0 s^m} & \text{for } m \geqslant n \\ \frac{a_n r^n + \dots + a_0 s^n}{(b_m r^m + \dots + b_0 s^m) s^{n-m}} & \text{for } n > m. \end{cases}$$

Notice that the numerators and denominators in the last formula are co-prime. Notice also that we could define $\phi \circ \psi$ for non-proper (i.e. of shape 1/0) functions.

LEMMA 1. $(\phi \circ \psi)(\xi) = \phi(\psi(\xi))$ for all $\xi \in \bar{K}$ and rational ϕ, ψ .

PROOF. Standard computation.

LEMMA 2. If for $a,b,c,d\in K, ad-bc\neq 0$, then a homography $\phi(X)=\frac{aX+b}{cX+d}$ is an invertible mapping $\phi:\bar{K}\mapsto \bar{K}$.

PROOF. Obvious.

DEFINITION. Two rational mappings ϕ , ψ are called associated ($\phi \sim \psi$), provided $\phi \circ h = h \circ \psi$ holds for some homography h.

LEMMA 3. Every non-constant rational ϕ over algebraically closed field K is associated with ψ of shape f(X)/g(X), where $\deg f > \deg g$.

PROOF. Let $\phi(X) = f(X)/g(X)$, $\gcd(f,g) = 1$, $f(X) = a_n X^n + \cdots$, $g(X) = b_m X^m + \cdots$. As ϕ is non-constant $f, g \neq 0$. If n < m and $\xi \neq 0$ then

$$\frac{a_n(X+\xi)^n+\cdots}{b_m(X+\xi)^m+\cdots}-\xi=\frac{-\xi b_mX^m+\cdots}{b_mX^m+\cdots}.$$

So, we see that ϕ is associated with some $\psi = F/G$, $\deg F = \deg G$. Therefore we can restrict ourself to the case n = m. Let α be a root of $Xg(X) - f(X), h(X) = (\alpha X + 1)/X$. Then $\phi \sim h^{-1} \circ \phi \circ h$, and the last function has the needed property. In fact, it equals

$$\frac{g(\alpha+\frac{1}{X})}{f(\alpha+\frac{1}{X})-\alpha g(\alpha+\frac{1}{X})}=\frac{X^mg(\alpha+\frac{1}{X})}{X^m(f(\alpha+\frac{1}{X})-\alpha g(\alpha+\frac{1}{X}))},$$

and the degree of the numerator is m (owing to $g(\alpha) \neq 0$, which follows from $\gcd(f,g)=1$, and $f(\alpha)-\alpha g(\alpha)=0$), whereas the degree of the denominator is smaller. \square

3.

THEOREM. Let K be an algebraically closed field of positive characteristic, and ϕ a rational function over K associated with $\psi(X) = f(X)/g(X)$, where $\deg g < \deg f - \sqrt{\deg f}$. Then $Exc(\phi)$ is lacunar.

PROOF. Let us define for a natural n the set

$$Z(n) = \{j: j|n, j < n\}.$$

Because of $\phi \sim \psi$ we have $Exc(\phi) = Exc(\psi)$ and so it suffices to consider $Exc(\psi)$. Put $F = \deg f, G = \deg g, d = F - G, F = (F - G)^{1+\Delta}$. Our assumptions imply d > 1 and $0 \le \Delta < 1$. For j = 1, 2, ... denote by ψ_j the j-th iterate of ψ , $\psi_j(X) = \frac{A_{(j)}(X)}{B_{(j)}(X)}$, and $\gcd(A_{(j)}, B_{(j)}) = 1$.

By simple induction we get

(2)
$$\deg A_{(j)} = F^j, \deg B_{(j)} = F^j - (F - G)^j.$$

Assume that there are no cycles of length n, k, n > k for ψ . Let us consider (like in [1]) the function

$$T(X) = \frac{\psi_n(X) - X}{\psi_{n-k}(X) - X} = \frac{(A_{(n)} - XB_{(n)})B_{(n-k)}}{(A_{(n-k)} - XB_{(n-k)})B_{(n)}} = \frac{R(X)}{Q(X)} = \left(\frac{r(X)}{q(X)}\right)^{p^{k}},$$

where gcd(R,Q) = 1, p is the characteristic of K, M is as big as possible, i.e. $(r/q)' \neq 0$.

Notice, that $gcd(A_{(n)}-XB_{(n)},B_{(n)})=gcd(A_{(n-k)}-XB_{(n-k)},B_{(n-k)})=1$. Put $m=\deg Q$, so in view of (2) we have

$$\deg R = d^n - d^{n-k} + m, \quad \deg r = p^{-M}(d^n - d^{n-k} + m), \quad \deg q = p^{-M}m.$$

LEMMA 4. Under the above assumptions

i)
$$\#\{\xi \in K : T(\xi) = 0\}$$

 $\leq F^{n-k} - (F - G)^{n-k} + \sum_{j \in Z(n)} F^j,$ (4)

ii)
$$\#\{\xi \in K : T(\xi) = 1\}$$

 $\leq 2F^{n-k} - (F-G)^{n-k} + \sum_{j \in Z(k)} (F^{n-k+j} + F^{n-k} - (F-G)^{n-k}).$ (5)

PROOF. i) If $\xi \in K$ and $T(\xi) = 0$, then we have $R(\xi) = 0$ and $((A_{(n)} - XB_{(n)})B_{(n-k)})(\xi) = 0$.

(6)
$$\#\{\xi: B_{(n-k)}(\xi) = 0\} \leqslant F^{n-k} - (F-G)^{n-k}$$

If
$$(A_{(n)} - XB_{(n)})(\xi) = 0$$
 then $B_{(n)}(\xi) \neq 0$ so $\frac{A_{(n)}(\xi) - \xi B_{(n)}(\xi)}{B_{(n)}(\xi)} = 0$ and $\psi_n(\xi) = \xi$.

As there are no cycles of length n then $\psi_j(\xi) = \xi$ for some $j \in Z(n)$. That means $\frac{A_{(j)}(\xi)}{B_{(j)}(\xi)} = \xi$ and $A_{(j)}(\xi) - \xi B_{(j)}(\xi) = 0$. So

(7)
$$\#\{\xi: (A_{(n)}-XB_{(n)})(\xi)=0\} \leqslant \sum_{j\in Z(n)} F^{j}.$$

- (6) and (7) give the statement.
- ii) If $\xi \in K$ is such that $T(\xi) = 1$ then $R(\xi) = Q(\xi) \neq 0$ and

(8)
$$((A_{(n)} - XB_{(n)})B_{(n-k)})(\xi) = ((A_{(n-k)} - XB_{(n-k)})B_{(n)})(\xi).$$

So $B_{(n)}(\xi) = 0$ implies $B_{(n-k)}(\xi) = 0$. Hence

(9)
$$\#\{\xi: ((A_{(n-k)}-XB_{(n-k)})B_{(n)})(\xi)=0\} \leq 2F^{n-k}-(F-G)^{n-k}.$$

For
$$\xi \in K : T(\xi) = 1$$
 and $((A_{(n-k)} - XB_{(n-k)})B_{(n)})(\xi) \neq 0$ we have

$$\frac{A_{(n)}-XB_{(n)}}{B_{(n)}}(\xi)=\frac{A_{(n-k)}-XB_{(n-k)}}{B_{(n-k)}}(\xi),\frac{A_{(n)}}{B_{(n)}}(\xi)=\frac{A_{(n-k)}}{B_{(n-k)}}(\xi),$$

and finally $\psi_k(\psi_{n-k}(\xi)) = \psi_{n-k}(\xi)$.

There are no cycles of length k for ψ , so there is $j \in Z(k)$ such that $\psi_j(\psi_{n-k}(\xi)) = \psi_{n-k}(\xi)$. So for some $j \in Z(k)$ we have $\psi_{n-k+j}(\xi) = \psi_{n-k}(\xi)$. Observe that $\psi_{n-k}(\xi) \neq \infty$. Indeed, otherwise we would have $B_{(n-k)}(\xi) = 0$ and by (8) also $B_{(n)}(\xi) = 0$ which is not possible. More-

$$\frac{A_{(n-k+j)}}{B_{(n-k+j)}}(\xi) = \frac{A_{(n-k)}}{B_{(n-k)}}(\xi)$$

and finally

over we have

$$(A_{(n-k+j)}B_{(n-k)}-A_{(n-k)}B_{(n-k+j)})(\xi)=0.$$

Therefore

$$\#\{\xi: T(\xi) = 1, ((A_{(n-k)} - XB_{(n-k)})B_{(n)})(\xi) \neq 0\}$$

$$\leq \sum_{j \in Z(k)} (F^{n-k+j} + F^{n-k} - (F - G)^{n-k}).$$

This and (9) give the statement. \Box

In the text below $C, \tilde{C}, C_1, C_2, \dots$ mean some absolute constants.

COROLLARY. $\#\{\xi: T(\xi) \in \{0,1\}\} \leqslant CF^{n-k/2}$.

PROOF. As $G < F - \sqrt{F}$ then $F \geqslant 2$. We have

$$F^{n-k} - (F-G)^{n-k} + \sum_{j \in Z(n)} F^j \leqslant F^{n-k} + C_1 F^{n/2} \leqslant C_2 F^{n-k/2}$$

and (as $k \leqslant 2F^{k/2}$)

$$2F^{n-k} - (F - G)^{n-k} + \sum_{j \in Z(k)} (F^{n-k+j} + F^{n-k} - (F - G)^{n-k})$$

$$\leq C_3(F^{n-k} + F^{n-k/2} + kF^{n-k})$$

$$\leq C_4F^{n-k/2}. \quad \Box$$

REMARK. If $\xi \in K$ is a zero of R/Q (where gcd(R,Q) = 1) then $R(X) = (X - \xi)^w R_1(X), R_1(\xi) \neq 0, w$ -multiplicity of ξ (as a root of R/Q). In that case ξ has multiplicity $\geqslant w - 1$ (as a root of (R/Q)').

REMARK. If
$$R/Q = (r/q)^{p^M}$$
, then $\frac{R}{Q}(\xi) = 1 \iff \frac{r}{q}(\xi) = 1$.

These remarks and the Corollary imply that the total number of $\xi \in K$ such that $\frac{r}{a}(\xi)$ equals 0 or 1 (counted with multiplicaties) does not exceed

 $CF^{n-k/2} + \deg r + \deg q - 1$, (remembering that $(r/q)' = \frac{r'q - rq'}{q^2} \neq 0$).

On the other hand the total number of zeros and units of r/q equals $2\deg r$. So we obtained $2\deg r\leqslant CF^{n-k/2}+\deg r+\deg q-1$. Hence $\deg r-\deg q\leqslant CF^{n-k/2},$ $p^{-M}(d^n-d^{n-k})\leqslant CF^{n-k/2}$, and finally

$$(F-G)^n \leqslant \tilde{C}p^M F^{n-k/2},$$

as $d \leqslant F$.

LEMMA 5. For functions R, Q, ψ and numbers M, p, k, n, d defined just below the formula (3) we have

- i) if p does not divide d then $p^M \leq C(\psi)k$:
- ii) if p|d then $p^M \leq d^{n-k}$.

PROOF. As $p^M | \deg R - \deg Q$ then $p^M | d^{n-k} (d^k - 1)$.

- i) $p^M|d^k-1$, so $p^M \leqslant C(\psi)k$ could be proved by considering the Newton binomial coefficients. It was also used (and proved) in [4].
 - ii) Obvious.

To end the proof we will consider the following two cases separately.

Case 1. p does not divide d.

The formula (10) and Lemma 5(i) give

$$(F-G)^n \leqslant \tilde{C}C(\psi)kF^{n-k/2} \leqslant F^{n-\frac{k}{2}(1-\delta)}$$

for every $\delta > 0$ and $k \geqslant k(\delta, \psi)$. Hence for sufficiently large k we have $n \leqslant (1 + \epsilon)$

$$(n-\frac{k}{2}(1-\delta))$$
 and $n/k \geqslant \frac{1+\Delta}{2\Lambda}(1-\delta)$.

As $\frac{1+\Delta}{2\Lambda} > 1$ then for sufficiently small δ we have $\frac{1+\Delta}{2\Lambda}(1-\delta) > 1$.

Case 2. p|d.

The formula (10) and Lemma 5(ii) give

$$(F-G)^n \leqslant \tilde{C}(F-G)^{n-k}F^{n-k/2} \leqslant (F-G)^{n-k+(1+\Delta)(n-\frac{k}{2}(1-\delta))},$$

for every $\delta > 0$ and sufficiently large k. That means that for sufficiently small $\delta > 0$ and large k we have

$$n/k\geqslant \frac{1}{1+\Delta}+\frac{1-\delta}{2}>1.$$

The	two already	${\tt considered}$	cases imply	that	for sufficiently	large k	we	have
n/k	$\geqslant \lambda(\psi) > 1$,	where n, k	$\in Exc(\psi), r$	i > k.	This ends the	proof.		

REFERENCES

- [1] I. N. BAKER, The existence of fixpoints of entire functions, Math. Zeit. 73 (1960), 280-284.
- [2] I. N. BAKER, Fixpoints of polynomials and rational functions, J. London Math. Soc. 39 (1964), 615-622.
- [3] T. Pezda, Cycles of polynomials in algebraically closed fields of positive characteristic, Colloq. Math. 67 (1994), 187-195.
- [4] T. Pezda, Cycles of polynomials in algebraically closed fields of positive characteristic, II, Collog. Math. 71 (1996), 23-30.

Institute of Mathematics Wrocław University Plac Grunwaldzki 2-4 PL-50-384-Wrocław Poland

e-mail:

pezda@math.uni.wroc.pl