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CYCLES OF RATIONAL MAPPINGS IN ALGEBRAICALLY
CLOSED FIELDS OF POSITIVE CHARACTERISTICS

TADEUSZ PEZDA

1. Let K be a field. Let us define K as a formal set K U {oo} (which
can be identified with P!(K)). For convenience we put that the degree of a
zero polynomial is zero (not —oo). For relatively prime polynomials f,g €
K[X] of degrees n, m and leading coefficients a,, b, respectively, we define
a rational function ¢(X) = ﬁ—i% as a mapping ¢ : K — K as follows:

( f(€)/9(€) for &€ K,g(§)#0
oo for €€ K,g(§)=0
(&) = < an/by for £=o0,m=m
oc for £€=oc0,n>m

0 for £=o00,n < m,

where we put 1/0 as oo.

More generally for (f,g) # (0,0) and ¢ = f/g we put ¢ = f1/g1, where
f1=f/d,gl=g/d’d=g<:d(f’g)' _

A k-tuple =z, ...,7x—1 of distinct elements of K is called a cycle of ¢ of
length k& if

¢($,) =Tit1 for 1= 0,1,.., k-2 and f(itk._l) = Zg.

The set of all positive integers which are not lengths of a cycle for ¢ will be
denoted by Ezc(®).
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The case of a rational mapping not of the form (aX + b)/(cX + d) over
algebraically closed field of characteristic zero was solved by I. N. Baker [2],
who showed that Ezc(¢) is always finite and gave all possible examples of
Ezc(¢). However for positive characteristic the situation differs, in fact it
was shown in [3] that for some polynomials ¢ the set Ezc(¢) is infinite.

The aim of this paper is to prove that for a large class of rational ¢
over algebraically closed field of positive characteristic the set Ezc(9) is
"lacunar”, i.e. either Ezc(¢) is finite or Ezc(d) = {a; < a3 < ...} with
a,-+1/a,- > A>1forall 7.

2. We start with some simple properties of rational mappings. For ¢, €
K(X) we define ¢ 0% as a rational function which occurs by putting ¥(X)
for X in ¢(X). So for ¢(X) = f(X)/g(X), f(X) = anX" + -+ a0, g(X) =
b X™ 4 -+ -+ bo, P(X)=r(X)/s(X),gcd(f,g) = ged(r, s) = 1 we get

(@nr™ + -4 ags™)s™"
™ + -+ - 4 bos™
Qrr™ 4 -+ ags”
(bmr™ + - - + bys™)sgn—m

for m>n

(1) poP(X)=

for n>m.

Notice that the numerators and denominators in the last formula are co-prime.
Notice also that we could define ¢o1) for non-proper (i.e. of shape 1/0) func-
tions.

LEMMA 1. (¢ 0 9)(&) = ¢((£)) for all € € K and rational ¢, .

PRrRooOF. Standard computation. O

LEMMA 2. If for a,b,¢,d € K,ad — bc # 0, then a homography HX)=
aX +b

cX +d

is an invertible mapping ¢: K — K.

Proor. Obvious. O

DEFINITION. Two rational mappings ¢, are called associated (¢ ~ ),
provided ¢ o h = h o 9 holds for some homography A.

LEMMA 3. Bvery non-constant rational ¢ over algebraically closed
field K 1is associated with ¢ of shape f(X)/g(X), where deg f > degyg.

PROOF. Let ¢(X) = f(X)/g(X), ged(f,g) = 1, f(X)=a, X"+ .--,
9(X)=5,X"™+---. As ¢ is non-constant f,g £ 0. If n < m and € # 0 then

(X O b b X"
(X +E™+ - 57 ppXmg .
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So, we see that ¢ is associated with some ¥ = F/G, degF = degG.
Therefore we can restrict ourself to the case n = m. Let o be a root of
Xg(X) - f(X),h(X) = (aX +1)/X. Then ¢ ~ h™' 0 ¢ o h, and the last
function has the needed property. In fact, it equals

1 _ 1
gla+ ’f) X™g(a+ 3(’)

2 Xn(flat g) - eglat 3)

flat 3) - aglat

and the degree of the numerator is m (owing to g(e) # 0, which follows from
ged(f, g) = 1, and f(e)—ag(e) = 0), whereas the degree of the denominator
is smaller. [

3.

THEOREM. Let K be an algebraically closed field of positive charac-
teristic, and ¢ a rational function over K associated with P(X) =
f(X)/g(X), where degg < deg f — +/deg f. Then Ezc(¢) is lacunar.

PROOF. Let us define for a natural n the set
Z(n)={j: jln,j < m}.

Because of ¢ ~ 9 we have Ezc(¢) = Ezc(t) and so it suffices to consider
Ezc(y). Put F = deg f,G = degg,d = F - G, F = (F - G)t4. Our
assumptions imply d > 1 and 0 < A < 1. For j = 1,2,... denote by ¥; the

o A )(X)
j-th iterate of ¥, ¥;(X) = = 2+—, and ged(A;), B(;) = 1.

By simple induction we get

(2) deg A(j) = F?,deg B(;y = F/ - (F - GY’.

Assume that there are no cycles of length n, k, n > k for 1. Let us consider
(like in [1]) the function
(3)

T(X) =

Ya(X)=X _ (A = XBw)B-n =R(X)=(r(X))P"
ni(X) =X ~ (Am-k) - XBn—i)Bn) QX)) \a(X)/ '

where gcd(R, Q) = 1, p is the characteristic of K, M is as big as possible,
ie. (r/q) #£0.

2 — Annales...
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Notice, that gcd(A(n) —XB(n), B(n)) =ng(A(n_k) —XB(n_k) , B('n-—k)) =1.
Put m = deg Q, so in view of (2) we have

degR=d"—d" " +m, degr=p~M(d"-d"*4m), degg=p Mm.

LEMMA 4. Under the above assumptions
i) #{ € K:T(¢) =0} .

SFF—(F =G + 3 om F, (4)
i) #{{€ K :T(§)=1} ,

S 2P — (F = G + e (F™* + F=k — (F - G)"*). (5)

Proor. i) If § € K and T'(€) = 0, then we have R(¢) =0 and
((A(n) = X B(n)) B(n-1))(€) = 0.

(8) #{€ : Bu-iy(€) = 0} S F*™% — (F - G)*

An)(§) — €B(n
If (A(n) — X B(r))(€) = 0 then Byn(£) # 0 s0 )(f];(n)é)( (O _ 4 ang

As there are no cycles of length n then 9;(£) = £ for some j € Z(n). That

A
Bﬁjiég = & and A(;)(€) - €B;)(€) = 0. So

(7) #{E: (Am) — XB(m))(€) =0} < ) F

Jj€Z(n)

means

(6) and (7) give the statement.
i) If £ € K is such that T(¢) = 1 then R(£) = Q(¢) # 0 and

(®)  ((Am) = XB(n))B(n-))(§) = ((A(n-t) = X B(n_k)) B(n))(£)-

So B(n)(£) = 0 implies B(,_x) (&) = 0. Hence

(©)  #{&: (A(n-r) = X B(n-k))Bn))(€) = 0}  2F™* — (F — G)"~*,
For £ € K : T(£) = 1 and ((A(n—k) — X B(n—-x))B(n))(£) # O we have

A(m) — XB(z) ~ XBn-k) oy A An-k

_ A@-n () gy — )
B €)= B (f),B(n)(«S) Bon) ©),

and finally ¥x(¥n—i(€)) = ¥n-r(£).
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There are no cycles of length k for ¢, so there is j € Z(k) such that
¢j("pn—k(5)) = ¢n-—k(§) So for some j € Z(k) we have ¢n—k+j(§) = "/Jn—k(f)-
Observe that t%,_x(§) # oo. Indeed, otherwise we would have
B(n-k)(€) = 0 and by (8) also By)(£) = 0 which is not possible. More-
over we have A A
—k+j n—k
St () = 2= )
(n—k+j) (n—k)

and finally
(A(n_k+j)B(n—k) - A(n—k)B(n—k+J'))(€) =0.
Therefore
#{€: T(€) = 1, (A(n—k) — X B(n-k))Bm))(€) # 0}
< Y (Frt P - (F - G)R),
i€Z(k)

This and (9) give the statement. [
In the text below C,C,Cy, Cy, ... mean some absolute constants.
COROLLARY. #{¢ : T(€£) € {0,1}} K CF"~*/2,
PROOF. As G < F — +/F then F > 2. We have

Fn—k _ (F _G)n—k + Z Fj < F'n-—-k +Can/2 < Can_k/2
i€Z(n)

and (as k < 2F*/?)

ofn—k _ (F _ G)n—k + Z (Fn-—k+j + Frk _ (F _ G)n—k)
JEZ(k)
Ca(Fn—k +Fn—lc/2 +an-—k)

<
S C F* k2 O

REMARK. If £ € K is a zero of R/Q (where gcd(R, Q) = 1) then R(X) =
(X — €)¥Ry(X), R1(€) # 0, w-multiplicity of (as a root of R/Q). In that
case ¢ has multiplicity > w — 1 ( as a root of (R/Q)’).

REMARK. If B/Q = (r/q)", then g-(g) =1 =1

2*
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These remarks and the Corollary imply that the total number of EeK
such that g(f) equals 0 or 1 (counted with multiplicities) does not exceed

CFn=k/? £ degr + degq -1, (remembering that (r/q)’ = i‘{;—'i # 0).

On the other hand the total number of zeros and units of r/q equals
2degr. So we obtained 2degr { CF"~*/2 4 degr + degq — 1.

Hence deg r—deg ¢ < CF™~%/2, p=M(gn — gn~k) < CF™—k/2, and finally

(10) (F - G)" < CpMFr=F/2,

asdg F.

LEMMA 5. For functions R,Q, v and numbers M, p, k,n,d defined just
below the formula (3) we have

i) if p does not divide d then pM < C(¢)k;

il) if p|d then pM < d™—F.

PROOF. As pM|deg R — deg Q then pM|dn—F(d* — 1).

i) pM|d* — 1, s0 pM < C()k could be proved by considering the Newton
binomial coefficients. It was also used (and proved) in [4].

ii) Obvious. O

To end the proof we will consider the following two cases separately.
Case 1. p does not divide d.
The formula (10) and Lemma 5(i) give
(F - G)* < CO(y)kFm=*/? ¢ pr=i(-9)

for every >0 and k > k(4, ¥). Hence for sufficiently large k we have = <(1+
A)
1+A

As l;AA > 1 then for sufficiently small § we have IJAA (1-46)>1.
Case 2. p|d.

The formula (10) and Lemma 5(ii) give
(F _ G)n < C"v(F _ G)n-—an—k/Z < (F _ G)n—k+(1+A)(n—-§(1-—¢$)),

for every 6 > 0 and sufficiently large k. That means that for sufficiently
small § > 0 and large k& we have

nfk > ——+—>1.
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The two already considered cases imply that for sufficiently large k we have
n/k > M%) > 1, where n,k € Ezc(¢),n > k. This ends the proof. O
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