ON PYTHAGOREAN TRIANGLES

Andrzej Schinzel
 In memory of Ivan Korec

The following theorem answers a question asked by I. Korec at the Second Czech \& Polish Conference on Number Theory.

Theorem. If $m \in \mathbf{N}$, ord ${ }_{2} m$ is even, $x_{0}, y_{0}, z_{0} \in \mathbb{Z}$ and

$$
\begin{equation*}
x_{0}^{2}+y_{0}^{2} \equiv z_{0}^{2}(\bmod m), \tag{1}
\end{equation*}
$$

then there exist $x, y, z \in \mathbb{Z}$ such that

$$
x^{2}+y^{2}=z^{2}, x^{2} \equiv x_{0}^{2}, y^{2} \equiv y_{0}^{2}, z^{2} \equiv z_{0}^{2}(\bmod m)
$$

Proof. Assume first that

$$
\begin{equation*}
\left(x_{0}, y_{0}, z_{0}, m\right)=1 \tag{2}
\end{equation*}
$$

and let

$$
\begin{equation*}
m=2^{\alpha} \prod_{i=1}^{k} p_{i}^{\alpha_{i}} \tag{3}
\end{equation*}
$$

where $\alpha \geqslant 0, \alpha \equiv 0(\bmod 2), p_{i}$ are distinct odd primes and $\alpha_{i}>0$ $(1 \leqslant i \leqslant k)$.

Received on August 7, 1998.
1991 Mathematics Subject Classification. 11D09.
Key words and phrases: Pythagorean triangles.

For each $i \leqslant k$ there exists $\varepsilon_{i} \in\{1,-1\}$ such that

$$
\begin{equation*}
z_{0}-\varepsilon_{i} y_{0} \not \equiv 0\left(\bmod p_{i}\right) \tag{4}
\end{equation*}
$$

Otherwise we should have

$$
z_{0} \equiv y_{0} \equiv 0\left(\bmod p_{i}\right)
$$

hence, by (1) and (3) $x_{0} \equiv 0\left(\bmod p_{i}\right),\left(x_{0}, y_{0}, z_{0}, m\right) \neq 1$, contrary to (2). By the Chinese remainder theorem there exists $y_{1} \in \mathbb{Z}$ such that

$$
\begin{equation*}
y_{1} \equiv \varepsilon_{i} y_{0}\left(\bmod p_{i}^{\alpha_{i}}\right) \quad(1 \leqslant i \leqslant k) \tag{5}
\end{equation*}
$$

$$
\begin{equation*}
y_{1} \equiv y_{0}\left(\bmod 2^{\alpha}\right) \tag{6}
\end{equation*}
$$

and we have

$$
\begin{equation*}
y_{1}^{2} \equiv y_{0}^{2}(\bmod m) \tag{7}
\end{equation*}
$$

Consider first the case $\alpha=0$. Then by (4) and (5)

$$
\left(z_{0}-y_{1}, m\right)=1
$$

and there exists $l \in \mathbb{Z}$ such that

$$
\begin{equation*}
2 l\left(z_{0}-y_{1}\right) \equiv 1(\bmod m) \tag{8}
\end{equation*}
$$

We put

$$
x=2 l x_{0}\left(z_{0}-y_{1}\right), y=l\left(x_{0}^{2}-\left(z_{0}-y_{1}\right)^{2}\right), z=l\left(x_{0}^{2}+\left(z_{0}-y_{1}\right)^{2}\right)
$$

We have $x^{2}+y^{2}=z^{2}$. On the other hand, by (7), (8) and (1)

$$
\begin{aligned}
& x \equiv x_{0}(\bmod m) \\
& y \equiv l\left(z_{0}^{2}-y_{1}^{2}-\left(z_{0}-y_{1}\right)^{2}\right) \equiv 2 l y_{1}\left(z_{0}-y_{1}\right) \equiv y_{1}(\bmod m) \\
& z \equiv l\left(z_{0}^{2}-y_{1}^{2}+\left(z_{0}-y_{1}\right)^{2}\right) \equiv 2 l z_{0}\left(z_{0}-y_{1}\right) \equiv z_{0}(\bmod m)
\end{aligned}
$$

hence

$$
x^{2} \equiv x_{0}^{2}, y^{2} \equiv y_{0}^{2}, z^{2} \equiv z_{0}^{2}(\bmod m)
$$

Consider now the case $\alpha>0$. If $z_{0} \equiv x_{0}(\bmod 2)$ and $z_{0} \equiv y_{0}(\bmod 2)$ we should have by (1) $\left(x_{0}, y_{0}, z_{0}, m\right) \neq 1$, contrary to (2).

Without loss of generality we may assume that $z_{0} \not \equiv y_{0}(\bmod 2)$.

Then $x_{0} \not \equiv 0(\bmod 2)$ and, by (6), $z_{0} \not \equiv y_{1}(\bmod 2)$, by (4) and (5)

$$
\left(z_{0}-y_{1}, m\right)=1
$$

There exists $l \in \mathbb{Z}$ such that

$$
l\left(z_{0}-y_{1}\right) \equiv 1(\bmod m)
$$

We put

$$
x=l x_{0}\left(z_{0}-y_{1}\right), y=l \frac{x_{0}^{2}-\left(z_{0}-y_{1}\right)^{2}}{2}, z=l \frac{x_{0}^{2}+\left(z_{0}-y_{1}\right)^{2}}{2} .
$$

We have $x^{2}+y^{2}=z^{2}$. On the other hand, by (7), (9) and (1)

$$
\begin{aligned}
& x \equiv x_{0}(\bmod m), \\
& y \equiv l \frac{z_{0}^{2}-y_{1}^{2}-\left(z_{0}-y_{1}\right)^{2}}{2} \equiv l y_{1}\left(z_{0}-y_{1}\right) \equiv y_{1}\left(\bmod \frac{m}{2}\right), \\
& z \equiv l \frac{z_{0}^{2}-y_{1}^{2}+\left(z_{0}-y_{1}\right)^{2}}{2} \equiv l z_{0}\left(z_{0}-y_{1}\right) \equiv z_{0}\left(\bmod \frac{m}{2}\right)
\end{aligned}
$$

hence

$$
x^{2} \equiv x_{0}^{2}, y^{2} \equiv y_{0}^{2}, z^{2} \equiv z_{0}^{2}(\bmod m)
$$

because $m / 2 \equiv 0 \bmod 2$.
Assume now, that $\left(x_{0}, y_{0}, z_{0}, m\right)=d>1$. Then

$$
\left(\frac{x_{0}}{d}\right)^{2}+\left(\frac{y_{0}}{d}\right)^{2} \equiv\left(\frac{z_{0}}{d}\right)^{2} \bmod \frac{m}{\left(m, d^{2}\right)} \quad \text { and } \quad\left(\frac{x_{0}}{d}, \frac{y_{0}}{d}, \frac{z_{0}}{d}, \frac{m}{\left(m, d^{2}\right)}\right)=1 .
$$

Moreover $\operatorname{ord}_{2} m /\left(m, d^{2}\right) \equiv 0 \bmod 2$. Hence, by the already proved case of the theorem there exist integers x_{1}, y_{1}, z_{1} such that $x_{1}^{2}+y_{1}^{2}=z_{1}^{2}$ and $x_{1}^{2} \equiv\left(\frac{x_{0}}{d}\right)^{2}$, $y_{1}^{2} \equiv\left(\frac{y_{0}}{d}\right)^{2}, z_{1}^{2} \equiv\left(\frac{z_{0}}{d}\right)^{2}\left(\bmod \frac{m}{\left(m, d^{2}\right)}\right)$. It suffices to take

$$
x=d x_{1}, y=d y_{1}, z=d z_{1} .
$$

As observed already by Korec the condition ord $2 m$ even cannot be omitted from the theorem. Indeed, the numbers $m=2^{2 \alpha+1}, x_{0}=y_{0}=2^{\alpha}$, $z_{0}=0$ satisfy (1), but the conditions $x^{2} \equiv x_{0}^{2}, y^{2} \equiv y_{0}^{2}, z^{2} \equiv z_{0}^{2}(\bmod m)$ imply $x^{2}+y^{2} \not \equiv z^{2}(\bmod 2 m)$.

Instytut Matematyczny Polskiej Akademil Nauk
Śniadeckich 8
00-950 Warszawa
Poland
e-mail:
schinzel@plearn.edu.pl

