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GENERATORS OF THE WITT GROUPS
OF ALGEBRAIC INTEGERS

ALFRED CzZOGALA

1. Introduction

For a number field K let Ox be the ring of algebraic integers of K. A
basic result on the Witt ring WOgk of symmetric bilinear forms over the
ring Ok was established in [MH]. The structure of the Witt group WOk, in
terms of arithmetical invariants of K, was determined in [Sh]. Here we state
precisely this description. We find generators of cyclic direct summands in
the decomposition of the group Wk into direct sum of cyclic groups. We
will also describe products of these generators. This completely determines
the structure of the ring W(Og. As an illustration of these results we de-
termine the structure of Witt rings WOy for all quadratic, and some cubic
and some biquadratic fields K. The results of this paper allow us to find
arithmetical conditions for the existence of an isomorphism of Witt rings
WOk — WO (for details see [Cz2]).

2. Basic results on Witt rings of algebraic integers

If K is an algebraic number field, then the extension of scalars yields the
Witt ring homomorphism WOg — WK which is injective and we have the
Milnor-Knebusch exact sequence (see [MH, p. 93, 3.3, 3.4]):

0 = WOx — WK 5 Y WK, — C(K)/C(K)* — 1.
> .
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Here the sum runs over all finite primes of K, whereas K, and C(K)
denote the residue class field of the completion K, of K at p and the ideal
class group of K, respectively. The additive group homomorphism 8§ = dx
is the direct sum of the second residue class homomorphisms of Witt groups
0y WK — Wf(_p. Although the homomorphism J, depends on the choice
of the local uniformizer at p, the kernel ker 9, does not depend on that
choice. Hence the kernel of the homomorphism 0x does not depend on the
choices of local uniformizers.

For this reason we can view the ring WOk as a subring of the Witt
ring of K and we will identify it with the kernel of dx. This gives us the
possibility to use classical methods and tools of the theory of quadratic forms
over global fields (the Hasse-Witt invariant, the signature, the Local-Global
Principle, Hilbert Reciprocity Law, etc.). In this way every element of the
ring WOk can be represented by a diagonal quadratic form (ay,...,a,)
for some » € N and a4,...,a, € K. To simplify notation, we shall use the
same symbol for the nonsingular symmetric bilinear form over K and its
similarity class in the Witt ring WK. We denote by /K the fundamental
ideal of WK consisting of even dimensional forms over K, by /™K the nth
power of /K and we set IO = IK N WOk.

For a number field K, we write r = r(K), ¢ = ¢(K), g = g(K) for the
number of infinite real primes, the number of pairs of infinite complex primes
and the number of dyadic primes of K, respectively.

Let M (W K') denote the nilradical of the ring W K. Then the set 0t (W Ok )
= N(WK)NW Ok is the nilradical of the ring WOk. The group 9 (W Ok)
is a finite abelian group of order 2°**+9~! where t = ¢(K) denotes the 2-rank
of the ideal class group of K in the narrow sense (see [MH, Ch.4, §4]).

If K is totally imaginary (i.e. r = 0), then M(WOk) = IOk and the
dimension—index homomorphism produces the following exact sequence

(1) 0 — 10k — WOxg — Z/2Z — 0.

Therefore the group WOk is a finite abelian group of order 2¢ti+9,
Now assume that the number field K is formally real (i.e. » > 0) and let
o: WK — Z" be total signature homomorphism. Then

N (W(’)K) = WOk Nkero

and o(WOk) is a free abelian group of rank r (cf. [MH, Ch.4, §4]). Then we
have an exact sequence

(2) 0 — N(WOkg) — WOk — Z" — 0

which splits. Hence the group WO is the direct sum of the group 9 (W Ok ))
and of some free abelian group A of rank r.
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In the investigation of the Witt ring WOk the group Kev/ K? plays a key
role, where

Key = {z € K : ordyz = 0 (mod 2) for every finite prime p of K}.

The group Key/ K? can be characterized as the set of values of the discri-
minant of forms belonging to W O . This is the consequence of the following
simple facts from [Sh, Proposition 2.4]:

If ¢ is form over K and a € K, then:

(1) ¢ WOk = discp € Ko /K2,

(2) (a) e WOk <= a€ Kev. )

In [Cz2] we will show that the group Kev/K 2 describes completely the
isomorphism type of the ring WOk.

The group Kev/ K? is an elementary abelian 2-group and can be equipped
with the structure of a linear space over the 2-element field F,. We will use
frequently the same symbol for z € Key and for its canonical image in
Kev/ K?. The 2-rank (the dimension over F;) of the group Kev/K 2 is equal
to r + ¢+ t', where ¢' = t'(K) denotes the 2-rank of ideal class group of K
(cf. [C31]). To construct a set of generators of the group WOk we will use
a suitably chosen basis of the group Kev/ K.

3. Generators of the group M (W0Ok)

In this section we find a decomposition of the group M (W Ok) into direct
sum of cyclic groups and we describe generators of cyclic summands. Observe
that 4 - M(WOk) C IPK NN (WK) = 0, hence the order of every element
of M (W Ok) divides 4.

Let K, denote the set of totally positive elements of K. From [MH,
Lemma 4.6] it follows that the discriminant disc : IK — K/K? induces a
group isomorphism

(3) N(WOK)/ M(WOK)NIPK — Key N K4 /K’

whose inverse sends the square class of a onto the coset of the binary form
(1, —a). The 2-rank of the group Kev N K /K? is equal to c +¢ (cf. [MH,
Ch.4, §4]). If we choose a basis {a1,..., acy4¢} for this group, then the cosets
of the forms (1, —a1),..., (1, —@.4+s) will be generators of cyclic summands
in the decomposition of the quotient group M (WOk)/ N (WOk)NI?K into
direct sum of cyclic groups.

For a prime p of K, let hy : I?’K — {+1} be the p-adic Hasse-Witt
invariant homomorphism. Assume that py,...,p, are all dyadic primes of
K and denote the group {£1}97! by I'x. The map

H:MWOr)NIPK - Tk, H(Q)= (hp,(#)s - hp,.(#))
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is a group isomorphism (see [MH, Lemma 4.5)), so the order of the group
N (WOk)NIK is equal to 2971,
From [Sh, Proposition 2.6] it follows, that there exists an isomorphism

(4)  KeyNKy/Key N Dg(1,1) — 2-N(WOx), @+ 2-(1, —a),

where D (1, 1) denotes the set of elements represented by the form (1, 1).
Therefore, if a € K¢y N K4 is a nonsquare in K, then the binary form
(1, —a) € M(WOk) is an element of order 2 when a € Dg(1, 1), and of
order 4 otherwise.
The Hasse Local-Global Principle and the properties of Hilbert symbols
give a simple description of the group Key N Dk(1, 1) by means of dyadic
Hilbert symbols:

Kevy N Dg(1,1) = {a € Key N Ky & (-1, a), = 1for all dyadic primes p}.
The group Key N K4 /Key N Dg(1, 1) is an elementary abelian 2-group.

The 2-rank of this group we will denoted v = u(K). From the inclusion
2-N(WOk) CM(WOk) N I?K it follows that u < g — 1.

For further consideration we choose a basis {ay,...,ac4¢} of the group
Key N K4 /K? so that the elements ayi1,... ,ac4t belong to Koy N D (1, 1)
(when u < c+t). Then the elements ay,...,a, form a basis of the group

Key N K1 /Key N Dg(1, 1) (when u > 0).
We have the following decomposition of the group 2-91 (W k) into direct
sum of cyclic groups:

(5) 2-M(WOk) = P(2(1, —as)).
i=1

The symbol (¢) denotes the cyclic group generated by the element .

LeMMA 3.1. Let E denote the subgroup of (W Ok) generated by the
forms (1, —ay),...,(1, —ac+:). Then

e+t
E=@P(1 -a))) and ENI’K =2-N(WOk).
=1
Proor. Assume that for some integers k;,... , k.. the form

o= Z ki1, —a;)
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belongs to I?K. Then discp = a1 . af_‘;‘t is a square and so the numbers

ki,..., kst are all even. Therefore ¢ 1s an element of the group 2-M (W Ok).

To complete the proof assume Y it Y ki(1, —a;) = 0. From the above it
follows that k; = 2k}, i = 1,. c+t Since the forms (1, —ay41), -+ s
(1, —ac4+:) are elements of order 2 we have Y i, ki -2(1, —a,) = 0. This

equality and the 1somorphlsm (4) 1mp1y that the numbers ki,..., Kk, areall
even, so the numbers k,...,k, are all divisible by 4. a
Clearly, the forms 2(1, a,), i=1,...,u generate the direct summands

of the group M (WOx)NI?K. Ifu < g — 1 we will show that some suitably
chosen 2-fold Pfister forms form a set of generators of the remaining direct
summands (we write ({a, b)) = (1, a) ® (1, b)).

Denote o; = H(2(1, —a;)) = H({(1, —@i))) € Tk, i = 1,...,u, (when
u > 0). Notice that the set {oy,...,,} is linearly independent over F;.
Indeed, linear dependence would 1mp1y the equa.hty (-1, @i, ...a;)p = 1for
some iy,...,3% € {1,...,u} and every dyadic prime p. Th.ls 1mphes that
a ...a; E DK(l, 1) and contradmts the choice of the elements a4,... ,a,.

When u < g — 1 we complete the set {a;,...,a,} to a basis

{a1,...,00-1}

of the group I'x. The Approxlmatmn Theorem guarantees the existence of
an element f € K such that —f is totally positive and —f is nonsquare
in every dyadic completion of field K. From [OM, 71:19] it follows that
there exist elements dyi1,...,d,—1 € K such that H({(f, d;))) = «a; for
i=u+1,...,9—1and he(({f, d:))) = (= f, —di)q = 1 for every nondyadic
finite prime q.

For a nondyadic finite prime q the Hasse-Witt invariant 4, can be identi-
fied with the second residue class homomorphism 9 (cf. [MH Ch.4, §4]). So
we have 8, (((f, di))) = 0. Moreover, if r > 0, then the total signature homo-
morphlsm vanishes on the form ({f, d;)), because f is totally negative. Hence
((f, d;)) is an element of N (WOk) N I’K forevery i € {u+1,...,9 -1}

Using the above construction we obtain the following decomposition of
the group M (WOk) N I*K:

(8) N(WOg)NIPK = 69(2<1 ~a;)) @ GB (f, di)).

i=u+1

COROLLARY 3.1. If the elements ay,. .. ,Gctt, f, dut1, ... ,dg—y arTe ChO-
sen as above, then

ct+t

m(WOK)—EB(u ~a;)) ® EB ({(f, di)))-

t=u+l
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If w = g — 1, then the last summand in the decomposition does not
occur. In the above decomposition, the generators (1, —ay),...,(1, —a,)
are elements of order 4, and the remaining generators have the order 2.

We will now describe the products of the generators of 01 (WOg) occur-
ring in the above decomposition. To simplify the notation we write ¢; =
(1, —a;), i=1,...,c+tand ¢; = ((f, d;)), i=u+1,...,9— 1. For every
i€{l,...,c+t}, j,ke{u+1,...,9—1}, the elements ;¢;, ¢;¢x belong
to M(WOk)NIPK =0, hence p;¢; = 0 and ¢;¢, = 0. Clearly p;p; = 2¢;
fori=1,...,c+t.

It remains to describe the products ¢;p; fori,5 € {1,...,c+t}, i # . It
is easily seen that the product ¢;p; belongs to the group M (WOk) N I*K.
So it is completely determined by the value of H(p;¢;) € T'k. Hence, if

H(pip;) =[In, - HJ wtl aj, where k;,[; € {0, 1}, then we have ¢;p; =
Zz— 2k; i +ZJ u+ll ¢J'

4. Generators of the group WOk in the nonreal case

When K is a totally imaginary algebraic number field (i.e. r = 0), then
N (WOk) = 10k. The structure of the group W(Ox depends on the level
s = s(K) of K. Thus we will consider 3 cases. We use the notation of the
previous sections.

Case: s = 4. The form (1) is an element of order 8 and there are at least 2
dyadic primes in K (g > 2). In this case —1 is not represented by the form
(1, 1), hence » > 1 and we take a; = —1. We have the group isomorphism
WOk = ((1)) ® WOk /((1)). Since IOg N ((1)) = ((1, 1)), there exists the
group monomorphism IOk /((1, 1)) » WOk /((1)). This monomorphism is
actually an isomorphism, because the orders of both groups coincide (are
equal to 2¢+7+9-3), Therefore we obtain the following decomposition:

c+t
(7) WOk = ((1)) @ P((1, -a:)) @ @ (((f, &)

1=2 i=u41
Case: s =2. In this case the form (1) is an element of order 4 and
—1 € Dgk(1,1). Hence u < ¢+t and we take a.y; = —1. Similarly as
in the previous case we get the following decomposition:

ct+i—~1 g-1
(8) WOk = ()& @ (1, —a))® @ ((f d))-

=1 i=u+41

Case: s = 1. In this case Koy C Dk(1, 1), so u = 0. Thus the group W0k
is an elementary abelian 2-group and in this case we have

c+t

() WOk :(<1))€B@((1 —a;)) ®€B(((f,d>>)
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5. Generators of the group WOk in the real case

In this section we assume that the algebraic number field K is formally
real (i.e. r(K) > 0). Recall that WOk = A ® M(WOk), where A is a free
abelian group of rank r. We will find a basis for the group A. )

Let 001, ...,00, be the all infinite real primes of K and for a € K, let
sign e (a) denote the sign of the element a in the ordering determined by the
real prime oo;. The order of the group Key/Kev N K4 is equal to or—(t=t)
(cf. [Cz1]). Let p =r — (¢t — t'). There exist infinite real primes 00;,...,00,
and elements by, ... ,b, € K.y such that b; is negative at oo; and positive at
ooj forall i€ {2,...,p}, j€{1,... P 1 E

From [Sh, Proposition 3.4] it follows that o(WOk) = o(WK))iff r = p. It
is easy to verify that in this case the one dimensional forms (1), (b2), ..., (br),
form a basis of the group A. Thus we have

COROLLARY 5.1. If the rank of the group Key/Key N K4 15 equal to r
and by, ... ,b, € K¢y are chosen as above, then

WOx = ()0 (#3) @ RWOx)

Now we will assume that p < r. Clearly the forms (1), (b3),...,(b,) are
linearly independent (over Z) elements of the group A. We will show that
this set of form can be completed to a basis of the group A by a set of binary
forms.

LEMMA 5.1. Assume that we have €1,...,¢ € {£1} and vy € Kp for
every dyadic prime p of K. Then there ezists an element g € K and a
nondyadic prime q of K such that

(1) signe,(q) =€ fori=1,...,r,

(2) ¢=v, mod K?p for every dyadic prime p,

(3) ordgg=1,

(4) ord.g =0 for every nondyadic prime t #q.

ProoF. The Approximation Theorem [L, p. 35] yields an element o in K
such that sign. (o) = ¢; for i =1,...,r and aK? = v,K? for every dyadic
prime p. Suppose the principal ideal generated by o has the decomposition

aOx =7-[]o"
pi2
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where J is a fractional ideal coprime with all dyadic primes of K, and ly € Z.
Consider the cycle ¢ = ], p™» such that

1 if pis an infinite real prime
mp = ¢ 2ep(K)+1 if pis a dyadic prime
0 otherwise

where e,(K) denotes the ramification index of p in K.

The class of the ideal J in the generalized ideal class group I(c)/K con-
tains infinitely many prime ideals (c.f. [L, p. 166-167]). Let q be a nondyadic
prime belonging to this class. According to the definition of the generalized
ideal class group we have q = J-yOx for certain v € K such that vy=1
(mod *c). Since v € 1+ 4p for all dyadic primes p, the Hensel Lemma
[L, p. 42] guarantees that v ¢ K2 Taking ¢ = ay, we have ¢ = o mod K2
for every dyadic prime p and

90k = ayOg = 3"7(’)KHPI’ = UIHPI"-
p|2 pl2

This proves (2), (3) and (4). The element + is totally positive, hence
signe. (q) = signe,, (@) = ¢; and (1) is also fulfilled. O

LEMMA 5.2. There ezists an element z € K¢y MK, and a dyadic prime
po such that —z is a nonsquare in K, .

ProoF. If —1 is a nonsquare in a dyadic completion of K, then we take
z=1.

Now assume that —1 is a square in every dyadic completion of K. Let
K, denote the set of elements of K,y N K; which are squares in all dyadic
completions of K, and let § = §(K) denote the 2-rank of the subgroup of
ideal class group generated by classes of all dyadic ideals of K. From [Cz1]
it follows that 2-rank of the group K¢y N K /K, is equal to c+ (t —t') + 4,
and it is nonzero, since £ —¢' > 0. Hence there exists a dyadic prime py and a
z € KeyNK 4 such that 7 is a nonsquare in K, . Then —2z is also a nonsquare
in K.

For further consideration we fix an element e € K.y, a dyadic prime po
of K and an element v € K,,o such that —e € Koy N Ky, e ¢ K2 and
(e,v)p, = —1. O

From Lemma 5.1 it follows that for every i € {p + 1,...,r} there exists
a nondyadic prime g; and an element ¢; € K such that:

(1) signeo,(g:) = —1, signe (¢:) = 1,for j=1,...,r, j # i
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(2) ¢ =vmod K2;

(3) ¢; = 1mod K 2, for every dyadic prime p # po;
(4) ordgq; =1,

(58) ord.q; = 0, for every nondyadic prime t # g;.

LEMMA 5.3. If e, b; and q; are as above, then the forms

(10) <1)7 <b1>, v ’(bp—1>7 <Qp+17 _GQp+1>: e 7<Qr1 _eQr>

form a basts for the free abelian group A.

ProOOF. First we will show that (¢;, —eq;) € WOk, fori=p+1,...,r.
The properties (1) — (5) imply the following equalities of Hilbert symbols:

(qi, —eqi)oo.» =-1,

(gi, —€i)p, = (s €)p, = —1,

(gi, —eqi)e = 1, for every prime t # 004, Po, di-

Thus the Hilbert Reciprocity implies (g;, €)4, = (¢i, —€gi)q, = 1. Therefore
the element e is a local square at q; and we have 9q,((gi, —eq:)) = (G;, —G;) =
0. The elements ¢;, —eq; are r-units modulo square for every nondyadic prime
t # g;, hence 0:({g;, —eg;)) = 0. For every dyadic prime p the fundamental
ideal 1K is equal to 0, so 8,({(gi, —eg;)) = 0. Finally (g;, —eq;) € ker 0.

To simplify notation we will denote the forms (1), (b2), ..., (b,—1),
(9p+1) —€9p+1)s - -+, {qr, —€gr) BY 71, ... , 7, Tespectively. It is easy to verify
that the values of the total signature o on these forms are independent (over
Z) elements of the group Z". Hence the forms 7,,...,7, are independent
elements of the free abelian group A.

Suppose ¢ € WOk and let z; = 0;(p), where o; : WK — Z denotes the

signature homomorphism at co;. Note that z; = 2; (mod 2),fori=1,...,r.
Consider , )
21 — Z; Z1 — 23
¢=<P—Z——2——77i— (21— 5 -)(1).
=2 1=2
For every i € {2,...,p} the discriminant disc(¢) is positive at oo;, because

o;(¢) = 0. Denote y; = 0;(¢), i =1,...,r.

We claim that y; = y; (mod 4), for i = p+ 1,...,r. Contrary to this
suppose that y; — y; = 4k + 2 for some :. Suppose ¢ has the diagonalization
¥ = (w1,...,Wn). Then the difference between the number of 1’s in the
sequence sighe, (w1), ... , Sighe, (W) and the number of 1's in the sequence
signgo, (wy), - .. , i8N, (W) is equal to 2k + 1. Hence

8ignoo, (disc(1))) - signe, (disc(1)) = —1.
This gives a contradiction, since disc(¢)) € Key and |Key/Key N K4 | = 27.

8 — Annales...
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The total signature of the form

CEDEEY y14—yz’m_(yl_ > %)(U-

i=p+1 i=p+1

is equal to 0, hence v, € M (WOk). Therefore ¢ is the sum of a certain
element belonging to M (WOk) and a certain element of the form > Timi,
where z; € Z.

CoOROLLARY 5.2. If the rank of the group K¢y /Key N K, is equal to
p <r ande, b;, ¢; are as above, then

WOk = (1)) o @P1, -b:)) & P (g, —eq:)) & N(WO).
i=2

i=p+1

From the above and from Corollary 3.1 we obtain the following decom-
position of the group WOx into direct sum of cyclic groups:

WOk =((1))& DL, ~b:) & P (g, —eq))e

(11) ctt 9—1i=p+1
o D1, ~ad) e @ (S di))),
i=1 i=u+41

where a;, f,d;, e, b;,¢; are as above and as in Section 3,and if p = r or
u = g—1, then in the decomposition the third or the last summand, respec-
tively, does not occur.

Now we will describe the products of the generators of WO occurring in
the decomposition (11). Similarly as in Section 3, to simplify the notation we
will write p; = (1, —a;), i=1,...,c+t, ¢; = ((fidi)),i=u+1,...,9-1
and moreover ¢; = (1, —b;), i =1,...,p, w; = (g;, —egi), 1=p+1,...,r.

We start with determination of the product ¢;9; = ((-b;, —b;)), for
¢ # 7. It is easy to verify, that

r

o({(=biy b)) = > zko(2(1) - wy),

k=p+1

where 2 = 3(1—3igno, (b:))(1~signco, (b;)). Thus the form 5 = ((=b;, —b;))—
2k Tk(2(1) — wi) belongs to M (WOk) and so

disc(n) = (—€)= % € Koy N K.
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Let disc(n) = []¢+ ok, where [, € {0,1}. Then the form

n=1 ay,

c+t

Th=1— Z l'n.(l, _an>
n=1

is an element of M(WOk) N I?K and it is completely determined by the
value H(m;) € I'x. Therefore, if H(m) = [[,_, a¥ Hm—u+1 aZ», where
Ym, Zm € {0,1}, then

m=1

r ctt
Yii = Y 2uk(l) - Z kak+zln<pn+
k=p41 k—p+1
+ Z 2YmPm + Z ZmPm.
m=u+1

Clearly the product ;¢; is equal to 2¢;.
Now we describe the product ¥;w; = (1, —b;) - (g5, —eq;). Observe that

o(aw;) = o(2) + Y zeo(2(1) —wr),

k=p+1

where z) = 1(1-sign., (b;). The form n=1;w;~2¢;—y_ zx(2(1)—w) belongs
to M(WOk). If disc(n) = IS, ak, then the form gy = n— 3, l.(1, —a,)
belongs to M (WOK)NI?K and is determmed by H(n,). Similarly as in the
previous case, we have

r c+t
Yiw; =21; + Z 2z(1) — Z zkwk+zln§0n+
k=p+1 k—p+1
+ Z 2Ym P + Z ZmBm,
m=u+1

where H(T]]_) = Hm-l aym Hm u+tl 0[

Let 5,5 e {p+1,...,r}. If ¢ # j, then the total signature of the form
T = wiw; — 2w; — 2w; +4(1) is equal to 0. Hence n; € M(WOk)NI’K and
we have

u g-1
Wiw;j = —4(1> + 2w; + 2wj + Z 2YmPm + Z 2m¢ma
m=1 m=u+1

8*
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where the coefficients y,,, 2z € {0, 1} are described by the equality H (m) =
-1
[Ty 0z - | | R
If i = j, then analogously

u g-1
wiw; = 4(1) + Z 2me0m + Z zm¢m’
m=1

m=u+1

where the coefficients ym,2, € {0,1} are determined by the value of
H(wiwi - 1<1>).

The products 9;¢;, wip; belong to M(WOx) N I?K and are determined
by the values of H(1;p;) and H (w;¢;), respectively, similarly as above. The
products 1;¢;,w;¢; belong to N(WOk) N IPK = 0, so they are all equal
to 0.

6. Quadratic number fields

In this section we determine the structure of the Witt ring WOk in the
case when K is a quadratic number field. A similar description has been
found in [M].

Assume that K = Q(y/m), where m is a square-free integer, and let
P1,-..,pr be all pairwise distinct prime divisors of the discriminant of K.
We agree that p; = 2 whenever m = 3 (mod 4). The Gauss Genus Theorem
states that ¢t = 7 — 1. It is easy to see that the sets

{-1,p1,...,p:}, whenm < 0 and m # —1,
{Pl,---,Pt}, whenm > 0

form a basis of the group K¢y N K;/K?. When K = Q(v/=1), the set {2}
forms a basis of the group K, N K, /K2

First we consider the case when K is imaginary quadratic field (i.e. m < 0).
The level of the field K is determined as follows:

1 when m = -1,
s=4¢ 2 when m # 1(mod 8) and m # —1,
4 when m = 1{mod 8).

If m= -1, (i.e. K = Q(v/~1)), then g = 1 and (9) gives
(12) WOk = ((1)) ® ((1, -2)) = (2/2Z) & (Z/22).

The group WOk is an elementary abelian 2-group and the product (1, —2)-
(1, —2) is equal to 2(1, —2) = 0.
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Let m # —1 and m # 1 (mod 8). In this case the field K has one dyadic
prime and from (8) we obtain the decomposition

(13) WOk = (1)) ® DL, —pi)) = (2/42) & (2/2Z)"

i=1

The products (1, p;) - (1, p;) vanish, because M (WOg) N I*K = 0.
Now assume that m = 1 (mod 8). Then there are 2 dyadic primes p;, p3
in the field K and —1 ¢ Dk(1, 1). Hence u = 1. Take

, { Pi when p; = 1(mod 4),
i —pi when p; = 3(mod 4).

The set {~1,p,,...,p.} forms a basis of the group K N K;/K? and
pi,...,p € Dg(1, 1). From (7) we have

(19) WOk = ()o@, ) = (2/52)® (2/22)"

Because H({(-p}, —p}))) = (P}, P})p, = 1, we have
<11 —Pg) : (17 _p;> =0

forall,j € {1,...,t}.

Now we consider the case when K is a real quadratic field (i.e. m > 0).
Then r = 2, i.e. the field K has 2 real infinite primes ooy, 00,. The 2-rank
of the group Key/Key N K is equal

_{1 when -1¢ N(K),
=12 when -1¢€ N(K),

where N(K) denotes the norm group of the extension K/Q (see [Cz1]). The
condition —1 € N(K) can be replaced by the conditions p; = 1,2 (mod 4)
fori=1,...,t+1.

Assume that —1 € N(K). Then there exists an element b € K,y such that
b is positive at co; and negative at co; (cf. [Cz1]).

If m#1 (mod 8), then g =1 and (11) gives

t

(15) WOk = (1)@ (1, -b) ® D1, -p)) 2 2° & (Z/22)".

=1
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The products (1, —p;) - (1, —p;), (1, —b) - (1, —p;) are equal to 0, because in
this case N (WOk) N I?K is trivial. Clearly (1, —b) - (1, —b) = 2(1, —b).

If m =1 (mod 8), then p; = 1 (mod 4) for every i € {1,...,t+1}, 50
u = 0. In this case there are 2 dyadic primes p;,p; in K. Hence from (11)
we obtain

(16) WOk =((1)® (L, -b) & G_}((l, —p)) © (((/; d)))

~ 72 @ (Z/2Z),

Here f, d are any elements of K such that — f is totally positive and (= f,—d)y,
= —1. Observe that H(((—pi, —p;))) = (pi, p;)p, = 1 and H({(=b, —p;))) =
(b, p;j)p, = 1. Thus we have (1, —p;)- (1, —p;) = 0 and (1, =b)-(1, —p;) = 0.
The products of the elements (1, —b), (1, —p;) by the form ((f, d)) are equal
to 0, because they belong to M(WOk) N I*K = 0. Similarly as above we
have (1, —b) - (1, —b) = 2(1, -b).

Now assume that —1 ¢ N(K). Take

_ { -1 when m # 7(mod 8),
R when m = 7(mod 8).

It is easy to see that —e € K¢y N K, and e is a local nonsquare at every
dyadic prime of K. From Corollary 5.2 it follows that there exists an element
g € K such that

(17) WOk = ((1)) @ ((¢, —eq)) ® N (W O).
If m#1 (mod 8), then g =1 and from (11) it follows that

14
(18) WOk = (1))@ (g, —eq)) © (1, —p») = 2* @ (2/2Z)".
i=1
In this case we have 91 (WOk) N I?K = 0, hence the products (g, —egq) -
(1, —pi) and (1, —p;) - (1, —p;) are equal to 0. It is easy to verify that
(9, —eq) - (g, —eq) = 4(1).

It remains to consider the case when —1 ¢ N(K) and m = 1 (mod 8).
In this case there exists a prime number dividing m, which is congruent to
3 modulo 4. We can assume that p; = 3 (mod 4). The field K contains 2
dyadic prime ideals p;, p;. Clearly (-1, P1)p, = —1, hence p; does not belong
to Dg(1,1). Thus » = 1 and (1, —p;) is the element of order 4 of the the
group WOg. Take p| = p; and for i € {2,...,t},

- { Di when p; =1 (mod 4),
U pps when p; =3 (mod 4).
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Then theset {p},...,p,} is a basis of the group KoyNK,/K? and p},... ,p, €
Dg(1, 1). From (11) we have

WOk =((1))® (g, 9) & é((l, ~pi))
~7POZL/ALS (Z/zz;t-l.
Observe that for all i,j € {2, ... ,t} we have
H({(=p1, =Pi))) = (p1,90)p, = 1, H({(=P}» —=P}))) = (P}, Pj)p, = 1,

H(<qa q) ' <1a “]’2)) = (_11p2)p1 = 1.

Hence the products (1, —p})-(1, —pi), (1, —p})-(1, —p%), (g, @)+ (1, —p}) are
all equal to 0. Clearly (g, ¢)-(gq, ¢) = 4(1) and (1, —p})-(1, —p}) = 2(1, —p}).

The results of this section allow us to find arithmetical conditions for
the existence of an isomorphism of Witt rings WOx — WOy for quadratic
number fields K and L. An isomorphism ¥ : WOg — WO, is called a
strong isomorphism of Witt rings, if if preserves the dimensions of aniso-
tropic forms.

COROLLARY 6.1. Let K, L be imaginary quadratic number fields. There
exists a strong isomorphism Witt rings WOg — WOy, if and only if the
following two conditions are satisfied:

(1)  s(K)=s(L),

(2) UK)=¢(L),

COROLLARY 6.2. Let K, L be real quadratic number fields. There ezi-
sts a strong isomorphism Witt rings WOg — WOy if and only if the
following three conditions are satisfied:

(1) g(K)=g(L),

(2)  HK)=t(L),

(3) -1eN(K) < -1€N(L).

7. Cubic and biquadratic number fields

As we have seen in the preceding sections, to determine the structure of
the Witt ring WOk we need a suitable basis of the group K,,/K?. Unfor-
tunately, no method of finding a basis of the group K.,/K? in the general
case is known. On the other hand in some simple cases it is possible to find a
basis. In this section we will determine the structure of the Witt rings WOg
in some pure cubic number fields and some biquadratic number fields.
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In the examples of cubic fields we only complete the results of the pa-
per [Sh].

EXAMPLE 7.1. Let K = Q(v/3). Write w = v/3. The number ¢ = w? — 2
is the positive fundamental unit of K, so ¢ € K¢y N K. From [Sh] it follows
that € ¢ Dk(1, 1). Hence the ideal class group in the narrow sense is trivial
(i.e. t = 0). The field K has one real prime (r = 1), one pair of complex
primes (c = 1) and two dyadic primes. Therefore from (11) we obtain

WOk =((1))® (1, -¢)) = Z® Z/4Z
Clearly the product (1, —¢) - (1, —¢) is equal to 2(1, —¢).

Similar results can be obtained for the cubic fields Q(v/5) and Q(v/7) (for
details see [Sh]).

Now we determine the structure WOk for some biquadratic number
fields.

EXAMPLE 7.2. Let p be a prime number congruent to 3 mod 8. Let
K = Q(v/~2,1/2p). The field K is totally imaginary, so ¢ = 2. The Theorem
20.3 in [CH] states that the class number of K is odd, hence ¢ = 0. Observe
that the local degree [Q3(v/—2,/2p) : Q;] is equal to 4 and the prime
number 2 ramifies in K. Thus there is just one dyadic prime in K and
2 € Key. Therefore the set {—1,2} forms a basis of Ky /Ii' 2, It is easy to
verify that the level of K is equal to 2. From (8) we have

WOk =((1))® (1, -2)) X Z/4Z® Z/2Z.
The product (1, —2) - (1, —2) is equal to 0.
From the above example and (13) we obtain

COROLLARY 7.1. Let p; be a prime congruent to 1 mod 4 and p,
be a prime congruent to 3 mod 8. Then for the fields K = Q(/=p;)
and L = Q(v-2,4/2p;) the Witt rings WOk and WOy, are strongly
isomorphic.

ExaMPLE 7.3. Let p be a prime congruent to 3 mod 8 and let Kk =
Q(v/-1,/p). From [CH, Theorem 20.3] it follows that the class number of
K is odd (i.e. t=0). It is easy to verify that the field K has a unique dyadic
prime, s(K) =1 and 2,p € K,y. Therefore (9) gives the decomposition

WOk = ((1))® ((1, -2)) ® ((1, —-p)) = (2/22Z).
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Moreover, all the products of 2-dimensional generators vanish, because
N (WOK) NI2K is trivial.
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