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Abstract. A reciprocity equivalence between two number fields is a Hilbert 
symbol preserving pair of maps (t,T), in which t is a group isomorphism 
between the global square class groups of the two fields, and T is a bijection 
between the sets of primes. For two reciprocity equivalent number fields, 
it is proved that: Theorem A: The Dirichlet density of the wild set of any 
reciprocity equivalence is zero. Theorem B: There exists a reciprocity equi­
valence whose wild set is infinite. Theorem C: Given (t, T), the bijection T 
determines the global square class isomorphism t. 

1. Introduction 

This paper contains the results of the dissertation [Pa]. I thank Robert 
Perlis and P. E. Conner for their insights and guidance. 

In [PSCL], Perlis, Szymiczek, Conner, and Litherland investigated Witt 
rings of algebraic number fields. They proved that two number fields K and L 
have isomorphic Witt rings if and only if the fields are reciprocity equivalent, 
which is defined as follows: 

K and L are reciprocity equivalent when there is a bijection 

T :QK QL 

between the set QK of primes of K and the set QL of primes of L, and a 
group isomorphism 

t: K*/K*2 -* L*/L*2 

of global square classes such that Hilbert symbols are preserved; that is 

(O,6)P = {ta,tb)Tp 
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for every P in QK and a, 6 in K*/K*2. We call the pair of maps (t, T) a 
reciprocity equivalence. 

Let P denote a finite prime of K. When (t,T) preserves P-orders, i.e. 
when 

ordp(a) = ord,Tp(ta) (mod 2) 

for each a in K*/K*\ then we say that (t, T) is tame at P. Otherwise (t, T) is 
wild at P. The wild set of the reciprocity equivalence (t, T) is the collection 
of all finite primes P where (t, T) is wild. If the wild set is empty, we say 
that the reciprocity equivalence (t, T) is tame. 

2. Summary of P-S-C-L 

This section contains a summary of those results from the paper [P-S-C-L] 
that will be used in this paper. Let P be a prime, finite or infinite, of the 
number field K, and let Kp denote the completion of K at P. Let (t, T) be 
a reciprocity equivalence from K to L. The following is Lemma 4, parts a 
and b, of [P-S-C-L]. For the purposes of this paper, we call it Lemma 1. 

L E M M A 1. 

1. There are local symbol-preserving isomorphisms 

tp '. Kp/Kp2 —t LJ'P/L'YP 

for P € QK making the following diagram commute: 

K*/K*2 • Kp/Kp2 

' l 1*' 
L*JL*2 y Lq^p/L/^p 

2. The map T sends real primes to real primes, complex primes to 
complex primes, dyadic primes to dyadic primes, and finite nondyadic 
primes to finite nondyadic primes. 

Let 5 be a finite set of primes of K. Then S is said to be sufficiently 
large when S contains all real and all dyadic primes of K and when the ring 
of 5-integers 

Os = {x G K I ordP(x) > 0 for all primes P € QK \ S} 

has odd class number. If S already contains the real and dyadic primes, then 
S is sufficiently large if and only if S also contains a set of generators of the 
Sylow 2-subgroup of the ideal class group of K. 
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Let Us be the group of units of Os- That is, 

Us = {x 6 K I ordp{x) = 0 for all primes P G QK \ S}. 

By definition, an S-equivalence from K to L consists of: 
1. A bijection T from a sufficiently large set 5 of primes of K to a sufficiently 

large set TS of primes of L. 
2. A group isomorphism 

ts • Us/Ul -* UTS/U2

TS. 

3. For each prime P of S a symbol-preserving isomorphism 

tp '. Kp/Kp^ —^ Lrpp/L^pp. 

4. A commutative diagram 

Us/Ul -^U l[KP/Kp2 

ts 

aiag » ^ ^ 
UTS/UTS > [l^Tp/^TP-

PeS 

Our second lemma is Lemma 5 from [P-S-C-L]. 

L E M M A 2. Let S be a sufficiently large set of primes of K. Then the 
map 

Us/Ul ^ I] KPIRP 
PeS 

is infective. 

We close this section by quoting two results from [P-S-C-L]. The first is 
[P-S-C-L] Theorem 2, which we relabel Theorem 1: 

T H E O R E M 1. An S-equivalence from K to L can be extended to a 
reciprocity equivalence that is tame outside of S. 

The next result is taken from Corollary 3 of [P-S-C-L], restated in terms 
appropriate for this paper: 

11* 



164 Thomas C. Palfrey 

C O R O L L A R Y . Let (t, T) be a reciprocity equivalence between two num­
ber fields K and L with at most a finite wild set W. Let S be a sufficiently 
large set of primes of K containing W. IfTS is also sufficiently large, 
then (t,T) restricted to Us/Us is an S-equivalence. 

3. Main Lemma 

Let F be an algebraic number field and let M be a set of primes of F. 
The terminology almost all means 'with the possible exception of a set 

of Dirichlet density O'. Define 

G(M) = {xe F*/F*2 such that x = 1 in FP/FP

2 for almost all P in M } . 

M A I N L E M M A . IfG(M) is infinite, then the Dirichlet density of M is 
zero. 

P R O O F . G(M) is a vector-space over the field F2 of order 2. Being infi­
nite, G(M) has infinite dimension over F2. Hence, for any natural number 
k there are F2-linearly independent elements x\, x2,..., Xk in G(M). Set 
Ek — F(v/xT,y/x~2,...,y/xk), where Xi is any representative of Xi. Then 
Ek has degree [Ek : F] — 2k over F. Let Dk be the set of finite primes of 
F that split completely in Ek, and let A* denote the set of all primes P of 
F which ramify in Ek. 

We assert that M is almost contained in Dk U A^. 
For k fixed and for each i in the range 1 ̂  i $C k, let Si be the set of all 

primes P in M for which Xi is not a square in Fp. By definition of G(M), 
each set Si has density 0. And A f c is also finite. Thus 

k 

S[k] = ( ( J Si) U (A f c) 
i = 1 

has density 0. Let P be a finite prime in M \ S[k] and let Q be a prime of 
Ek that lies over P. Since Xi is a square in Fp for 1 ̂  i ^ k, the completion 

(£jt)<3 = FP(y/xi,y/x2~,..., y/xk) = Fp. 

Hence P splits completely in Ek] so P is contained in Dk. Since each prime 
of M outside of S[k] lies in Dk, it follows that M is contained in the union 
of Dk with the set S[k], By Cebotarev's Density Theorem, the density of Dk 
is [Ek : F ] _ 1 = 2 _ f e . Since the set S[k] has density 0, the set M is a subset 
of a set of density 2~k for every natural number k. It follows that M has 
Dirichlet density 0, proving the lemma. 
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4. Theorems A , B , C 

This section contains the proofs of the three theorems mentioned in the 
abstract. 

L E M M A 3. Each element x in K* is a local square at every wild prime 
of (t, T) with the exception of at most finitely many wild primes. 

P R O O F . Suppose not. Then, since a; is locally a unit at all but finitely 
many primes, there is an infinite set C of finite nondyadic wild primes of 
K such that x is locally a non-square unit at every prime in C. Applying 
the square class map t then shows that t(x) is locally the square class of 
a local prime element at TP for an infinite set of primes TP of L. This is 
impossible, proving the lemma. 

T H E O R E M A . If (t, T) is a reciprocity equivalence from K to L, then 
the density of its wild set is zero. 

P R O O F . Let M be the wild set of {t,T). 
We assert that G(M) is equal to the infinite square class group K*/K*2. 
The inclusion G{M) C K*/K*2 is clear. Conversely, take x in K*/K*2 

and let z be an element of x. By Lemma 3, x is a local square at almost 
every element of M. Thus x lies in G(M), proving the assertion that G(M) = 
K*/K*2. Hence G(M) is infinite and so by the Main Lemma, M has density 
zero, proving Theorem A. 

Let A be an abelian multiplicative group. Recall that the rank of A is the 
minimal size of a set of generators of A. If no finite set of elements generates 
A, then the rank of A is oo. 

R E M A R K . By the Dirichlet 5-unit theorem, if S is a finite set of primes 
of K containing all infinite primes, then Us is finitely generated (in fact, Us 
has rank |5| - 1). It follows that Us/Us is also finitely generated. 

Let P be a finite nondyadic prime of a number field K, let u be a nonsqu-
are unit of the ring of local integers of Kp, and let ir be a local uniformizing 
parameter of P. Then we have the following values for Hilbert symbols: 

(U, U)P = 1, (7T, U)p = -1, (U7T, u)P = -1 . 

Moreover (n, w)p = 1 if and only if -1 is a square in Kp/Kp2. 

L E M M A 4. Let S be a sufficiently large set of primes of a number 
field K. Then there is a prime P' outside of S and a a self-equivalence 
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{t', T') from US'/U% onto US'/U2

S, where S' = 5 U {P'} and where (t', T') 
is defined as follows: 
1. t' is the identity map on Us'/Ug,. 
2. T' is the identity map on S'. 
3. For every prime P in S the local map t'P of (t', T') is the identity on 

KP/K*P

2. 
4. The local map tP, : KP,/KP

2 -> KP,/K*P

2 is defined by tP,(l) = 1, 
tp'(u') = U'K', tp'(n') = K' and tpi(u'ir') = u' where u' denotes uP< and 
K' denotes Kp>. 

P R O O F . By Dirichlet's S-unit theorem, there exist ai ,a 2 , - - - ,an in K 
which generate Us/Ul- Put a0 = -1 and let Ls denote the field 

K (\/a0) V^i) ••• i \An) • 

Infinitely many primes of K split completely in Ls', choose P' to be one 
of these primes that is finite and nondyadic. Thus aj is a square at P' for 
0 ^ i < n. Let S' = S U {P'} and let (t', T') be as in the statement of this 
claim. Then the following diagram commutes: 

U*/U% Y[K*P/K? 
PeS-

i n 
•*• +PeS' 

diag _ ^ ^ 

PeS' 

It remains to check that Hilbert symbols are preserved. This is automatic 
for all P e S since the local map is the identity, so it remains to check that 
the local map at P' preserves Hilbert symbols. Since a 0 = -1 is a square in 
KP,/KP

2, we have the following Hilbert symbol equalities: 
(u', u') p. = (U',U')P,(U',K')2

P,(K',K')P. = (U'K',U'K')P, 
and (u', K')pi = (u',K')PI(K',K')PI = (U'K',K')PI. 
Prom the two equalities above and the definition of tp, we see that ip-
preserves local Hilbert symbols. Finally, since S' is sufficiently large, (t', T') 
is an 5'-equivalence, proving Lemma 4. 

L E M M A 5. Let (t,T) be a reciprocity equivalence from the number field 
K to the number field L with a finite wild set W comprised ofn elements 
(where n can be zero). Suppose that S and TS are sufficiently large sets 
of primes of K and L, respectively, and suppose that S contains W. Then 
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there exists a prime P' of K outside of S, a set of primes S' = S U {P'} 
and an S'-equivalence (t', T') from Us'/U% onto UTS'/U^s, satisfying the 
following properties: 

1. (t',T') has exactly n+1 wild primes; 
2. (t', T') restricted to Us/U% is precisely (t,T) restricted to Us/Ug. 

P R O O F . By the Corollary to Theorem 1, (t, T) restricted to Us/Us is an 
S-equivalence onto UTS/ U^S. By Lemma 4 applied to the field L, there 
exists a prime P' of K outside of S such that, for S' = S U {P'} (and 
hence TS' — TS U {TP1}), there exists an TS'- self-equivalence (t', T') 
from UTS'/U^S, onto UTS'/U^S, which satisfies properties 1, 2, 3, and 4 of 
Lemma 4 (with the field L in place of K.) 

Let (t", T") denote the composition (t' o t, T' o T) of the given reciprocity 
equivalence (t, T) from K to L with the TS'-self-equivalence we just con­
structed. Then (t",T") is an 5'-equivalence from U^/Ug, onto UTS'/U^S, 
with exactly n + 1 wild primes. The reader can easily see that property 2 
holds under this construction. This proves Lemma 5. 

Lemma 5 contains the main ingredients needed for constructing a recipro­
city equivalence with an infinite wild set. However, there are some necessary 
technical details which are handled in the following lemma. 

L E M M A 6. Let (t,T) be a reciprocity equivalence from K to L with 
a finite wild set W(t,T). Let Pi,P2>P3, • • • denote an ordering of the 
rational primes numbers. For every natural number n, let An denote 
the set of all prime ideals in K lying over a rational prime pj with 
j ^ n. Similarly, let Bn denote the set of all prime ideals in L lying 
over a rational prime pj with j ^ n. We asert: 

a) . There exists a sufficiently large set S\ containing A\, the wild set 
of (t,T), and containing at least one wild prime. There also exists an 
Si-equivalence (h,Ti) for which Ti(Si) D B\. 

b) . Given a natural number n and given a sufficiently large set Sn con­
taining S\ and given an Sn-equivalence (tn,Tn) that restricts to (ti,Ti), 
and given that the wild set of (tn,Tn) contains at least n primes, then 
there is a set S„+i containing Sn and an Sn+i-equivalence ( t n + i , T „ + i ) 
which restricts to (tn,Tn) and whose wild set contains at least n + 1 
primes, with Sn+i D An+1 and T n + 1 ( S n + 1 ) D Bn+X. 

P R O O F . Let C be a finite set of primes which generates the Sylow 2-sub-
group of the ideal class group of K. Define So, a set of primes of K, to 
be the union of all infinite primes, dyadic primes, and the set C. Similarly 
define SQ, a set of primes of L, to be the union of all infinite primes, dyadic 
primes and a set D of generators of the Sylow 2-subgroup of the ideal class 
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group of L. Clearly any finite set of primes containing either So or So is 
sufficiently large. Let S{ = 5 0 U r _ 1 (5 0 U B{) U W(t, T) U By Lemma 
5 there exists a prime Po of K outside of S[, a set Si = S[ U {Po} and an 
Si-equivalence (h,Ti) from UsJU^ onto UTSJU^SJ for which P 0 is wild 
and which restricts to (t,T). Thus, the wild set W(ti,Ti) contains at least 
one wild prime. This proves part a). 

For b), we first extend the given S„-equivalence (tn,Tn) to a reciprocity 
equivalence (t'n,Tn), by Theorem 1. In fact, this extension (t'n,Tn) is tame 
outside Sn although that is not needed here. Let S'n+1 = Sn U An+i U 
T ' ~ 1 ( B n + i ) . By Lemma 5 there exists a prime Pn+i of K outside of S'n+1 

and an extension of the given 5„-equivalence (tn, Tn) to an 5n+i-equivalence 
( t n + i , T n + i ) where 5 n + 1 = S'n+i U {P„+i} , for which P n + 1 is wild. Thus the 
wild set W(tn+i,Tn+i) contains at least n + 1 primes. This proves b) and 
Lemma 6. 

This brings us to 

T H E O R E M B. If K is reciprocity equivalent to L, then there exists a 
reciprocity equivalence between them with an infinite wild set. 

P R O O F . Recall that Q # denotes the collection of all primes (finite, dyadic, 
infinite) of the field K and QL denotes the set of all primes of L. Let (t, T) 
be a reciprocity equivalence from K to L. If the wild set W(t, T) is infinite, 
there is nothing to prove. So assume the wild set is finite. By Lemma 6, 
there is a sequence of sufficiently large sets 

Si C 5 2 C • • • C Sn C • • • 

and a corresponding sequence of 5n-equivalences (tn,Tn), in which the 
(n + l)st extends the nth., and for which the wild set W(tn,Tn) has at 
least n primes. Then the union 

since S„ contains the set An defined in Lemma 6, and similarly 

U ~ iTn(Sn) = QL. 

By compatibility, the bijections T n's canonically induce a bijection T* from 
QK to QL. Moreover, 

W?=iUsJUl = K*/K*\ 
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and therefore the compatible group isomorphisms tn canonically induce a 
group isomorphism i* from K*/K*2 to L*/L*2. Then the pair (i*,T.) pre­
serves Hilbert symbols, since each pair (tn,Tn) does, and the wild set of 
(£*,T») exceeds n for every natural number n. Thus (£»,T*) is the desired 
reciprocity equivalence with an infinite wild set, proving Theorem B. 

Having proved Theorems A and B, we turn our attention to the following 
question: Given a reciprocity equivalence (t,T), to what extent does either 
of the two maps determine the other? In [P-S-C-L], Lemma 4, part f, it is 
proved that the square class isomorphism t determines T at the non-complex 
primes. For use below, we cite a very special case. We refer to a reciprocity 
equivalence from a field K to itself as a self-equivalence. 

L E M M A 7. Let (t,T) be a self-equivalence on K. Ift = id, then T = id 
except possibly at the complex primes. 

It should be observed that, given a reciprocity equivalence (£, T), one 
can change T by arbitrarily permuting the complex primes, yielding a new 
bijection T' for which (t, T') is another reciprocity equivalence. This settles 
the question above in one direction. We now consider the question: Does T 
determine i? The answer is given in Theorem C, below. The proof will take 
some preparation; the key step involves the sets G(M) of the Main Lemma, 
in section 3. 

L E M M A 8. Let (t,T) be a self-equivalence on K, and let TJ be the ho-
momorphism from K*/K*2 to K*/K*2 sending x to t(x)/(x). Fix an 
element y of K*/K*2. Then there is a finite set, S(y), of primes so that 
for any tame prime P £ S(y) with TP = P, then n(y) = 1 locally in 
KP/K*P

2. 

P R O O F . Let y € K*/K*2, and y e y. We define S(y) to be the set of all 
infinite primes, dyadic primes, and primes P for which ordp(y) ^ 0. Now 
suppose that P is a tame prime outside of S(y) for which TP = P. Let up 
be a local non-square unit at P. Then tp(up) = u?p = up, by tameness. 
But locally at P the class y is either a local square or the class of up at P. 
So r](y) = tp(y)/y — 1 locally at P, proving Lemma 8. 

L E M M A 9. Let (t,T) be a self-equivalence on K and let n be as before. 
Suppose that the image of n is a finite set. Then TP = P for every 
prime P of K outside of a finite exceptional set. 

P R O O F . Let {xi, x2,..., xn} denote the image of TJ. The set of all dyadic 
primes, infinite primes, and all primes P for which ordrp(xi) ^ 0 (mod 2) 
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for some index i is a finite set. Take P outside this finite set. We claim that 
TP = P ; we argue by contradiction. If TP ^ P, then by approximation, 
there exist global square classes a, b such that a is a local square at TP and a 
local prime element at P , while b is a local non-square unit at P and a local 
square at TP. Write 77(a) = Xj and 77(6) = xk. Then we compute Hilbert 
symbols as follows: 

- 1 = ( a , 6 ) P = {tp(a),tp(l))TP = (xja,xkl)TP = 

= {a,b)Tp{xj,b)Tp(a,xk)Tp(xj,xk)TP = 1 

since a, b are local squares at TP and Xj and xk are locally the square classes 
of local units at the non-dyadic prime TP. This contradiction proves that 
TP = P, proving the lemma. 

L E M M A 10. Let (t,T) be a self-equivalence on K and TJ be as before. 
If the image of TJ is finite, then t = id and T = id except possibly at the 
complex primes of K. 

P R O O F . We will show that t = id; then T ( P ) = P for non-complex P 
follows immediately from Lemma 7. To show that t = id we will show that 
the image of TJ is 1. We begin by partitioning the set of primes of K into 
three disjoint subsets A, B and C. Let A be the set of all dyadic primes, 
infinite primes, and all tame primes P of (t, T) such that TP ^ P. The set 
A is finite by Lemma 9. Let B be the set of all nondyadic tame primes P of 
(t, T) such that TP — P ; and let C be the set of all nondyadic wild primes 
of (t, T). The subsets B and C can be infinite. Let x e K*/K*2. By Lemma 
8, TJ(X) = 1 locally at P for every prime P in B outside a finite exceptional 
set. By Lemma 3, rj(x) = 1 locally at P for every prime P of C outside of 
a finite exceptional set. Thus rj(x) is a local square at P for every prime P 
of K outside of a finite set, and so by the Global Square Theorem, rj(x) — 1 
in K*/K*2. Hence t = id; whence T — id except possibly at the complex 
primes. 

Recall that, for a set M of primes of K, then G(M) is the set of all global 
square classes that are local squares at P for almost all P in M. 

L E M M A 11. Let (t,T) be a self-equivalence on K and let M be the set 
of primes P of K such that TP — P. Then rj(x) e G(M) for every 
x e K*/K*2. 

PROOF: Let x be a fixed element of K*/K*2 and let A (respectively B) 
be the set of all tame (respectively wild) primes P of (t, T) contained in M 
such that rj(x) ^ 1 in Kp/Kp2. By Lemma 8, the density of A is zero. 
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Since the wild set has density 0 by Theorem A, the subset B has density 
zero. Therefore the density of A U B is zero. Hence TJ(X) is a local square 
at P for every P £ M outside A U B, proving the lemma. 

COROLLARY. Let (t,T) be a self-equivalence on K and M be the set of 
primes P of K such that TP = P. If the density of M is bigger than 
zero, then t — id and T = id except possibly at the complex primes of 
K. 

P R O O F . Suppose that t / id or T ^ id except possibly at the complex 
primes of K. By Lemma 10 the image of rj is infinite. It follows from Lemma 
11 that G(M) is infinite, and hence, by the Main Lemma, the density of M 
is zero, contrary to our hypothesis. This establishes the corollary. 

T H E O R E M C . Let (£i,Ti) and (£ 2,T 2) be reciprocity equivalences from 
K to L. 

1. If tx = t<i, then T\ = T 2 except possibly at the complex primes 
of K. 

2. Let M be a set of primes of K of positive density. If T\P = T 2 P 
for every prime P in M, then t\ = £2 and T\ = T 2 except possibly at 
the complex primes of K. 

P R O O F . Note that (t^hjT^Ti) is a self-equivalence on K. If ti = t%, 
then t^ti = id, and so part 1 follows from Lemma 7. 

IfTiP = T 2 F for every prime F contained in M , then r 2

_ 1 T i P = Pfor 
P e M. By the Corollary to Lemma 11, t^ty = id and r 2

_ 1 T i = id except 
possibly at the complex primes of K, and 2 follows, proving the theorem. 

COROLLARY. Let (t,T) be a reciprocity equivalence from K to L. Fix 
two distinct noncomplex primes PQ,QO of K. Define a new map Ti on 
primes by TAP) = T(P) for P not in {P0,Qo}, T^PQ) = T(Q 0) and 
T\(Qo) = T(Po)- Then for any square class map t\, the pair {t\,T\) is 
not a reciprocity equivalence. 

P R O O F . Suppose (ti,Ti) is a reciprocity equivalence. The complement 
of the set {Po,Qo} in the set of all primes of K has density 1. Hence, by 
Theorem C, T = Ti at the non-complex primes, contrary to the definition 
of Ti, proving the corollary. 
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