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T H E B O R E L F O R M U L A FOR 

INTEGRABLE DISTRIBUTIONS 

U R S Z U L A S Z T A B A 

Abstract . The purpose of this paper is to give a new proof of the Borel 
formula for the convolution product of integrable distributions. 

Let / and g be in L 1 ' (R n ) . Put h(x) = J f(x - y)g{y)dy. The function 
R" 

h is called the convolution product of / and g. The function Ff, Tf{a) = 
J* etxc f(x)dx, where xa = x\a\ + ••• + xnan is said to be the Fourier 
transform of /. 

T H E O R E M . // / and g are in £ 1 ( R N ) , then the following Borel formula 

(1) r(f*9)(°) = rf(<r)?9(<r) 
holds. 

In this note we present a natural proof of (1) when / and g are any in­
tegrable distributions. We recall now a definition of integrable distributions. 
Let B denote the set of smooth functions <p defined in R N such that its all 
derivatives ^r<f, a € N " are bounded. 

D E F I N I T I O N 1. We say the a sequence (ipv), v € N , <pu € B converges to 
the zero in the space B if it satisfies the following two conditions: 

(a) there exist positive real numbers Aa such that 

law 
dx' ;<Px(x) < Aa for x e R n and a e N n , 

' 0 W 
the sequence yp^Vvj uniformly converges to the zero 

on every compact set K £ Rn for a e Nn. 
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D E F I N I T I O N 2. A linear continuous form A with respect to convergence 
over B is said to be integrable distribution. The vector space of all integrable 
distributions will be denoted by D'L1. 

We know that every integrable distribution A can be written as follows 

(2) A ( V ) = J2 i - l ) M f f*i*)j£Z<Pi*)** for ^ B , 
\aKm Rn 

where fa e Ll([3], p. 201). 
Note that for / and g belonging to L1 we have 

J(f*9) {x)ip{x)dx = J j f{x)g{y)(p{x + y)dxdy. 
R B R» R B 

This equality we can write in the following form 

(3) j {f*g){xMx)dx={fx®gy)[<p(x + y)l 
R» 

where f®g denotes the tensor product of / and g ([3], p. 106-7). Assume now 
that S and T are in D'Ll and tp€ B, then the symbol (Sx <8> Ty)[<p(x + y)] is 
sensible for <p € B. The equality (3) suggest us how to define the convolution 
product S*T ([3], p. 204). Namely we should take 

(4) {S*T)(<p) = (Sx®Ty)[(<p(x + y))]. 

By virtue of (2) we have 
(5) 

{S*T)(<p) = £ £ (-l)^f J fa(x)gp(y)£^<p(x + y)dxdy. 
M ^ m i |0|<"i2 . R» R» 

Note that 

{ • ^ f a ® w 9 V M x + y ) ] 

= ( - l ) l a + / 3 i J J fa(x)gp(y)jj^<p(x + y)dxdy, 
R» R» 

where jjprfa and j^gp are the distributional derivatives of order a and /? 

of fa and gp respectively. For simplicity of notations we put Sa = fa 

and Tp = ^rgp- Hence the formula (5) can be written as follows 

(S*r)(y>)= £ £ (5a*r^)(^. 
|a|<mi |/J|^m2 
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Taking into account the above equality we need only prove that (1) holds 
for Sa and Tp. 

For this purpose we use the regularizations Sa * he and Tp * he, where 

he(x) - he(xi) • • -he(xn), and he(t) = - , 6 . Exactly we have 

(5. * *.)(«)=(-i)H / /.(«- o|p*.m 
R» 

Since / a , ft and he are in L 1 therefore Sa * he and * ht belong to Lx, 
too. Moreover 

(8\a\ fi\P\ \ 

Hence 

(6) ^[(5 a *h e ) * {Tp*he)}{<7) = ?fa(<r)Fgp(<T){-ia)\*+ne-2«Wi I). 

We shall now show that (Sa * ht) * (Tp * he) tends to Sa * Tp in 5' as e -»• 0. 
Indeed, note that 

Hence we obtain 

R » R» 

for v? 6 5 ([3], p. 233). Since /„ * f t is in Ll{Rn), therefore (/a * ft) * h2e 

tends to /„ * ft in L 1 as s -4 0 ([1], p. 6). 

3* 
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This implies that 

( - l ) | A W | / [ ( / A * ^ ) ^ 2 £ ] W ^ ^ ) r f , 
Rn 

tends to 

( - 1 ) 1 ^ 1 J (/„ *gfi)(x)-^V(x)dx = ^Zplfa *9p)(<p) = 
R» 

= [ ( £ / ° ) * ( 0 9 " ) ] M = ( S'"* r'' ) M-
By continuity of the Fourier transformation in 5 ' ([3], p. 251) we infer that 

(7) F[(Sa*he)*(Tp*he)] -+ T(Sa*Tp) 

in S' as e —> 0. Taking into account (6) by the Lebesque dominated conver­
gence theorem one can observe that.. 

j ( - i a ) a J ' / ( a ) ( - i c 7 ) ^ ; g ( ( T ) e - 2 6 < l f f l l + - + l < T - I V ( ^ ) ^ 
R» 

tends to 

J(-i<r)aTf(a)(-ia)pTgp(cr)<p((T)d(7 = J FSa{<T)FTp{a)v{<T)d<T 
R" R" 

as e —• 0. 
From this by virtue of (7) we get 

F(sa*Tp) = yrsa*rTp. 

This statement finishes the proof of (1) if / and g € D'Li. The formula 
(1) is also true if / and g are in D'L2 ([2], p. 43). 
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