# THE BOREL FORMULA FOR INTEGRABLE DISTRIBUTIONS 

## Urszula Sztaba


#### Abstract

The purpose of this paper is to give a new proof of the Borel formula for the convolution product of integrable distributions.


Let $f$ and $g$ be in $L^{1}\left(\mathbb{R}^{n}\right)$. Put $h(x)=\int_{\mathbb{R}^{n}} f(x-y) g(y) d y$. The function $h$ is called the convolution product of $f$ and $g$. The function $\mathcal{F} f, \mathcal{F} f(\sigma)=$ $\int_{\mathbb{R}^{n}} e^{i x \sigma} f(x) d x$, where $x \sigma=x_{1} \sigma_{1}+\cdots+x_{n} \sigma_{n}$ is said to be the Fourier transform of $f$.

Theorem. If $f$ and $g$ are in $L^{1}\left(\mathbb{R}^{n}\right)$, then the following Borel formula

$$
\begin{equation*}
\mathcal{F}(f * g)(\sigma)=\mathcal{F} f(\sigma) \mathcal{F} g(\sigma) \tag{1}
\end{equation*}
$$

holds.
In this note we present a natural proof of (1) when $f$ and $g$ are any integrable distributions. We recall now a definition of integrable distributions. Let $\mathcal{B}$ denote the set of smooth functions $\varphi$ defined in $\mathbb{R}^{n}$ such that its all derivatives $\frac{\partial^{|\alpha|}}{\partial x^{\alpha}} \varphi, \alpha \in \mathbf{N}^{n}$ are bounded.

Definition 1. We say the a sequence ( $\varphi_{\nu}$ ), $\nu \in \mathbf{N}, \varphi_{\nu} \in \mathcal{B}$ converges to the zero in the space $\mathcal{B}$ if it satisfies the following two conditions:
$(\beta) \begin{cases}\text { (a) } \quad & \text { there exist positive real numbers } A_{\alpha} \text { such that } \\ & \left|\frac{\partial^{|\alpha|}}{\partial x^{\alpha}} \varphi_{\nu}(x)\right| \leqslant A_{\alpha} \text { for } x \in \mathbb{R}^{n} \text { and } \alpha \in \mathbf{N}^{n}, \\ (b) & \text { the sequence }\left(\frac{\partial^{|\alpha|}}{\partial x^{\alpha}} \varphi_{\nu}\right) \text { uniformly converges to the zero } \\ & \text { on every compact set } K \in \mathbb{R}^{n} \text { for } \alpha \in \mathbf{N}^{n} .\end{cases}$

[^0]3. Annales ...

Definition 2. A linear continuous form $\Lambda$ with respect to ( $\beta$ ) convergence over $\mathcal{B}$ is said to be integrable distribution. The vector space of all integrable distributions will be denoted by $D_{L^{1}}^{\prime}$.

We know that every integrable distribution $\Lambda$ can be written as follows

$$
\begin{equation*}
\Lambda(\varphi)=\sum_{|\alpha| \leqslant m}(-1)^{|\alpha|} \int_{\mathbb{R}^{n}} f_{\alpha}(x) \frac{\partial^{|\alpha|}}{\partial x^{\alpha}} \varphi(x) d x \quad \text { for } \quad \varphi \in \mathcal{B} \tag{2}
\end{equation*}
$$

where $f_{\alpha} \in L^{1}([3]$, p. 201).
Note that for $f$ and $g$ belonging to $L^{1}$ we have

$$
\int_{\mathbb{R}^{n}}(f * g)(x) \varphi(x) d x=\int_{\mathbb{R}^{n}} \int_{\mathbb{R}^{n}} f(x) g(y) \varphi(x+y) d x d y .
$$

This equality we can write in the following form

$$
\begin{equation*}
\int_{\mathbf{R}^{n}}(f * g)(x) \varphi(x) d x=\left(f_{x} \otimes g_{y}\right)[\varphi(x+y)] \tag{3}
\end{equation*}
$$

where $f \otimes g$ denotes the tensor product of $f$ and $g([3], \mathrm{p} .106-7)$. Assume now that $S$ and $T$ are in $D_{L^{1}}^{\prime}$ and $\varphi \in \mathcal{B}$, then the symbol $\left(S_{x} \otimes T_{y}\right)[\varphi(x+y)]$ is sensible for $\varphi \in B$. The equality (3) suggest us how to define the convolution product $S * T$ ([3], p. 204). Namely we should take

$$
\begin{equation*}
(S * T)(\varphi)=\left(S_{x} \otimes T_{y}\right)[(\varphi(x+y))] \tag{4}
\end{equation*}
$$

By virtue of (2) we have

$$
\begin{equation*}
(S * T)(\varphi)=\sum_{|\alpha| \leqslant m_{1}} \sum_{|\beta| \leqslant m_{2}}(-1)^{|\alpha+\beta|} \int_{\mathbb{R}^{n}} \int_{\mathbb{R}^{n}} f_{\alpha}(x) g_{\beta}(y) \frac{\partial^{|\alpha+\beta|}}{\partial x^{\alpha} \partial y^{\beta}} \varphi(x+y) d x d y \tag{5}
\end{equation*}
$$

Note that

$$
\begin{aligned}
& \left(\frac{\partial^{|\alpha|}}{\partial x^{\alpha}} f_{\alpha} \otimes \frac{\partial^{|\beta|}}{\partial y^{\beta}} g_{\beta}\right)[\varphi(x+y)] \\
& \quad=(-1)^{|\alpha+\beta|} \int_{\mathbb{R}^{n}} \int_{\mathbb{R}^{n}} f_{\alpha}(x) g_{\beta}(y) \frac{\partial^{|\alpha+\beta|}}{\partial x^{\alpha} \partial y^{\beta}} \varphi(x+y) d x d y
\end{aligned}
$$

where $\frac{\partial^{|\alpha|}}{\partial x^{\alpha}} f_{\alpha}$ and $\frac{\partial^{|\beta|} \mid}{\partial y^{\beta}} g_{\beta}$ are the distributional derivatives of order $\alpha$ and $\beta$ of $f_{\alpha}$ and $g_{\beta}$ respectively. For simplicity of notations we put $S_{\alpha}=\frac{\frac{\partial}{}^{|\alpha|}}{\partial x^{\alpha}} f_{\alpha}$ and $T_{\beta}=\frac{\partial^{|\beta|}}{\partial y^{\beta}} g_{\beta}$. Hence the formula (5) can be written as follows

$$
(S * T)(\varphi)=\sum_{|\alpha| \leqslant m_{1}} \sum_{|\beta| \leqslant m_{2}}\left(S_{\alpha} * T_{\beta}\right)(\varphi) .
$$

Taking into account the above equality we need only prove that (1) holds for $S_{\alpha}$ and $T_{\beta}$.

For this purpose we use the regularizations $S_{\alpha} * h_{\varepsilon}$ and $T_{\beta} * h_{e}$, where $h_{\varepsilon}(x)=h_{\varepsilon}\left(x_{1}\right) \cdots h_{\varepsilon}\left(x_{n}\right)$, and $h_{\varepsilon}(t)=\frac{1}{\pi} \frac{\varepsilon}{\varepsilon^{2}+t^{2}}$. Exactiy we have

$$
\begin{aligned}
& \left(S_{\alpha} * h_{\varepsilon}\right)(x)=(-1)^{|\alpha|} \int_{\mathbb{R}^{n}} f_{\alpha}(x-\xi) \frac{\partial^{|\alpha|}}{\partial \xi^{\alpha}} h_{\varepsilon}(\xi) d \xi \\
& \left(T_{\beta} * h_{\varepsilon}\right)(y)=(-1)^{|\beta|} \int_{\mathbf{R}^{n}} g_{\beta}(y-\xi) \frac{\partial^{|\beta|}}{\partial \xi^{\beta}} h_{\varepsilon}(\xi) d \xi .
\end{aligned}
$$

Since $f_{\alpha}, g_{\beta}$ and $h_{\varepsilon}$ are in $L^{1}$ therefore $S_{\alpha} * h_{\varepsilon}$ and $T_{\beta} * h_{\varepsilon}$ belong to $L^{1}$, too. Moreover

$$
\mathcal{F}\left[\left(S_{\alpha} * h_{\varepsilon}\right) *\left(T_{\beta} * h_{\varepsilon}\right)\right](\sigma)=\mathcal{F} f_{\alpha}(\sigma) \mathcal{F} g_{\beta}(\sigma) \mathcal{F}\left(\frac{\partial^{|\alpha|}}{\partial x^{\alpha}} h_{\varepsilon} * \frac{\partial^{|\beta|}}{\partial y^{\beta}} h_{\varepsilon}\right)(\sigma) .
$$

Hence
(6) $\mathcal{F}\left[\left(S_{\alpha} * h_{\varepsilon}\right) *\left(T_{\beta} * h_{\varepsilon}\right)\right](\sigma)=\mathcal{F} f_{\alpha}(\sigma) \mathcal{F} g_{\beta}(\sigma)(-i \sigma)^{|\alpha+\beta|} e^{-2 \varepsilon\left(\left|\sigma_{1}\right|+\cdots+\left|\sigma_{n}\right|\right)}$.

We shall now show that $\left(S_{\alpha} * h_{\epsilon}\right) *\left(T_{\beta} * h_{\epsilon}\right)$ tends to $S_{\alpha} * T_{\beta}$ in $\mathcal{S}^{\prime}$ as $\varepsilon \rightarrow 0$. Indeed, note that

$$
\left(S_{\alpha} * h_{e}\right) *\left(T_{\beta} * h_{\varepsilon}\right)(x)=\frac{\partial^{|\alpha+\beta|}}{\partial x^{\alpha+\beta}}\left[f_{\alpha} * g_{\beta} * h_{2 \varepsilon}\right](x) .
$$

Hence we obtain
$\int_{\mathbf{R}^{n}} \frac{\partial^{|\alpha+\beta|}}{\partial x^{\alpha+\beta}}\left[f_{\alpha} * g_{\beta^{\prime}} * h_{2 \varepsilon}\right](x) \varphi(x) d x=(-1)^{|\alpha+\beta|} \int_{\mathbf{R}^{\boldsymbol{n}}}\left(f_{\alpha^{*}} * g_{\beta^{\prime}} * h_{2 \varepsilon}\right)(x) \frac{\partial^{|\alpha+\beta|}}{\partial x^{\alpha+\beta}} \varphi(x) d x$
for $\varphi \in \mathcal{S}$ ([3], p. 233). Since $f_{\alpha} * g_{\beta}$ is in $L^{1}\left(\mathbf{R}^{n}\right)$, therefore $\left(f_{\alpha} * g_{\beta}\right) * h_{2 \varepsilon}$ tends to $f_{\alpha} * g_{\beta}$ in $L^{1}$ as $\varepsilon \rightarrow 0([1], \mathrm{p} .6)$.

This implies that

$$
(-1)^{|\alpha+\beta|} \int_{\mathbb{R}^{n}}\left[\left(f_{\alpha} * g_{\beta}\right) * h_{2 \varepsilon}\right](x) \frac{\partial^{|\alpha+\beta|}}{\partial x^{\alpha+\beta}} \varphi(x) d x
$$

tends to

$$
\begin{gathered}
(-1)^{|\alpha+\beta|} \int_{\mathbb{R}^{n}}\left(f_{\alpha} * g_{\beta}\right)(x) \frac{\partial^{|\alpha+\beta|}}{\partial x^{\alpha+\beta}} \varphi(x) d x=\frac{\partial^{|\alpha+\beta|}}{\partial x^{\alpha+\beta}}\left(f_{\alpha} * g_{\beta}\right)(\varphi)= \\
=\left[\left(\frac{\partial^{|\alpha|}}{\partial x^{\alpha}} f_{\alpha}\right) *\left(\frac{\partial^{|\beta|}}{\partial y^{\beta}} g_{\beta}\right)\right](\varphi)=\left(S_{\alpha} * T_{\beta}\right)(\varphi)
\end{gathered}
$$

By continuity of the Fourier transformation in $\mathcal{S}^{\prime}([3]$, p. 251) we infer that

$$
\begin{equation*}
\mathcal{F}\left[\left(S_{\alpha} * h_{\varepsilon}\right) *\left(T_{\beta} * h_{\varepsilon}\right)\right] \quad \rightarrow \quad \mathcal{F}\left(S_{\alpha} * T_{\beta}\right) \tag{7}
\end{equation*}
$$

in $\mathcal{S}^{\prime}$ as $\varepsilon \rightarrow 0$. Taking into account (6) by the Lebesque dominated convergence theorem one can observe that.

$$
\int_{\mathbb{R}^{n}}(-i \sigma)^{\alpha} \mathcal{F} f(\sigma)(-i \sigma)^{\beta} \mathcal{F} g_{\beta}(\sigma) e^{-2 \varepsilon\left(\left|\sigma_{1}\right|+\cdots+\left|\sigma_{n}\right|\right)} \varphi(\sigma) d \sigma
$$

tends to

$$
\int_{\mathbb{R}^{n}}(-i \sigma)^{\alpha} \mathcal{F} f(\sigma)(-i \sigma)^{\beta} \mathcal{F} g_{\beta}(\sigma) \varphi(\sigma) d \sigma=\int_{\mathbb{R}^{n}} \mathcal{F} S_{\alpha}(\sigma) \mathcal{F} T_{\beta}(\sigma) \varphi(\sigma) d \sigma
$$

as $\varepsilon \rightarrow 0$.
From this by virtue of (7) we get

$$
\mathcal{F}\left(S_{\alpha} * T_{\beta}\right)=\mathcal{F} S_{\alpha} * \mathcal{F} T_{\beta}
$$

This statement finishes the proof of (1) if $f$ and $g \in D_{L^{1}}^{\prime}$. The formula (1) is also true if $f$ and $g$ are in $D_{L^{2}}^{\prime}([2]$, p. 43).

## References

[1] J. Barros-Neto, An introduction to the Theory Distributions, Marcel Dekker, Inc. New York, 1973.
[2] E.J. Beltrami and M:R. Wohlers, Distributions and the Boundary Values of Analytic Functions, Academic Press, New York and London, 1966.
[3] L. Schwartz, Théorie des distributions, Hermann, Paris, 1966.

Institute of Mathematics
Sllesian University
40-007 Katowice
Poland


[^0]:    1991 Mathematics Subject Classification. AMS classification: 44A35.

