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A L A G R A N G E - T Y P E I N C R E M E N T I N E Q U A L I T Y 

ÁRPÁD SZÁZ 

Abstract. We prove an extension of Lagrange's increment inequality with­
out using Lagrange's mean value theorem and the Hahn-Banach theorems. 

1. Introduction 

Let X and Y be normed spaces over K = E or C , and for a, b € X 
define 

[a,b] = {\a + (l-\)b : 0 < A < l } . 

Because of [ 1, p. 23], it is certainly well-known that the following the­
orem can be proved directly without using Lagrange's mean value theorem 
and the Hahn-Banach theorems. 

T H E O R E M 1. If f is a function from a subset D of X into Y and a, 6 G D, 
with a^b, such that [a, 6] C D° and f is differentiable at each point of 
[a, b], then 

l & - a | i€[a,6] 
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However, it seems to be overlooked that, by introducing the absolute 
infimum derivative 

/ # ( , , „ , _ i „ f I / M - / W I , 
J v y ' teDn)x,y] \t-x\ ' 

a slight modification of the same direct proof can be used to prove a much 
more general theorem. 

2. The absolute infimum derivative 

To get rid of the differentiability condition in Theorem 1, it seems conve­
nient to introduce the following 

DEFINITION . If / is a function from a subset D of X into Y, and x € D 
and y G X, then the extended real number 

/ # ( , , „ , . w i / w - z w i , 
J K t € jDn]* t V ] 11 ' -a; I 

where ]x, y] — [x, y]\{x} , wil l be called the absolute infimum derivative 
of / at x relative to [x, y]. 

R E M A R K 1. Recall that inf 0 = +oo, and therefore f#(x,y) = +oo if 
DO]x,y] =«. 

The relationship of the absolute infimum derivative with the directional 
and total derivatives can be cleared up by the next 

PROPOSITION 1. If f is a function from a subset D of X into Y and 
x £ D and y E X \ {x} such that f is differentiable at x in the direction 
y — x, then 

P R O O F . If z = y — x and t\ = x + Xz for A > 0, then 

f'z(x) = Bm A " 1 (/ ( * * ) -/ ( * ) ) . 

Therefore, for each e > 0, there exists a A G ] 0, 1 ] such that 

\f(tx)-f(x)-Xf'z(x)\<e\. 
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A n d hence, by the triangle inequality, it follows that 

' | / ( * * ) - / ( * ) I < (|/;(x)|+e)A. 

Now, since A = 11\ — x | and t\ G ] x, y], it is clear that 

f*(*,y) < (!/;(*)! 

Therefore, the inequality 

/ * ( z , y ) < |/',(*) I M " 1 

is also true. 

Now, as a useful consequence of this proposition, we can also state 

PROPOSITION 2. If f is a function from a subset D of X into Y and 
x € D° such that f is differentiable at x, then 

/ * ( * , » ) < 

for all y € X \ {x} . 

P R O O F . Recall that now we have 

\fy-x(x)\ = \f'(x)(y-x)\ < | / ' ( z ) | | y - x | 

for all y €ż X \{x}, and thus Proposition 1 can be applied. 

R E M A R K 2. Note that, according to the ideas of [7] , the condition 
x 6 D° should be weakened. 

3. A Lagrange-type inequality 

Now, as a substantial generalization of Theorem 1, we can also prove 

T H E O R E M 2. If f is a function from a subset D of X into Y and 
a, b € D, with a^b, such that 

(1) x e (DC\]a,x[)' implies x£D for all xe]a,b[, 

(2) I f(x) - f(a) I < l i m J /(*) - / ( a ) | for all x e ' ] a , b] with 
t£Dr\]a,x[ 

x € (Df]]a,x[)', then 
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ier»n[o,6[ 

P R O O F . Assume that 

M = sup f*(x,b) < + 0 0 , 
x€Dn[a,b[ 

and for e > 0 define 

A = {xGDn[a,b\ : \ f(x) - f(a) \ < (M + e) \ x - a \ } . 

Then, it is clear that {a} C A C [a,b]. 

Moreover, we can also show that there exists a c E A such that 

Ic — 61 = d(A,b) = inf \x-b\. 
xCA 

Namely, if this is not the case, then \x — b\ > d(A,b) for all x € A. 
Therefore, by induction, we can find a sequence (an) in A such that 

d(A, b) < I an - b \ < min { | o n _ i - b \, d(A, b) + n - 1 } 

for all n > 1. Hence, it is clear that the sequence (| an — b |) strictly 
decreasingly converges to d(A, b). 

Moreover, since A C [a,b] and [a, b] is compact, there exists a sub­
sequence {xn) of (an) and a point XQ € [a,b] such that xn —t XQ . 
Clearly, the sequence (\xn — b\), being a subsequence of (|on — 6|), 
also strictly decreasingly converges to d(A,b). Moreover, now we also have 
I xn — b I —v I xo — b I . Therefore d(A, b) = \ XQ — b \. 

Now, to get a contradiction, we we need only show that XQ E A also holds. 
For this, note that the properties xn , XQ E [a, b] and | xn — b \ > | XQ — b \ 
imply that xn E [a,xo[- A n d the properties xn E D(~)[O,,XQ[ and xn —>• xo 
imply that XQ E (Dn]a,xo[)'. Therefore, by the conditions (1) and b£ D, 
we have XQ E D. 

Moreover, note that the property xn E A n [a, xo[ implies that 

\f(xn)-f{a) \ < (M + e)\xn-a\ < (M + e)\x0-a\. 

Hence, since xn -> XQ , it is clear that 

inf \f(t)-f(a)\ < (M + e)\x0-a\ 
\t—xo\<r 

t€Dn]a,x0[ 
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for all r > 0 . Therefore, we also have 

M f f i \f(t)-f(a)\<{M + e)\x0-a\. 
t-*Xo 

t€Dn]a,x0[ 

Hence, because of the condition (2), it is clear that XQ G A. A n d this 
contradicts the assumption that |x — b\ > d(A, b) for all x G A. 

Now, having proved that d(A, b) = \ c — b | for some c € A, it is easy to 
show that necessarily c = b holds. 

Namely, i f c ̂  b, then c G A \ {6}, and hence c G D fl [a, b[. Therefore 

f#(c,b) < M + e, 

and thus there exists an x G DO ]c, b] such that 

\f(x)-f(c)\ < {M + e)\x-c\. 

Hence since 

\f(c)-f(a)\ < (M + e)\c-a\ 

and |JC — c| + |c — a| = |a: — a|, it is clear that 
1 / ( ^ - / ( 0 ) 1 < (M + e)\x-a\. 

Therefore x G A. A n d this contradicts the fact that d(A, b) — \ c — b \. 

Finally, to complete the proof, we note that if c = b, then b G A, and 
hence 

\f(b)-f(a)\ < (M + e)\b-a\. 

Therefore, the inequality 

I/(6) - /(«) J < M | 6 - a | 

is also true. 

R E M A R K 3. Note that the conditions (1) and (2) are trivially fulfilled i f 
D fl [a, b] is closed and the restriction of / to 2?n ]o, b] is continuous. 

Note that thus, for any a, 6 G X with a^b, D may be a finite subset of 
[a, b] with a, ft G D , and / may be an arbitrary function from £> into Y. 

2 - Annates... 
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4. A partial strengthening of Theorem 2 

Besides Theorem 2, it seems to be of some interest to prove the following 
more particular 

T H E O R E M 3. If in addition to the conditions of Theorem 2, we have 

(3) inf | / ( * ) - / ( a ) | = 0 , 
xeDn]a,b[ 

then 

l G - a l x€Dn]a,b[ 

P R O O F . Because of the condition (3), for each e > 0 , there exists a 
c G ]a, b[ such that 

\f(c)-f(a)\<s. 

Moreover, by using Theorem 2, it is easy to see that 

!MzMi< sup / * ( * , & ) < sup f*(x,b). 
\t> — c\ xeDn[c,b[ x€i>n]o,6[ 

And hence, since 

1 f(b) -f(a)\ I/(ft)-/(c) I . I / ( c ) - / ( « ) ! 
\b-a\ " 16 — c I \b-a\ 

it is clear that 

I f(b) - / (a ) I ^ _ M , e < sup f*(x,b) + 
\b~a\ a:6£>n]o,6[ ' I & ~ « I ' 

Therefore, the stated inequality is also true. 

R E M A R K 4. Note that the additional condition (3) is trivially fulfilled if 
a £ (DO ]a, b[)' and the restriction of / to D n [a, b[ is continuous at a. 

Note that now, for any a, b E X with a^kb, D may be a finite subset 
of [a, b] with a,b G D, and / may be a function from D into Y such 
that f(x) = f(a) for some x G D \ {a, b} . 
Acknowledgement. The author is grateful to Laszló Czach for pointing 
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