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ABSTRACT BOCHNER AND MCSHANE INTEGRALS

STEFAN SCHWABIK

Abstract. A short description of the classical Bochner integral is presented
together with the McShane concept of integration based on Riemann type
integral sums. The corresponding classes are compared and it will be shown
that the situation is different for finite- and infinite — dimensional valued
vector functions.

Preliminaries

Assume that [a,b] C R is given and that y is a (nonnegative) measure on
[a,b]. Let Y be a Banach space with the norm || - |ly.

A function f : [a,b] — Y is called simple if there is a finite sequence
I, C [a,b], m =1,...,p of measurable sets such that '

IL.nI;=0 form#l

and

et = Inm

m=1

where
fX)=ym €Y fortel,,

i.e. f is constant on the measurable set I,,.
Denote by J(u,Y) = J(u) = J the set of all simple mappings defined
on a, b).
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Clearly J is a linear space and if f is a simple function then also ||f]|| :
[a,b] — R is a simple function.

The abstract Bochner integral

We define the integral of a simple function f : [a,b] = Y in the following
natural way

) / fau=3" mpL)
m=1

If A C [a,b] is measurable and the function f is simple, then we define
fat) = f(t) ifte A

and ‘
fa®)=0ift ¢ A.

The function f4 is simple and we set

/A fdy = / ’ fadu.

The integral of simple functions f € J defined in this way is evidently a
linear mapping [ : J =Y.

If A, B are disjoint measurable sets then from the linearity of the integral
and from the obvious identity f4up = fa + fB we have

‘ de= | fdu+ [ fdu.
2) AUBfL /Afu+/Bfﬂ

Y =R and f < g where f,g € J, then

(3) - /fdn's [ odn

If f>0and A C B, then

(4 /j;ﬁfdus /B fap. |

For the integral of a function f € J we have

(5) ol / faull < / 1flde < sup 1F(6)lIu(A)
JA A t€[a,b]
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because

)4 14
II/AfduH = | Y vmp(AN IR < Y lymliu(AN In)

m=1 m=1
1
< max [lymll Y w(ANIn) = sup [IF(&)lIn(A)
m m=1 t€fa,b]

and ) _,(ANI,) = A
For a given f € J let us define

b
© 171 = [ i
Ja
For the mapping || - ||1 : 7 — R the following holds:
(a)
71l 2 0 for every f € J,
(b) . S
llaflls = lalllfll. for every f € J and a € R,
(c) e
If + glls < IIFilx + liclly for every f,g € J.
By || - |l1 a seminorm on J is given; the implication ||f|[; = 0 => f = 0 does

not hold, it suffices to take A C [a,b] such that u(A) = 0 and a function f
for which f(t) = 0 provided ¢ ¢ A.

The triangle inequality (c) can be shown in such a way that a decompo-
sition of the interval [a,b] into measurable sets is produced with respect to
which each of the functions f and g is simple, i.e. f and g have constant val-
ues at each measurable component of the decomposition, and the inequality
results from the triangle inequality in the Banach space Y.

The seminorm || - ||; given above for elements of .7 is sometimes called the
L'~ seminorm. ‘

We will consider the completion of the linear space J of simple functions
on [a, b] with respect to the L!-seminorm.

1. DEFINITION. The sequence (fg) = (fg)e21,fq € J, ¢ = 1,2,... is
called an L!- Cauchy sequence if for every € > 0 there isan N = N, € N
such that .

"fq - fr’!!l < ¢ for q,r 2 N...

The sequence (f,),f, € J, ¢=1,2,... is called an L'~ zero sequence if

ql_ljﬁ, ”fq”l = 0.
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The completion of J is given as the space of equivalence classes of L!
Cauchy sequences of functions from J, where two Ll- Cauchy sequences
are equivalent if their difference is an L!- zero sequence.

Let us denote by £ = L(u) the set of all functions f : [a,b] = Y for which
there is an L'~ Cauchy sequence fer 9 =1,2,... of simple functions which
converge to f u— almost everywhere in [a, b], i.e.

Jim [1£o(0) = F@)lly =0

for y— almost all t € [a, b).

L has the structure of a linear space, i.e. if (f;) and (g,) are L!- Cauchy
sequences of simple functions which converge - almost everywhere to f and
g, respectively, then (f, + g4) and (af,) are L'- Cauchy sequences of simple
functions converging u— almost everywhere to f + g and af, respectively (
a € R is an arbitrary number). ‘

2. FUNDAMENTAL LEMMA. Let (f;) be an L'~ Cauchy sequence of simple
functions defined on [a,b]. Then there is a subsequence, which converges
pointwise i~ almost everywhere and for every € > 0 there isa Z C [a,b] with
#(Z) < € such that this subsequence converges absolutely and uniformly on
[a,b]\ Z. '

PROOF. Since the sequence (f,) is L'~ Cauchy, for every k € N there is
N;. € N such that if g, > Ni; then

1 - 1
life = Jrll < 22"
It can be assumed that Ny < Nj,;. We set

9 = N

then 1
lgm = 9nlls = 1fm = Fralli < 555

for m > n.
We will show that the series

91(8) + D (9k+1(2) — 9x(2))
k=1

converges absolutely for p— almost all ¢ € [a, b] to an element in Y and that
this convergence is uniform except a set with arbitrarily small 4~ measure.
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Denote

M = {t € [0, lgnsa (6) — 9u0)lly 2 51

Then we have

1 1 '
1 o) = / Lau< / 19ns1(6) = ga(®)llvdp
2n M, 2" M,

’ ' 1
< [ 100100 — 9a(O)lydi = lgnss = galls < 73

and this yields

1
n(M,) < on

Let us define
» Zn=MnUMn+1U....

Then Z, 4+, C Z,, and

il

oo © 1 1
w(Z) <) p(M;) <Y 5 = gt
Jj=1
For t ¢ Z,, and k > n we have

1
lge+:(8) — ge(@lly < 5%

and therefore the series Y po, (gk+1(t) — gx(t)) converges absolutely and
uniformly for ¢ ¢ Z,,. :
Putting Z = Z, we have for sufficiently large &

1
m2) = p(Ze) < 5= <e

and this leads to the assertion on the absolute and uniform convergence.

If we take M = NZ,, then evidently (M) =0 and if¢ ¢ M, then t ¢ Z,
for some n. Therefore the series g1(t) + 3 pw;(gk+1(¢) — gr(t)) converges
for t ¢ M and this means that lim;_, o gk (2) = limg—oo fiv, (t) exists for p—
almost all ¢ € [a, b].

3. LEMMA. Assume that (f,) and (g,) are L'- Cauchy sequences of
simple functions, which converge u- almost everywhere to a function f :

[a,b] = Y. Then the limits limg,, fab fqdp and limg_ o f: gqdp exist and

q—+o0

b b
(M lim /a fodpp = lim /a 9qa-
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PROOF. It is easy to show the existence of the limits. Indeed, for simple
functions f, we have

b b b
! / Fadps / fedully =I / (fa = Fr)dully
a a :
< / 1o = Frllydi = 1o = Frla.

This means that the sequence of integrals [ : fqdu is a Cauchy sequence in the
Banach space Y, and therefore it is convergent, i.e. the limit lim,_, f: fqdp

exists and similarly also for limg_, o f: 9qdps.

Let us set b, = f;—g,- The sequence h is L'~ Cauchy and limg_, o hg(t) =
0 for y— almost all ¢ € [a,b]. This implies that the sequence of integrals
i) : hqdy is convergent. It remains to show that

b
qliff,lo -/a hedp = 0.
To a given € > 0 choose N € N so that for r,q > N we have
kg = hells <.
Define
M = {t € [a,b); hn () # 0} C [a, b].
For ¢ > N we have

/[ g el = / g — B llydy

a,b
b

< / Iy — hllydp = Ihg = halls <€
a

because hy(t) = 0 for t € [a,b] \ M. By the Fundamental Lemma 2 there
exists a subset Z C M with

w(Z) < d

sup ||hn(t)lly +1
t€[a,b)

and a subsequence hy, which converges to zero uniformly on the set M \ Z.
Hence there is an sg € N, sg > N such that for s > s anffort € M \ Z we

have
€

lhg, O} < e, 0)
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Therefore

ep(M\ Z)
[ a0l < a2 <

provided s > sq. For s > so we also have

Lmamwsfmuwwmww+/mmmw

<llhg, — hnliy + Sup Ik (#)lin(2)

€
sup jlhn(@®)lly < 2e.
suPse(a,b) 1AN (D)lly +1 tefo by

<e+

Hence

b
Mol = [ e (61
=[ e @ldat [ o @+ [ Th @l
{e.b\M M\Z z

<eg+ e+ 2 =4e,
. e b . b
ie. lim [ hq,(t)dp = 0 and therefore also ql_l_’rgo I he(t)dp = 0.

4. DEFINITION. For f € E we define
b b
®) [ fau= lim [ fed

where (f,) is an arbitrary L- Cauchy sequence of simple functions which
converge p— almost everywhere in [a,b] to f € L.

The value f: fdyu given by (8) is called the Bochner integral of the function

f- In some cases the more extensive notation (£) f: fdu will be used for this
concept of integral.

By (1) the integral was defined in a very natural way for simple functions. -
By (8) this integral is extended to functions f € L.

The correctness of this definition is clear by Lemma 3 because by this
Lemma the integral of a function f € £ defined by (8) does not depend on
the choice of the L'~ Cauchy sequence of simple functions which converge
p— almost everywhere in [a, b] to the function f.
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5. LEMMA. If f € £ and (f,) is the L'~ Cauchy sequence of simple
functions which corresponds to f, then ||f||y is integrable and the sequence
(I fqlly') approximates ||f|ly . In this case we have

b b ‘
) J 1= tim Wl = i 1ok
Moreover | |
b b
(10) I [ sauly < [ 7y

PROOF. Since

W fe@lly = £+ @lly| < Ifo(®) = £ )y,

we get
| | o |
Mally = 1 vl = / fe®lly = 1 (@) llvldp

/ 1al®) = £r(®)llvdi = If, — f1 ]l

and this means that the sequence ||f,||y of real — valued simple functions is
L'- Cauchy. Moreover

Jim [Ife@)lly = 17 &)y

for p— almost all t € [a,b] and consequently ||f||y is integrable.
Since by (5) for f; € J we have

n /A Fadully < /A Vol

(8) and (9) can be used for obtaining (10) by passing to the limits with
g — 0o on both sides of this inequality.

From Lemma 3 we know that limg_,, || f4|l1 does not depend on the choice
of the sequence (f,) which approximates f; therefore the seminorm defined
for simple functions f € J can be extended to functions f € L by the
relation

b .
170 = [ 1 @lvau= Jim 1ol
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6. LEMMA. If f € L then for every € > 0 there is a simple function
9 € J such that

(11) IIf —gell <e,

i.e. the set J of simple functions is dense in L with respect to the seminorm
Il Iz

PROOF. Since f € L there is an L'~ Cauchy sequence (f,) of elements
fq € J which converges p— almost everywhere to f, i.e. given € > 0 there is
N.eN such that

(12) Vo Fulls <&

provided 7,qg > N.. Let us fix 7 > N, and put g. = f» € J. Then (g,)
where g, = f; — fr = fq—9e € J is L'~ Cauchy and g; = f — fr = f — g
p— almost everywhere in [a,b]. Hence by (12) we have

17 = gelly = 1f = Folls = lim Noails = lim [ife = frlla < e
and (11) is satisfied.

7. LEMMA. The space £ equipped with the seminorm || - ||; is complete.

PROOF. Assume that (g,) is a Cauchy sequence with respect to the
seminorm || - ||;. By Lemma 6 for every g € N there exists a simple function
fq € J such that

1
“gq - fq”l < 21"

Then

, 1 1
Ifa = frlls < o = galls + llga = grllx + lige = frlls < T4 7+ llgg = grllx

and therefore the sequence (f,) is L'~ Cauchy. By the Fundamental Lemma
2 the sequence (f,) contains a subsequence (fg,) which converges u— almost
everywhere in [a,b] to a certain function f € £. For this subsequence (f,,)
we have

lgq, = fll1 < iigq, — fa.lln + N fe. — fllz

and this means that the subsequence (gq,) of (g4) converges in the seminorm
Il llx to f. This implies that also the original sequence (g,) converges in this
seminorm to f € £ an henceforth £ is complete.
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Partitions, systems and gauges

Let an interval [a,b] C R, —o00 < a <b < +0o be given. A pair (7,J)
of a point 7 € R and a compact interval J C R is called a tagged interval, 7
is the tag of J.

A finite collection {(7;,J;), 7 = 1,...,p} of tagged intervals is called an
L - system on [a, b] if

Int(J;) N Int(J;) =0 for i # ;.
( Int(J) denotes the interior of an interval J.)
A finite collection {(;,J;), 7 = 1,...,k} of tagged intervals is called an
L - partition of [a, b] if
Int(J;)NInt(J;) =0 for i # 3
and

k
U Ji =[a,8].
i=1

( Int(J) denotes the interior of an interval J.)
An L - partition {(7;,J;), j = 1,...,k} for which

T4 EJj,j= 1,...,k
is called a P - partition of [a, b].
Clearly every P — partition of [a,d] is also an L ~ partition of [a, b].
Sometimes it is useful to denote
Ji:[ai—laa'i]a 1=1,...,k
for a given L — partition of [a, b}, where

a=o<a <---<ap=>b

In other words we will assume in the sequel that the partition {(7;,J;),
i =1,...,k} is ordered in such a way that

supJ; =infJ;4q, 1=1,...,k—1.

Given a positive function § : [a,b] — (0,+00) called a gauge on [a,b], a
tagged interval (7, J) with 7 € [a, ] is said to be d—fine if

J C[r=46&(r), 7 +6(7)]
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Using this concept we can speak about d—fine L - partitions (or systems)
and 6-fine P - partitions {(r;,J;), j = 1,...,k} of the interval [a,b] when-
ever (7;,J;) is 6-fine for every j =1,...,k. ,

It is a well-known fact that given a gauge § : [a,b] — (0, +00) there exists
a d-fine P — partition of [a, b]. .

This result is called Cousin’s lemma, see e.g. [13, Theorem on p. 119].

8. LEMMA. Assume that f € £ and € > 0. Then there is a gauge
w : [a,b] = (0,+00) and 7 € (0,¢€) such that the following statement holds.
If
. {(Hmstm),m = 1,...,p}

is an w— fine L— system for which

p
S w(Hg) <,
m=1

then »
Z I|f G lly p(Hm) < &
m=1

PRrooOF. For j =1,2,... let us set
Ej={tefab; j-1Z|f@ly <s}

Since ||f|ly is integrable by Lemma 4, the sets E; are measurable and we
have E; N E; = @ for i # j and

U Ej = [a, b]
j=1
‘We also have
oo b o)
S G- DuE) < / IF@lds < 3 iu(E;)
i=1 a j=1

and therefore

0 b
S W(E;) = / 1F@)lldp + p(la,B) < oo,

=1

00 b
S iu(E) < [ 15 @ldu+
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Assume that €9 > 0 is given. For j = 1,2,... there is an open set G; C [a,b]
for which E; C G; and ~
1
w(G5) < pu(Bj) + 55

and this together with the inequality given above yields

ZJ#G)<ZJM(E)+Z—<°°

j=1

Hence there is an 7 € N such that

o0

3 ju(Gy) < eo.

J=r+1

If t € [a,b] then there is exactly one j € N such that ¢ € E;. For a given
t € [a,b] let us choose the gauge w such that

[a,6] N (t — w(t), t + w(t) C G;.

If now {(Hm,tm),m = 1,...,p} is an w- fine L- system, then we have
im € Ejm’ .
Hy, C (t — w(tm), tm + w(tn)) C Gy,

and
IfE)ly <im

form=1,...,p. Hence

Z 1 (b ly (o) < imb(Hm) + Y jrmbi(Hom)

Jm<r Im>T
P P
<r Z p(Hp) + Z Imtt(Gj,) < TN+ €.
Im<F s
Taking g9 < % and n < 2ri- 7 Ve obtain the desired result.

McShane integral, the classes S* and S

9. DEFINITION. By §* = §*([a,b];Y) the set of functions f : [a,b] = YV
is denoted for which to every € > 0 there is a gauge ¢ on [a,b] such that

k!

(13) DD MF@) = Fleplvm(BinLy) <e

=1 j=1
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for every é—fine L — partitions {(t;,J;),7 = 1,...,k} and {(s;,L;), 5 =
1,...,1} of [a,b). .

By & = S([a, b];Y) we denote the set of functions f : [a,b] = Y for which
to every € > 0 there is a gauge J on [a, b] such that

k l
(14) 13" fdu) = fs)u@)ly <e
=1 j=1

for every d—fine L — partitions {(¢;,J;), ¢ = 1,...,k} and {(s;,L;),j =
.,1} of [a, b].
Functions f € S are called McShane integrable while functions f € &* are
called absolutely McShane integrable.

10. LEMMA. If f € S* then f € S, i.e. S* CS.

Proor. If {(t;, ), i =1,...,k} and {(s;,L;), j =1,...,l} are 6fine L
~ partitions of [a,b] we have

{
u(l) =Y u(nL;)
=1

and .
p(Li) = u(Ji N Ly).
i=1

Hence

k {
1Y fEn) =Y fs)uLi)lly

i=1 i=1
1 k . k1
=130 D fm(BnL;) = >3 fsi)u(Ji N Ly)lly
j=li=1 i=1 j=1
1 k
=122 D (F(t) = F(si)mu(% N Ly)lly
Jj=1li=1
[
SOFC) - £s5) w0 L)
j=1i=1

and by Definition 9 this yields the statement.
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11. PROPOSITION. If f € S then there is an element Sy € Y such that
for every € > 0 there exists a gauge d on [a,b] such that

k
(15) 1Y ft)p(h) - Selly <e
i=1
for every 6—fine L ~ partition {(t;, J;), 1 = 1,...,k} of [a,b].
PROOF. Let £ > 0 be given and assume that J is the gauge which corre-
sponds to -;— by the definition of the class of functions S.
Denote
k

S(E) = {S(f7D) = Zf(t‘i)p’(Ji); D= {(ti7 Ji), 1= 1;- . ’k}

i=1
an arbitrary 6— fineL partition of [a, b]}.
The set S(¢) C Y is nonempty because by Cousin’s lemma. there exists a J—
fine L partition {(¢;, J;), %,k} of [a,b]. Since by definition of S we have

k l
12 Fm(F) = 3 fs)nEa)lly < <

j=1

for every d-fine L — partitions {(¢;,J;), ¢ = 1,...,k} and {(s;,L;),j =
1,...,1} of [a,b], we have also

2
2
(by diam S(e) the diameter of the set S(¢) is denoted). Further evidently

S(El) C S(Ez),

diam S(¢) <

provided €; < €;. Hence the set

Sk =S;eY

e>0

consists of a single point because the space Y is complete (by S(¢) the closure
of the set S(¢) in Y is denoted).
For the integral sum S(f, D) we get

ok
I FEIu) = Splly <5,
i=1
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whenever D = {(t;,J;), i = 1,...,k} is an arbitrary 6 fine L— partition of
[a, ).

12. DEFINITION. The value Sy given by Proposition 11 for a function

f € S will be denoted by (S) [, : fdu and called the McShane integral of the
function f.

REMARK. It is easy to see that if f € S* then by Lemma 10 it is also
f € S and in this case we have a S5 € Y such that (14) holds, ie. the

McShane integral (S) [, b fdu can be defined for functions f belonging to S*.

It is easy to show that the McShane mtegral has the usual propertles, e.g.
If for f,g : [a,b] = Y the mtegrals (S) f fdu and (S) f gdp ezxist then
for c1,c2 € R the integral (S fa (c1f + cag)dp exists and

b b b
() / (cof +cag)dp = 1 (S) / fdu + 3 (8) / gdgs.

If(S) [ : fdu ezists and [c,d] C [a,b] then also the integral (S) [, cd fdp
exists.

In integration theory based on integral sums like the McShane integral
the following lemma is useful.

13. LEMMA (SAKS — HENSTOCK). Assume that f € S. Given e > 0
assume that the gauge § on [a,b)] is such that

k b .
13- £ua) = () [ fdully <e

i=1

for every 6— fine L— partition {(t;, J;),i = 1,...,k} of [a,}].
Then if {(rj, K;),j =1,...,m} isan a.rbztrary 0- fine L— system we have

nz(f(r, u(K;) - (S) / fd#) Iy <e.

Jj=1

PROOF. " Gince {(rj,K') j=1,...,m} is a §— fine L- system the com-
plement [a,b] \ U Int K; consists of a finite system M,,, m = 1,...,p of
=1

j=
intervals in [a,b]. The function f belongs to S and therefore the mtegrals
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S) S ,, fdu exist and by definition for any 7 > 0 there is a gauge 6, on
M., with é,,(t) < d(t) for t € M,, such that for every m = 1,...,p we have

llZf(s'")# () - (5) / faully < ——

i=1 + 1

provided {(sI*,J™),i=1,...,kn} is a é,,— fine L- partition of the interval
M,,. The sum

p kr(s")
Zf(m)uKHZ > s
ji=1 m=1 i=1

represents an integral sum whlch corresponds to a certain J— fine - partition
of {a,b] and consequently by the assumption we have

llZf(r,)u(K )+ 303 W) - (5) / fdully <e.

m=1 i=1

Hence

132 7m0 =) [ sl

<IIZf(TJ)u(K)+Z > #(J"‘)—(S)/ faplly

Jj= m=14i=f(sT")

+Z IIZf(s’")p (Jm) *(5)/M faully <e+p—Ts <e+n

m=1 i=1

Since this inequality holds for every n > 0 we obtain immediately the state-
ment of the lemma.

~14. COROLLARY. If f € § and the Banach space Y is finite-dimensional
and if given € > 0 the gauge § on [a, b] is such that

HZf J)—(S)/ faully <
for every 6— fine L— partition {(t;, J;),i =1,..., k} of [a,b], then we have

Sl — (8 / faly < Ke

Jj=1
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_ for an arbitrary 6— fine L- system {(rj, K;),j = 1,...,m}. K is a constant
which depends on the dimension of the Banach space Y only.

PROOF. It is easy to see that there is no restriction in assuming dimY = 1.
The more — dimensional case can be treated componentwise.

Assume therefore that f : [a,b] — R. Define M, as the set of indices
j =1,...,m for which

£ouE) = () [ fawz0
and M_ as the set of indices j = 1,...,m for which
Frs)m(Ks) = () /K du<o.
Then by the Saks — Henstock lemma 13 we have
3 (lnts) - (8) [ 1a) =1 3 (emE) =) /K s

JEMy JEM,

and

- 3 UCuE)-(O) [ sd) =1 T ()=o) [ sawi<e

JEM4 JEM_

Hence

1 ti) = (8) [ paul

= 3 G = S) [ fd) = 3 (Flrs)ul;)

JEM, JEM,

~ () / Jdu) < 2

K;

The constant K for the general case comes from the relation between the
given norm ||-||y on Y and the norm given for example as the sum of absolute
values of the coordinates of a point in Y.

Comparison of Bochner and McShane integrals

Our aim now is to compare the concept of Bochner and McShane integral
described above. —
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15. PROPOSITION. If f € L then also f € §* and

b b
(16) (©) / fdu = (S) f fdu

PROOF. Assume that f € £ and that £ > 0 is given.
Let f4, ¢=1,2,... be an L1- Cauchy sequence of simple functions which
converges to f p— almost everywhere in [a, b}, i.e.

Jim 1£(6) = FOlly =0

for p— almost all ¢ € [a, b].
Let n € (0,¢) and the gauge w : [a, b] — (0, 00) be given by Lemma 8. Take
a € (0, g—) By the Fundamental Lemma 2 the sequence f;, ¢ =1,2,... can

be chosen in such a way that there exists a set Z, C [a,b] with u(Z,) < 2

such that the sequence f, converges to the function f uniformly on [a, b]\ Z,.
The p— measurable set Z, can be approximated from above by an open set
G, in such a way that Z, C G, and u(G,) < a. Let us define the closed

set
Fy = [a,b] \ Ga.

Concluding we have the following result. To o: > 0 there exists a closed set
F, C [a, b] such that

w(Fo C [a, b]) = p(Ga) <
and there is an n, € N such that

If2(8) = fF@)lly <

for g > n, and t € F,.
Assume that ¢ > n,. Since f, is a simple function there is a finite sequence
I, Cla,b), m =1,...,p, of measurable sets such that

I, NIy =0 form #1

and
Pq
[a" b] = U I‘Im
m=1

where
fo(t) =yg, €Y fortel, ,m=1,...,p,
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By the measurability of the sets I, there exist closed sets Fy,, with
F,, C I, and

eIy \ Fo) < 2 form = 1,...,pq
2p,

Hence
7 Eon 1
y’( U (I‘Im \FQm)) =< Z §_ = 5'
m=1 m=1 Pq

Define further
Ay =F,NF, ,m=1,...,p,

The set A,,, is closed and Ay, N Ay, = @ for m # . Therefore the distance
of different sets A, is positive, i.e. thereisa p >0 such that if t € A,
s € Ay, and m # 1, then

ft—s|>p.

Further we have

Pq Pq Pq
[a’b]\ UAl}m:UIq'm\U(Fanqu)
m=1

m=1 m=1

¢ ) (an \ Fa) U | U \ F)

m=1 m=1
Pq
= U Igm \ Fgn) U la, 0]\ Fou
m=1 .
and therefore
Pq Pq n
p(@, 8\ U 4gn) € 3 8lIgn \ Fan) +plle, 8]\ Fa) < 7 +a <1
m=1 m=1

Let us take a gauge ¢ on [a,b] such that
§(¢) < min(w(?), g) for ¢ € [a, b]

and

(t = 6(t),t + 8(t)) N [a, 0] C [a, 5] \ G Ay,

m=1

Pq 4
provided ¢ € [a,b]\ | Ag,.- This can be done because the set [a, b]\ Lj A,
. =1 . = :
is open. " ™
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Assume that {(t;,J;), i =1,...,k} and {(s;,L;), j =1,...,1} are 6—fine
L - partitions of [a,b]. By the choice of the gauge § given above we obtain
the following properties of a 6-fine L — partition {(t;, J;), i = 1,...,k}:

P
Ift; € Lj Aq,., then there is r = 1,...,p, such that t; € A, ; since
m=1
a(t;) < g, we have
(8 = 6(8:), ti + 8(8:)) N Ag,, =0

provided m # r and therefore also

JinA,, = 0

form#r.

Pg
Ift; ¢ U A,,., then
m=1
Pq
(17) Ji C (8 — 8(t:), 8 + 6(¢:)) C [a, 8]\ | Agn,
m=1

ie.

JiNAg, = 0

k Pq
for every m = 1,...,p,. Moreover, since U Ji Cla,b)\ U Ag,.,
i=1,t:8U Agm m=1

we get
k Pq
s U W <web\ U 4,) <n
i=1,t.'¢UAqm m=1

Similar properties hold also for the partition {(L;,s,)}.
. Pq
Assume now that t;,s; € |J Ag,. If J;NL; =0, then necessarily
1

m=

[t —sjl <p

because dist (¢;, J;) < g, dist (s;,L;) < ’2—) and

[t —sil < |ti —a|+|s; —a| < p

where a € J; N L;. In this situation there is an r = 1,...,p, for which
ti,8; € Ag,. Indeed if ¢; and s; would belong to different A, ,, then we
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would have |t; — s;| > p and this contradicts the inequality given above.
Hence

fq(ti)v = fq($7) = Yq,
because A, C I,,. At the same time we also have Ay, C F,, and therefore
Ifo(®) = F@lly <aforte A,
This yields

(18)  [If(t:) — flsidlly < lfalts) = FEly +1fa(s5) = Flsi)lly < 2o

Pq Pq
If at least one of the inclusions t; € |J = A,,.,s; € |J Ag,, does not hold,
m=1 m=1

P ; :
i.e. if we have for example s; € [a,b] \ Lj = A,,, then by (17) we get

m=1
e
JinL; C Ly Cla,b)\ |J Aqn
m=1

and the tagged interval (J; N Lj,s;) is 6- fine. Similarly also the tagged
interval (J; N L;,t;) is 0- fine. The other possible cases lead to the same
conclusion.

For showing f € S* we need an estimate for the sum

k1

5=3"3 "N t) = f(si)lvm(Ji N Lj).

i=1 j=1

The set
M={(Gki=1,....kj=1,..,0}

can be splitted into

Pq
My = {(i,§) € M; t;,s; € | ) Ag} = and My = M\ M;.
m=1
Then
S= > @) - fEllys(EnL)+ Y 1F () - Fss)llvu(inLy).
(iaj)eMl . (i,j)EMz

By (18) we get

Yo ) = fls)lvuFiNLs) <2a Y (N Ly) = 2ap((a, b]).

(,5)EM (i,5)EM
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For the other sum -, . e, 1 (%) — F(s5)lly#(Ji N L;) we know that

U inL;) cla,b]\ U A,

(‘,J)€M2

that the intervals J; N L; with (3, 5) € Mz are nonoverlapping and

Y uinLy) < ule\ U dg) <n.

(i.5)eM; m=1

Hence by Lemma 8 we get

> lIf ) = f(si)llyu(i N L)

(iyj)EM2

< Y WF@lva(ENL)+ Y If(si)llyp(JinLy) < 2.

(i.J)EM; (i.5)eM;

Altogether we obtain
S < 2ap([a, b)) + 2¢

and this yields f € S* by definition.

It remains to show that for the integrals the equality (16) holds.

Suppose that ¢ > 0 is given. Assume that £ C [a,b] is an arbitrary
measurable set. Let us put F = [a,b] \ E; then evidently [a,b] = EUF. In
this situation there exist open sets G and H such that

EcG,FCH

and
p(G) < p(E) + &, p(H) < p(F) +¢

Let us define a gauge ¢ : [a,b] — (0, +00) such that

if t € E then (¢t — 4(t),t +0(t)) N[a,b] C G
and

ift € F then (t — 8(t),t +4(¢)) N[a,b] C H

hold.
Let {(J;,t;)} be a §- fine L— partition of [a,b] and assume that xg is the
characteristic function of the set E. Then

k k
(19) Yoxsu)= Y, w(k) <uG) <u(B)+e
i=1 i=1,4,€F
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and similarly
k
> xr(t)u(d) < p(E) +e.
i=1

Further we have

k k
3 X Eu(E) =Y u(J) = p(la, b))
i=1 ‘

t=1

and also
Xfa,b] = XE + XF-

This yields

k k k
3 xe(t)u(h) =Y X t)n() = Y xr(t)nk)
=1 i=1 i=1

>pu((arbl) — (u(F) + ) = p(E) — e.

This inequality together with (19) implies

|ZXE Ju(J:) ~ w(E)| <e.
Since by definition we have

,, |
(c) / xE () = u(E),

we have also

k | b
(20) 13- xeu() - (©) [ xe®dul <.

=1

By definition we know that xg € £ and by the result stated above we have
also xg € §*. The last inequality means that

b b
() / xe(®)dp = (5) / X (t)du

If now y € Y, then the function yxg : [a,b] & Y belongs to L. Therefore
yxE € 8* by the previous results and also

b

b
(£) / yxe(t)du = yu(E) = y(L) / xe(t)dy.



44

Hence by (20) we get
k ) b ‘
I3 vxe@nt) = ) [ vxe@aly

= |ly [Z xe(t)u(Ji) — (ﬁ)/ XEe(t) dﬂ] ly < llyllve,

=1

1.e. we obtain 5 5
(c) / wxs®du = (S) [ vxe)d

and this immediately implies that

b b
(£) / g(t)du = (S) / - g(t)du

for an arbitrary simple function g : [a,b] — Y. Without any loss of gener-
ality it can be assumed that for the approximating sequence (f,) of simple
functions the inequality

1@y < IF @Iy +1

holds for y— almost all ¢ € [a,b]. (1t is possible to define g,(t) = f4(t)

if £,y < 1Ff@®)lly +1 and gg(t) = O otherwise; g, is the the desired

bounded approximating sequence of simple functions for the function f.)
Since

b b
tim 1(C) [ fodu= () [ fdully =0,
g—0o0 a a

there is a ¢ € N, ¢ > n, such that

b b
) / fadps = (£) / faully <

and for the simple function f, the equality

(©) / fods = / oty
1s satisfied.

Assume that §; is a gauge on [a, b] for whxch 01(t) < o(t) ift € [a b] (for
the gauge ¢ see p. 14) and

k b
IS Faltds) = (5) [ fedully < e
i=1 a
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for every 6,— fine L— partition {(J;,%),i = 1,...,k}.
For such a 6;— fine L partition {(J;, %), =1,...,k} we have

1S FuR) - (©) / fdully

i=1

< Z f(t)n(d) — 2 ot T)lly
i=]1 i=1

F1S Fo@)u(F) = (S) [ fadplly + (L) [ fodn— (L) [ fdpl
; p( / plly + | / B — / plly

< Zf (i) — qu Yul i)y + 2e.

i=1 i=1

We need an estimate for the sum on the right ha.nd side of this inequality.
We split the sum into two parts, one with ¢; € U A, and the other one

m=1
witht: ¢ U Ag,, ie.
m=1
k k
S — fetDw ) = D (F) — felt)mE)
=1

i=1,4,€ ’E_J:1=Aqm
+ Y (F) = fa))a()-

. pq
i=1,t;¢ U Agm
m=1

p k
Ift; ¢ Lj Ag,., then pu( U J;) < n and

m=1 . Pg
i=1,t:¢ U Agm
m=1

k
b > (@) - fet)e)ly
i=1,t:¢ ’Ql Agm
k , K

S IEIve@ + Y falt)lya()

i Pq Pq
1=1,ti¢ U AQm i=11ti¢ U AQm
m=1 m=1

IA
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k
< > @Iy + () <26 +9 <3¢

Pq
i=1vti¢ U AQm
m=1
. k
by Lemma 8 because p( U J;) < 7 in this case.
i=1,¢4;¢ U Agrm
m=1

p
Ift;e | A, then
m=1

[lf(t:) — fot)lly < @

and

k k
Y (@) = f@De@lly <a Y ()

Pq Pq
i=1,t€ |J Agn i=L,t:€ |J Aqp
m=1 m=1

k
<Y u() = anlla,b) < enlla,b).

t==1

Putting together all these estimates, we finally obtain

k b
1D FE)m(J) - (£) / faplly < 2e+ 3¢ + ep([a,b]) = &(5 + p([a, b]))

=1

for every 0;- fine L— partition {(J;,%;),2 =1,...,k} and this implies

(£) / fau= () / ’ fan,

i.e. (16) is satisfied.

We have shown that if Y is a general Banach space then £ C $* C S.
On the other hand the following statement holds.

16. PROPOSITION. If f € §* then also f € £ and

« [ ’ fau=(5) / ’ fau
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PROOF (A SKETCH ONLY). Assume that f € §*. Then to every m =
1,2,... there is a gauge d,, on [a, b] such that

b #([a,b])
ZZIIf(t,) flsi)llym(Ji N Ly) < ==

i=1 j=1

for every 0,,—fine L — partitions {(¢;, %), ¢ = 1,...,k} and {(s;j,L;), j =
.,1} of [a, b].
Without loss of generality we can assume that

Om41(t) < dn(t) for t € [a,b], m =1,2,....

Let {(tg"'), J,-(m)),i =1,2,... ,km} be a §,— fine L~ partition of [a,d]. As-
sume that {(tfm"'l), Ji(m+1)),z' =1,2,...,kn41 is a refinement of the parti-
tion

(@™, 7M),i=1,2,... . km,

i.e. that fori = 1,2,...,kn4) thereis a j € i = 1,2,...,ky, such that
[ J *

Define
Fm(t) = F(t™) for t € Int J™,

fm(t) = 0 otherwise.

The function fy, : [a,b] = Y is evidently simple.
Denote

W(m,i) = {j € {1,2,..., kmy s S C JF™).

Then
b
/ U mta (£) = Fon(8)lly s

-3 O N NN )
=3 2 ) = FEMn ) < S5

i=1 j€W (m,i)

Let € > 0 be given. Let us take N € N such that

1 €
2 = < Wi
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If g,r > N, r < q then

Wfq — Felly <Wfq = fo-ally + -+ + | frar = Felly

1 1
<p([a,b])( et E__l) <e.

This implies that the sequence (f,,,) is L'~ Cauchy and by the Fundamental
Lemma 2 it contains a subsequence ( we denote it again (f,,) ) which con-
verges pointwise u— almost everywhere to a certain function g : [a, b =Y.
By the results given above we have g € £ C 8* and

b b b b
) [ odu=0) [ odu= lim (5) [ fuds = tim (£) [ Frn.
a a a a
To finish the proof the following facts have to be shown:

Jim (5) / frmdis = (S) / g

and
Jim () [ fmdu=(S) [ san

for every interval J C [a,b]. Then

(S)/J(g-f)du=0

for every interval J C [a,b]. From this then it is possible to show that
f(t) = g(t) for y— almost all ¢ € [a,b] and consequently f € L because
g€ L.

The finite dimensional case
Now we will show that the following statement holds.
17. PROPOSITION. If Y is a finite dimensional Banach space, then $* =

S.

PROOF. Since Y is finite dimensional, we can assume without loss of
generality that dimY = 1. Otherwise it is possible to work componentwise.
So assume that f :[a,b] > Rand f € S.

Let € > 0 be given. By definition there is a gauge § on [a, b] such that

{

k
I> Fta)u() Z Fs)u(L;)|

Am
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for every 0— fine L— partitions {(t;,J;),i = 1,...,k} and {(s;,L;),j =
W1} Clea.rly {(sJ,J NL;),i=1..kj=1..1} and {(t; /N
L ),z =1,...,kj=1,...,1} are also 6— ﬁne L- partltlons of [a, b].
Further we have

k l ko1
o Ftn) = Y flsdp = (L) =] Y _(F(t:) = fls))u(di = NL;).
i=1 j=1 i=1 j=1
Denote by M, the set of indices (4,7), ¢ = 1,...,k,j = 1,...,1 for which
f(t:) = £(s5)
and by M_ the set of indices (¢,5), i = 1,...,k,j = 1,...,1 for which
f(t:) < f(s5).

By the Saks — Henstock lemma 13 we get

SO = fEemENL) = Y 1f(t) = f(sd)lu(BinLy) <

(i.5)eEM, (i,7)eM+

W] m

and similarly also

S () - feuENL) = Y (f(s) = f(E)n(in L)

(t.5)eM- (i,5)EM4
= Y 1) - fle)lin L) < =
(:,7)EM4
Hence
k ]
SIS @) = fs)lw(Bn L) = Y 1f(t) = f(sa)lu(Ji N L)
==t GareMs
+ 3 1f() - fledlu(Bin L) < = ~<e
(i,5)EM_
and f € S*.

The Dvoretzky and Rogers theorem

18. DEFINITION. Let z;, i = 1,2,... be a sequence of elements of the

o0
Banach space Y. The series Y 2; is called unconditionally convergent if for
i=1

4 -~ Annales...
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an arbitrary permutation of its summands it converges to the same element
z€eY.

The series Z 2; is called absolutely convergent if 2 flzi]ly < oo.
=1 i=1
REMARK. The Bolzano — Cauchy condition corresponding to the concept

OO
of unconditional convergence of a series ) z; reads as follows:
i=1

00
The series Y, z; is unconditionally convergent if and only if to everye > 0

i=1
1Y zlly <e

there is a k € N such that
i€Q

for every finite set Q C {k+1,k+2,...}.
o0
It is easy to see that if ) z; is absolutely convergent then it is uncondi-
i=1
tionally convergent.
In [3] Dvoretzky and Rogers proved the following theorem

19. THEOREM. In an infinite — dimensional Banach space Y for every

o0
sequence ¢; > 0, 4 € N for which ) ¢? < oo, there is an unconditionally
i=1
o0
convergent series Y z;, for which ||z;|ly = .
i=1

1
REMARK. The choice ¢; = -T; gives an exa.mple of an unconditionally

convergent series E z; for which Z lz:lly = Z ;— = o0.
i=1 =1 i=1
Dvoretzky and Rogers proved also that the unconditional convergence of

the series E 2; is equivalent to the absolute convergence of E z; if and only

1=1
if the dlmensmn of the Banach space Y is finite.

The infinite dimensional case

In the sequel we will use these results of Dvoretzky and Rogers to show
that the result of Proposition 15 does not hold for the case of an infinite —
dimensional Banach space Y, i.e. that we have S* C § in this case.

20. LEMMA. Suppose that z; e Y, )\ €[0,1 fori=1,...,k.

Assume
1) ally <1
1€EQ
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for any part Q; of elements of {1,2,...,k} with | elements where | < k.
Then

k
1Y Aizlly < max \; < 1.
i=1

PROOF. Without loss of generality assume that

0< M <Xl--<SAhLL

Then

k k
Z'\jzj =M(z1+--+2z) = lz2+ -+ 2) +Z)\jzj
i=1 =2

=)\1(z1+---+zk)+«\2(z2+»---+zk)—,\I(Z2+...+Zk)

k
— oz + -+ 2) +Z)\jz,~
j=3

+ (A= M)z + - +2k) + o+ (A — A1)z

and therefore

k
1Y Ajzilly

i=1

E k
<Ml zilly + G2 =MD zlly + -+ ke = Ae-)llzelly
j=1 j=2
<A+ (2= A1)+ (A= A2) + - 4+ (Ae — A1)
= Ap =maxA; <1
J

Assume now that the dimension of the Banach space Y is infinite and that

o0 o0

Y 2; is an unconditionally convergent series for which 3° |z;lly = +o0.

i=1 =1

Such a series exists by the above mentioned result of Dvoretzky and Rogers.
Let K; C [a,b], j = 1,2,... be open intervals such that K; N K; = @ for

i # j. We have
Y (k) < u(le, b)) < oo.

i=1
‘.
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Denote
o0
K =|JKj, C=[a,b]\ K.
j=1
Let us set
yi=—3 _forj=1,2,....
u(K;)

o0
The series Y y;u(K;) unconditionally converges to a sum s € Y while
i=1

> llysllyu(K;) = +oo.
j=1

Let € > 0. Take m € N such that
m €
@) | X2 yin(K;) —slly < 3,
j=1 3
m
() 1| 32 yin(K; ) —slly < % for any finiteset Q C {m+1,m+2,...}
j€Q

and define
f®)=0forteC,

fit) =y forte K;,j=1,2,....
Assume that § : [a, b] = (0, 00) is such a gauge on [a, b] that

(t—48(t),t+46(t)) N[a,b] C K

for j=1,2,... and t € K;. Let

€ 1
0<n<g—pm—
1+ lelyjlly
j= .

and let G C [a,b] be an open set for which
C =[a,b]\ K C G and u(G) < u(C) + 1.
Fort € C assume that

(t-d8(t),t+4(t))N [g, bl C G.

Let {(¢;,J;),i = 1,...,k} be a 6— fine L— partition of [a, b].
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Then by (a)
| Zf(tz)l‘(']) slly < 3 + I Zf(t Ju(Ji) — Zyaﬂ (Eilly-
i=1 i=1

Denote ™ o B
K.=|JKjand K..= |J K;

and split the sum
k k
> Ft)p Z Hmes
i=1 1,4,€
into two parts
k k k
Sofud) = Y, Fds(d)+ > ft)uld)
i=1 i=1 tiEK. i=1,t;€K.s
0o k
=Z Z Fu)+ Y. Y fad)
j=1li=1,t;€K; j=m+li=1,t;€K;
m k oo k
=Z Sou@+ Y uo Y s
j=1 i=1t:;€K; j=m+1l i=1t;€K;
Then we obtain
IIZf () =D yin(K)lly
=1
m -k m k
<UD wi Do s = pENly + | Soowi DD sy
j=1 i=1,t;€K; j=m+1 i=1,t;€K; '

The last term in this inequality consists of a finite number of nonzero terms

only and we have
k

> u() < pK;),

i=1,t€K;

1.e.
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where \; € [0,1]. By (b) and by Lemma 18 we get

m k
Yy v Y u(J.~»ny<§-.

j=m+1 i=1,t;€K;

o . _
It remains to give an estimate for || 3_ y;( X p(J) — p(K;)|ly. We
i

j=1  i=lt€

have
m k m k
I w0 Yo wh) —sE)ly <Y lwsllvwE) - Y s@)ly
Jj=1 i=1,t;€K; j=1 i=1,t;€K;
and
pE\ U %) =nE) —p(J ) = sle,b)) - m(C) —u(|J %)
ti€K ti€K tieK
k
=u(lJ %) =€) = u(|J %) =s(lJ %) —u(C) < u(G) - u(C) <n.
i=1 tieK ti€C
Since
K\ Lck\|J &
ti€K; t;eK
we get
0<uE;\ |J J) =n&;)—u(|J B <suE\ J &)<
tEK; tEK; tieK

forevery j=1,...,m.
Therefore

m k m
£
I w0 Y. wh) - sEDly <0 ) lysly < 3
j=1 i=1,4;€K; j=1
Finally we obtain
k
1Y ft)u(i) - slly <e=7TF
i=1
and this means that the integral (S) f: fdu exists and

b o0
) [ fdu=s=Y unlK),

=1
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o0
ie. f € S. on the other hand, since the series ) y;u(K;) does not con-
j=1

verge absolutely, the Bochner integral (L) I} : fdp does not exist because
b 0
(C) [, W fllydu = -21 lly;lly p(K;) = oo
J=

This construction leads to the following statement.

21. PROPOSITION. If Y is an infinite — dimensional Banach space then
there exists a function f : [a,b] = Y such that f € S and f ¢ S*.

Finally together with Proposition 17 we obtain:

22. PROPOSITION. Given a Banach space Y then $* C S and §* =S if
and only if the dimension of Y is finite.
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