Annales Mathematicae Silesianae 9. Katowice 1995, 7-10

Prace Naukowe Uniwersytetu Śląskiego nr 1523

CATEGORIES OF UNIVERSAL ALGEBRAS IN WHICH DIRECT PRODUCTS ARE TENSOR PRODUCTS

JOSEF ŠLAPAL

Abstract. In categories of commutative universal algebras of given types we discover full subcategories in which direct products coincide with tensor products.

A concrete category K of structured sets and structure-compatible maps, i.e. a category K with a faithful (=forgetful) functor $| | : K \to Set$, will be called a *construct*. Given two objects A and B of a construct K (we write $A, B \in K$), by Hom(A, B) we denote the set of all morphisms from A into B in K. The usual symbols \times and \otimes will be used for denotation of the cartesian product and the tensor product, respectively, in a construct. We shall need the following known result (see e.g. [1]): Let K be a semifinally complete construct with a unit object. If for arbitrary objects $A, B \in K$ there exists a subobject [A, B] of the cartesian product $B^{|A|}$ such that |[A, B]| =Hom(A, B), then for any object $A \in K$ the functor $A \otimes - : K \to K$ is a left adjoint to the functor [A, -] (and vice versa).

By a type we mean a family $\tau = (n_{\lambda}; \lambda \in \Omega)$ where Ω is a set and n_{λ} is a cardinal for each $\lambda \in \Omega$. A universal algebra (briefly an algebra) of type $\tau = (n_{\lambda}; \lambda \in \Omega)$ is a pair $A = \langle X, (p_{\lambda}; \lambda \in \Omega) \rangle$ where X is a set - the so called underlying set of A - and p_{λ} is an n_{λ} -ary operation on X, i.e. $p_{\lambda}: X^{n_{\lambda}} \to X$, for each $\lambda \in \Omega$. An algebra $\langle X, (p_{\lambda}; \lambda \in \Omega) \rangle$ of type $\tau = (n_{\lambda}; \lambda \in \Omega)$ is called

idempotent if for any $\lambda \in \Omega$ and any $x \in X$ from $x_i = x$ for each $i \in n_\lambda$ it follows that $p_\lambda(x_i; i \in n_\lambda) = x$,

diagonal (c.f. [9]) if there holds

$$p_{\lambda}(p_{\lambda}(x_{ij}; j \in n_{\lambda}); i \in n_{\lambda}) = p_{\lambda}(x_{ii}; i \in n_{\lambda})$$

AMS (1992) subject classification: Primary 08C05. Secondary 18D15.

whenever $\lambda \in \Omega$ and $x_{ij} \in X$ for all $i, j \in n_{\lambda}$, commutative (see [7]) if the identity

$$p_{\lambda}(p_{\mu}(x_{ij}; j \in n_{\mu}); i \in n_{\lambda}) = p_{\mu}(p_{\lambda}(x_{ij}; i \in n_{\lambda}); j \in n_{\mu})$$

holds for all $\lambda, \mu \in \Omega$ and all $x_{ij} \in X$, $i \in n_{\lambda}$, $j \in n_{\mu}$.

Given a type τ , by Alg_{τ} we denote the category of all idempotent, diagonal and commutative algebras of type τ with homomorphisms as morphisms. Clearly, for arbitrary type τ , Alg_{τ} is a semifinally complete construct where |A| is the underlying set of A for any algebra $A \in Alg_{\tau}$. It is also clear that Alg_{τ} is closed with respect to cartesian (i.e. direct) products of objects. The idempotency implies that every algebra $A \in Alg_{\tau}$ with card |A| = 1 is a unit object of Alg_{τ}. By [7], from the commutativity it follows that for any two algebras $A, B \in Alg_{\tau}$ there exists a subalgebra [A, B] of the direct product $B^{|A|}$ such that |[A, B]| = Hom (A, B). Thus, $A \otimes -$ is a left adjoint to the functor [A, -]: Alg_{τ} \to Alg_{τ} for any type τ and any algebra $A \in Alg_{\tau}$ (see also [2], [8]). Using this fact we prove

THEOREM. For any type τ and any algebras $A, B \in Alg_{\tau}$ there holds $A \times B = A \otimes B$.

PROOF. Let $\tau = (n_{\lambda}; \lambda \in \Omega)$ be an arbitrary type. According to the previous considerations it is sufficient to show that $A \times -$ is a left adjoint to [A, -] for each $A \in Alg_{\tau}$. In other words, we are to prove that for any two algebras $A, B \in Alg_{\tau}$ there is a homomorphism $f \in Hom(B, [A, A \times B])$ such that for any algebra $C \in Alg_{\tau}$ and any homomorphism $g \in Hom(B, [A, C])$ there exists a unique homomorphism $g^* \in Hom(A \times B, C)$ with the property that $g(y) = g^* \circ f(y)$ for each $y \in |B|$.

On that account, let $A = \langle X, (p_{\lambda}; \lambda \in \Omega) \rangle$, $B = \langle Y, (q_{\lambda}; \lambda \in \Omega) \rangle$ and let $f : Y \to (X \times Y)^X$ be the map given by f(y)(x) = (x, y). Denote $A \times B = \langle X \times Y, (r_{\lambda}; \lambda \in \Omega) \rangle$, $[A, A \times B] = \langle \operatorname{Hom}(A, A \times B), (s_{\lambda}; \lambda \in \Omega) \rangle$, and let $\lambda \in \Omega$ and $y_i \in Y$ for each $i \in n_{\lambda}$. Then we have

$$f(q_{\lambda}(y_{i}; i \in n_{\lambda}))(x) = (x, q_{\lambda}(y_{i}; i \in n_{\lambda})) = (p_{\lambda}(x; i \in n_{\lambda}), q_{\lambda}(y_{i}; i \in n_{\lambda}))$$
$$= r_{\lambda}((x, y_{i}); i \in n_{\lambda}) = r_{\lambda}(f(y_{i})(x); i \in n_{\lambda})$$
$$= s_{\lambda}(f(y_{i}); i \in n_{\lambda})(x)$$

for any $x \in X$. Hence $f \in \text{Hom}(B, [A, A \times B])$.

Next, let $C = \langle Z, (t_{\lambda}; \lambda \in \Omega) \rangle \in Alg_{\tau}$ be an algebra and let $g \in Hom(B, [A, C])$ be a homomorphism. For any $(x, y) \in X \times Y$ put $g^*(x, y) = g(y)(x)$. Then we have defined a map $g^* : X \times Y \to Z$. Let $(x_i, y_i) \in X \times Y$

for each $i \in n_{\lambda}$ and denote $[A, C] = \langle \operatorname{Hom}(A, C), (u_{\lambda}; \lambda \in \Omega) \rangle$. There holds

$$g^*(r_{\lambda}((x_i, y_i); i \in n_{\lambda})) = g^*(p_{\lambda}(x_i; i \in n_{\lambda}), q_{\lambda}(y_i; i \in n_{\lambda}))$$

$$= g(q_{\lambda}(y_i; i \in n_{\lambda}))(p_{\lambda}(x_i; i \in n_{\lambda}))$$

$$= u_{\lambda}(g(y_i); i \in n_{\lambda})(p_{\lambda}(x_i; i \in n_{\lambda}))$$

$$= t_{\lambda}(g(y_i)(p_{\lambda}(x_i; i \in n_{\lambda})); j \in n_{\lambda})$$

$$= t_{\lambda}(g(y_i)(x_i); i \in n_{\lambda}); j \in n_{\lambda})$$

$$= t_{\lambda}(g(y_i)(x_i); i \in n_{\lambda})$$

$$= t_{\lambda}(g^*(x_i, y_i); i \in n_{\lambda}).$$

We have shown that $g^* \in \text{Hom}(A \times B, C)$.

As the equality $g(y) = g^* \circ f(y)$ for any $y \in Y$ and the uniqueness of g^* are obvious, the proof is complete.

REMARK. (a) A finitely productive construct K having the property that for any its object A the functor $A \times - : K \to K$ has a right adjoint is called cartesian closed – see [4]. Thus, we have proved that Alg_{τ} is cartesian closed for any type τ .

(b) Given a natural number n, by an n-ary algebra we understand a set with one n-ary operation on it. For n-ary algebras the commutativity (more often called the mediality) results from the diagonality. The diagonal and idempotent n-ary algebras are studied in [9]. The medial groupoids are fully dealt with in [6]. One can easily prove the following criterion for the diagonality of n-ary algebras: An n-ary algebra $\langle X, p \rangle$ is diagonal iff

$$p(x_{11}, x_{22}, \dots, x_{nn}) = p(p(x_{11}, x_{12}, \dots, x_{1n}), x_{22}, \dots, x_{nn})$$

= $p(x_{11}, p(x_{21}, x_{22}, \dots, x_{2n}), x_{33}, \dots, x_{nn}) = \dots$
= $p(x_{11}, x_{22}, \dots, x_{n-1,n-1}, p(x_{n1}, x_{n2}, \dots, x_{nn}))$

holds for any $x_{ij} \in X$, i, j = 1, 2, ..., n. Consequently, a groupoid $\langle X, \cdot \rangle$ is diagonal iff it is a semigroup with xyz = xz for each $x, y, z \in X$. For example, any rectangular band (see [3]) is a diagonal (and idempotent) groupoid and hence an object of Alg_{τ} for $\tau = (2)$.

A criterion for the diagonality of algebras of arbitrary types is given in [10].

References

- [1] J. Adámek, Theory of Mathematical Structures, D. Reidel Publ. Comp., Dordrecht -Boston - Lancaster, 1983.
- [2] B. Banaschewski and E. Nelson, Tensor products and bimorphisms, Canad. Math. Bull. 19 (1976), 385-402.

- [3] A.H. Clifford and G.B. Preston, The Algebraic Theory of Semigroups, Providence, Rhode Island, 1964.
- [4] S. Eilenberg and G.M. Kelly, Closed categories, Proc. Conf. Cat. Alg. La Jolla, 1965, 421-562.
- [5] G. Grätzer, Universal Algebra, Second Ed., Springer Verlag, New York Heidelberg - Berlin, 1979.
- J. Ježek and T. Kepka, Medial groupoids, Rozpravy ČSAV, Řada Mat. a Přir. Věd. 93/1, Academia, Prague, 1983.
- [7] L. Klukovits, On commutative universal algebras, Acta. Sci. Math. 34 (1973), 171– 174.
- [8] F.E. Linton, Autonomous equational categories, J. Math. Mech. 15 (1966), 637-642.
- [9] J. Plonka, Diagonal algebras, Fund. Math. 58 (1966), 309-321.
- [10] J. Šlapal, A note on diagonal algebras, Math. Nachr. 158 (1992), 195-197.

DEPARTEMENT OF MATHEMATICS TECHNICAL UNIVERSITY OF BRNO 616 69 BRNO CZECH REPUBLIC