SOME REMARKS ON THE DARÓCZY EQUATION

Lech Bartlomiejczyk

Abstract

The general solution of the functional equation $$
f(x)=f(x+1)+f(x(x+1))
$$ considered both on $(0,+\infty)$ and \mathbb{R}, are studied. Constructions of odd and even solutions are given.

In this paper we deal with the functional equation

$$
\begin{equation*}
f(x)=f(x+1)+f(x(x+1)) \tag{1}
\end{equation*}
$$

and its real solution, generally defined on $(0,+\infty)$. Some problems concerning this equation was posed by Z.Daróczy during the XXIV ISFE in South Hadley [3]. The main problem was solved by M.Laczkovich and R.Redheffer [5]; see also [6], [1], [2], [4]. In part 1 we investigate the general solution $f:(0,+\infty) \rightarrow \mathbb{R}$ of (1) in the spirit of [6] by Z.Moszner. Next we give another construction of the general solution of the Daróczy equation which bases on an equivalence relation on $(0,+\infty)$. In part 3 we present constructions of real solutions of equation (1) defined on \mathbb{R}. In particular, we construct of all the odd and all the even solutions of (1). Finally, in part 4 we introduce another equation, a generalization of (1), and give some informations on its solutions under the assumption that there exists the limit $\lim _{x \rightarrow+\infty} x f(x)$, like it is in papers of K. Baron [1], [2] and W. Jarczyk [4].

1. Let us start with a simple remark: putting x instead of $x(x+1)$ in (1) we obtain

Remark 1. A function $f:(0,+\infty) \rightarrow \mathbf{R}$ is a solution of (1) if and only if

$$
\begin{equation*}
f(x)=f\left(\frac{\sqrt{1+4 x}-1}{2}\right)-f\left(\frac{\sqrt{1+4 x}+1}{2}\right) \tag{2}
\end{equation*}
$$

for $x \in(0,+\infty)$.
The following theorem brings a description of the general solution of (1). In a special case $(a=6)$ it reduces to the result of Z.Moszner [6].

Theorem 1. If $a \in(2,6]$ then for every real function f_{0} defined on $\left[\frac{\sqrt{1+4 a}-1}{2}, a\right)$ there exists exactly one solution $f:(0,+\infty) \rightarrow \mathbb{R}$ of (1) which is an extension of f_{0}.

Proof. Define $\varphi:[0,+\infty) \rightarrow \mathbb{R}$ by

$$
\begin{equation*}
\varphi(x):=\frac{\sqrt{1+4 x}-1}{2} \tag{3}
\end{equation*}
$$

observe that

$$
\begin{array}{lll}
0<\varphi(x)<x & \text { for } & x \in(0,+\infty), \quad \varphi(0)=0 \\
\varphi^{-1}(x-1)>x & \text { for } \quad x \in(2,+\infty)
\end{array}
$$

and let ($\left.a_{n}: n \in \mathbb{Z}\right),\left(b_{n}: n \in \mathbb{N}\right)$ be the sequences such that

$$
\begin{aligned}
& a_{0}=\varphi(a) \text { and } \varphi\left(a_{n}\right)=a_{n-1} \text { for } n \in \mathbf{Z}, \\
& b_{0}=a \text { and } b_{n}=\varphi^{-1}\left(b_{n-1}-1\right) \text { for } n \in \mathbb{N} .
\end{aligned}
$$

The sequence ($b_{n}: n \in \mathrm{~N}$) is strictly increasing to infinity. Hence we can find the number $N \in \mathbf{N}$ such that

$$
b_{N-1}<a+1 \quad \text { and } \quad b_{N} \geq a+1
$$

Then

$$
a_{1}=a<b_{N}=\varphi^{-1}\left(b_{N-1}-1\right)<\varphi^{-1}(a)=\varphi^{-1}\left(a_{1}\right)=a_{2} .
$$

Define now functions $f_{1,1}, f_{1,2}, \ldots, f_{1, N+1}$ in the following way:

$$
\begin{array}{ll}
f_{1,1}(x):=f_{0}(\varphi(x))-f_{0}(\varphi(x)+1), & x \in\left[a_{1}, b_{1}\right), \\
f_{1, n}(x):=f_{0}(\varphi(x))-f_{1, n-1}(\varphi(x)+1), & x \in\left[b_{n-1}, b_{n}\right), n=2, \ldots, N, \\
f_{1, N+1}(x):=f_{0}(\varphi(x))-f_{1, N}(\varphi(x)+1), & x \in\left[b_{N}, a_{2}\right),
\end{array}
$$

and put

$$
f_{1}:=\bigcup_{j=1}^{N+1} f_{1, j}
$$

Also the sequence ($a_{n}: n \in \mathbb{Z}$) is strictly increasing and $\lim _{n \rightarrow-\infty} a_{n}=0$, $\lim _{n \rightarrow+\infty} a_{n}=+\infty$. For every positive integer $n \geq 2$ define the function $f_{n}:\left[a_{n}, a_{n+1}\right) \rightarrow \mathbb{R}$ by putting

$$
f_{n}(x):= \begin{cases}f_{n, 1}(x), & x \in\left[a_{n}, \varphi^{-1}\left(a_{n}-1\right)\right), \\ f_{n, 2}(x), & x \in\left[\varphi^{-1}\left(a_{n}-1\right), a_{n+1}\right)\end{cases}
$$

where

$$
\begin{aligned}
f_{n, 1}(x):=f_{n-1}(\varphi(x))-f_{n-1}(\varphi(x)+1), & & x \in\left[a_{n}, \varphi^{-1}\left(a_{n}-1\right)\right), \\
f_{n, 2}(x):=f_{n-1}(\varphi(x))-f_{1, n}(\varphi(x)+1), & & x \in\left[\varphi^{-1}\left(a_{n}-1\right), a_{n+1}\right)
\end{aligned}
$$

To define $f_{n}:\left[a_{n}, a_{n+1}\right) \rightarrow \mathbb{R}$ for negative integers we put

$$
f_{-1}(x):=f_{0}(x+1)+f_{0}(x(x+1)) \quad \text { for } \quad x \in\left[a_{-1}, a_{0}\right)
$$

$f_{n-1}(x):= \begin{cases}f_{0}(x+1)+f_{n}(x(x+1)), & x \in\left[a_{n-1}, a_{n}\right) \cap\left[a_{0}-1, a_{1}-1\right), \\ f_{-1}(x+1)+f_{n}(x(x+1)), & x \in\left[a_{n-1}, a_{n}\right) \cap\left[a_{-1}-1, a_{0}-1\right),\end{cases}$
for $n \leq-1$. Finally we define $f:(0,+\infty) \rightarrow \mathbb{R}$ by

$$
f(x):=f_{n}(x) \quad \text { for } \quad x \in\left[a_{n}, a_{n+1}\right), \quad n \in \mathbf{Z}
$$

It follows from the definition of f_{n} for $n \geq 1$ that (2) holds for $x \geq a_{1}$, whereas the definition of f_{n} for $n \leq-1$ gives (1) for positive $x<a_{0}$. Hence, since $x \leq a_{1}$ implies $\varphi(x)<a_{0}$, we have

$$
f(\varphi(x))=f(\varphi(x)+1)+f(x) \quad \text { for } \quad x \in\left(a_{0}, a_{1}\right)
$$

In other words, f is a solution of (2). According to Remark 1 it is also a solution of (1).

Finally, if $\tilde{f}:(0,+\infty) \rightarrow \mathbb{R}$ is a solution of (1) and an extension of f_{0} then $f_{n}(x)=\tilde{f}(x)$ for $x \in\left[a_{n}, a_{n+1}\right)$ and $n \in \mathbb{Z}$ whence $f=\tilde{f}$.

Corollary 1. If two solutions of (1) defined on ($0,+\infty$) coincides on $\left[\frac{\sqrt{1+4 a}-1}{2}, a\right)$ for some $a \in(2,6]$, then they are identical.

Later (in Remark 2 below) we shall show that the above theorem doesn't hold for $a=2$. However, we have the following result.

Theorem 2. Let $f_{1}, f_{2}:(0,+\infty) \rightarrow \mathbb{R}$ are solutions of (1) such that either
(i) there exist the limits

$$
\lim _{x \rightarrow 2^{+}} f_{1}(x), \quad \lim _{x \rightarrow 2^{+}} f_{2}(x)
$$

and at least one of them is finite;
or
(ii) there exists an $\varepsilon>0$ such that

$$
f_{1}(x) \geq f_{2}(x) \quad \text { for } \quad x \in(2,2+\varepsilon)
$$

If

$$
\left.f_{1}\right|_{[1,2)}=\left.f_{2}\right|_{(1,2)}
$$

then

$$
f_{1}=f_{2}
$$

Proof. Defining

$$
f:=f_{1}-f_{2}
$$

we observe that f is a solution of (1) vanishing on $[1,2)$. We shall show that it vanishes on $[1,6)$. Putting $x=1$ in (1) we obtain $f(2)=0$. Fix $x_{0} \in(2,6)$, define $\varphi:(0,+\infty) \rightarrow \mathbb{R}$ by (3) and the sequence ($x_{n}: n \in \mathbb{N}$) putting

$$
x_{n}:=\varphi\left(x_{n-1}\right)+1 .
$$

We can easy show that this sequence is strictly decreasing to 2 . In particular,

$$
\varphi\left(x_{n}\right) \in \varphi((2,6))=(1,2)
$$

Hence

$$
0=f\left(\varphi\left(x_{n}\right)\right)=f\left(\varphi\left(x_{n}\right)+1\right)+f\left(\varphi\left(x_{n}\right)\left(\varphi\left(x_{n}\right)+1\right)\right)=f\left(x_{n+1}\right)+f\left(x_{n}\right)
$$

i.e.

$$
f\left(x_{n+1}\right)=-f\left(x_{n}\right) \quad \text { for } \quad n \in N_{0} .
$$

This gives

$$
f\left(x_{n}\right)=(-1)^{n} f\left(x_{0}\right) \quad \text { for } \quad n \in \mathbf{N} .
$$

In case (i) the sequence ($f\left(x_{n}\right): n \in \mathrm{~N}$) has a limit whence $f\left(x_{0}\right)=0$. In case (ii) we have $f\left(x_{n}\right) \geq 0$ for n large enough and so $f\left(x_{0}\right)=0$ as well. Thus we have proved that f vanishes on $(1,6)$ and it follows from Corollary 1 that f vanishes everywhere. It means that $f_{1}=f_{2}$.

Now we shall explain more precisely non-uniqueness in extending functions from [1, 2) to solutions of Daróczy equation on ($0,+\infty$).

Remark 2. For any solution $f_{1}:(0,+\infty) \rightarrow \mathbb{R}$ of (1), for any $a \in$ $(2,6]$ and for any function $u:\left[\frac{\sqrt{1+4 a}+1}{2}, a\right) \rightarrow \mathbb{R}$ there exists a solution $f_{2}:(0,+\infty) \rightarrow \mathbb{R}$ of (1) such that

$$
f_{1}(x)=f_{2}(x) \quad \text { for } \quad x \in(0,2]
$$

and

$$
f_{1}(x)-f_{2}(x)=u(x) \quad \text { for } \quad x \in\left[\frac{\sqrt{1+4 a}+1}{2}, a\right) .
$$

We precede our proof of this remark by the following lemma.
Lemma 1. If a solution of (1) on $(0,+\infty)$ vanishes on $(1,2]$ then it vanishes on (0,2].

Proof. Let $f:(0,+\infty) \rightarrow \mathbb{R}$ be a solution of (1) vanishing on (1, 2]. Define $\varphi:(0,+\infty) \rightarrow \mathbb{R}$ by (3) and the sequence ($x_{n}: n \in \mathbb{N}$) putting

$$
x_{0}:=2 \quad \text { and } \quad x_{n}:=\varphi\left(x_{n-1}^{n}\right) \quad \text { for } \quad n \in \mathbb{N} .
$$

This sequence is strictly decreasing to zero and $x_{1}=1$. Moreover, if $n \in \mathbf{N}$ and $x \in\left(x_{n+1}, x_{n}\right]$ then $x+1 \in\left(x_{1}, x_{0}\right]$ and $x(x+1) \in\left(x_{n}, x_{n-1}\right]$. Hence f vanishes on (x_{1}, x_{0}] and if f vanishes on (x_{n}, x_{n-1}] then, as a solution of (1), it vanishes also on (x_{n+1}, x_{n}].

Proof of Remark 2. We have to define a solution $f:(0,+\infty) \rightarrow \mathbf{R}$ of (1) which vanishes on (0,2] and coincides with u on $\left[\frac{\sqrt{1+4 a}+1}{2}, a\right)$. Define $\psi:(2,+\infty) \rightarrow \mathbb{R}$ by

$$
\psi(x):=\frac{\sqrt{1+4 x}+1}{2}
$$

and the sequence ($c_{n}: n \in \mathbb{N}$) putting

$$
c_{1}:=a \quad \text { and } \quad c_{n+1}:=\psi\left(c_{n}\right) \text { for } n \in \mathbf{N} .
$$

This sequence is strictly decreasing to 2 . Hence for every $n \in \mathrm{~N}$ we can define the function $f_{n}:\left[c_{n+1}, c_{n}\right) \rightarrow \mathbf{R}$ by

$$
f_{n}(x):=(-1)^{n-1} u\left(\psi^{-(n-1)}(x)\right) \quad \text { for } \quad x \in\left[c_{n+1}, c_{n}\right) .
$$

Putting

$$
f_{0}(x):= \begin{cases}f_{n}(x), & x \in\left[c_{n+1}, c_{n}\right),:: n \in \mathrm{~N}, \\ 0, & x \in\left[\frac{\sqrt{1+4 a}-1}{2}, 2\right]\end{cases}
$$

and using Theorem 1 we obtain a solution $f:(0,+\infty) \rightarrow \mathbb{R}$ of (1) which is an extension of f_{0}; in particular f coincides with u on $\left[\frac{\sqrt{1+4 a}+1}{2}, a\right)$. Now we show that f vanishes on (0,2]. On virtue of Lemma 1 and the definition of f_{0} it is enough to check that f vanishes on $\left(1, \frac{\sqrt{1+4 a}-1}{2}\right)$. Let $x \in\left(1, \frac{\sqrt{1+4 a}-1}{2}\right)$. Then $x+1 \in\left(2, c_{2}\right)$ and there exists an $n \geq 2$ such that $x+1 \in\left[c_{n+1}, c_{n}\right)$. Hence

$$
x(x+1)=\psi^{-1}(x+1) \in\left[\psi^{-1}\left(c_{n+1}\right), \psi^{-1}\left(c_{n}\right)\right)=\left[c_{n}, c_{n-1}\right)
$$

and

$$
\begin{aligned}
f(x) & =f(x+1)+f(x(x+1)) \\
& =(-1)^{n-1} u\left(\psi^{-(n-1)}(x+1)\right)+(-1)^{n-2} u\left(\psi^{-(n-2)}(x(x+1))\right) \\
& =(-1)^{n-1} u\left(\psi^{-(n-1)}(x+1)\right)+(-1)^{n} u\left(\psi^{-(n-2)}\left(\psi^{-1}(x+1)\right)\right) \\
& =(-1)^{n-1} u\left(\psi^{-(n-1)}(x+1)\right)+(-1)^{n} u\left(\psi^{-(n-1)}(x+1)\right)=0 .
\end{aligned}
$$

2. In this section we present another construction of solutions of Daróczy equation and we give two examples of discontinuous at each point solutions: such that there exists the limit at infinity and such that this limit does not exist.

Theorem 3. There exists a partition \mathcal{X} of $(0,+\infty)$ consisting of countable and dense subsets of $(0,+\infty)$ such that

$$
\begin{equation*}
\text { if: } X \in \mathcal{X} \quad \text { and } \quad x \in X \text { then } x+1, x(x+1) \in X ; \tag{4}
\end{equation*}
$$

in particular, a function $f:(0,+\infty) \rightarrow \mathbb{R}$ is a solution of (1) iff for every $X \in \mathcal{X}$ the function $\left.f\right|_{X}$ does.

Proof. Define $\varphi:(0,+\infty) \rightarrow \mathbb{R}$ by (3) and $\tau:(0,+\infty) \rightarrow \mathbb{R}$ by

$$
\tau(x)=x+1
$$

put

$$
\Phi=\left\{\varphi, \varphi^{-1}, \tau, \tau^{-1}\right\}
$$

and define the relation \sim on $(0,+\infty)$ by

$$
x \sim y \Longleftrightarrow y=\varphi_{1}\left(\ldots\left(\varphi_{n}(x) \ldots\right) \text { for some } \varphi_{1}, \ldots, \varphi_{n} \in \Phi\right.
$$

One can easily check that it is an equivalence relation and thus defines a partition \mathcal{X} of $(0,+\infty)$ consisting of its equivalence classes. It is clear that if $X \in \mathcal{X}$ then X is countable and (4) holds. We shall show that X is also dense in $(0,+\infty)$. Suppose for the contrary that there exist $a, b \in(0,+\infty)$ such that $a<b$ and $(a, b) \cap X=\emptyset$. Then

$$
\emptyset=\varphi^{-1}((a, b)) \cap \varphi^{-1}(X)=\left(\varphi^{-1}(a), \varphi^{-1}(b)\right) \cap X
$$

and so (by induction)

$$
\left(\varphi^{-n}(a), \varphi^{-n}(b)\right) \cap X=\emptyset \quad \text { for every } \quad n \in \dot{N}
$$

Since $\varphi^{-1}(x)>x$ for $x \in(0,+\infty)$ and $\left(\varphi^{-1}\right)^{\prime}(x) \geq 2 a+1$ for $x \geq a$ we have

$$
\varphi^{-(n+1)}(b)-\varphi^{-(n+1)}(a) \geq(2 a+1)\left(\varphi^{-n}(b)-\varphi^{-n}(a)\right)
$$

for every $n \in \mathbf{N}$, whence

$$
\lim _{n \rightarrow+\infty}\left(\varphi^{-n}(b)-\varphi^{-n}(a)\right)=+\infty
$$

Consequently there exists an $n \in \mathbf{N}$ such that

$$
\varphi^{-n}(b)-\varphi^{-n}(a)>1
$$

Let $x \in X$ and fix an integer k such that

$$
x+k \in\left(\varphi^{-n}(a), \varphi^{-n}(b)\right)
$$

Then

$$
\tau^{k}(x)=x+k \in\left(\varphi^{-n}(a), \varphi^{-n}(b)\right) \cap X
$$

a contradiction.
Theorem 3 allows us to give some interesting examples.
Remark 3. (i) There exists a solution $f:(0,+\infty) \rightarrow(0,+\infty)$ of (1) which is discontinuous at each point and such that the limit

$$
\begin{equation*}
\lim _{x \rightarrow+\infty} f(x) \tag{5}
\end{equation*}
$$

does not exist.
(ii) There exist a solution $f:(0,+\infty) \rightarrow(0,+\infty)$ of (1) which is discontinuous at each point and such that

$$
\begin{equation*}
\lim _{x \rightarrow+\infty} f(x)=0 \tag{6}
\end{equation*}
$$

Proof. Let \mathcal{X} be a partition of $(0,+\infty)$ with the properites mentioned in Theorem 3, fix a non-constant function $c: \mathcal{X} \rightarrow(0,+\infty)$ and define a solution $f:(0,+\infty) \rightarrow(0,+\infty)$ of (1) by

$$
f(x):=\frac{c(X)}{x} \quad \text { for } \quad x \in X, X \in \mathcal{X}
$$

It is clear that f is discontinuous at each point. If c is bounded then (6) holds and we have (ii). Assume c is unbounded. We shall prove that limit (5) does not exists. For, let ($X_{n}: n \in N$) be a sequence of elements of \mathcal{X} with $\lim _{n \rightarrow+\infty} c\left(X_{n}\right)=+\infty$ and for every $n \in \mathrm{~N}$ choose an $x_{n} \in$ $\left(c\left(X_{n}\right), 2 c\left(X_{n}\right)\right) \cap X_{n}$. Then $\lim _{n \rightarrow+\infty} x_{n}=+\infty$ and

$$
\begin{equation*}
f\left(x_{n}\right)>\frac{1}{2} \quad \text { for } \quad n \in \mathbf{N} \tag{7}
\end{equation*}
$$

If the limit (5) existed we would have

$$
\lim _{n \rightarrow+\infty} f\left(x_{n}\right)=\lim _{x \rightarrow+\infty} f(x)=\left.\lim _{x \rightarrow+\infty} f\right|_{X}(x)=0
$$

for every $X \in \mathcal{X}$, a contradiction with (7).
3. In this part of the paper we shall show a construction of all the solutions of (1) defined on \mathbb{R}. Let us start with two simple lemmas.

Lemma 2. If $g: \mathbb{R} \rightarrow \mathbb{R}$ is a solution of (1) then the function $G: \mathbb{R} \rightarrow \mathbb{R}$ defined by

$$
\begin{equation*}
G(x):=g(x)+g(-x) \tag{8}
\end{equation*}
$$

is periodic with period 1.
Proof. Fix $x \in \mathbb{R}$. Then, according to (1),

$$
g(-x-1)=g(-x)+g(x(x+1))=g(-x)+[g(x)-g(x+1)]
$$

i.e. $G(x+1)=G(x)$.

Lemma 3. Every solution $g:(-1,+\infty) \rightarrow \mathbb{R}$ of (1) has a unique extension to a solution $f: \mathbb{R} \rightarrow \mathbb{R}$ of (1).

Proof. Define $G:[0,1) \rightarrow \mathbb{R}$ by (8) and $f: \mathbb{R} \rightarrow \mathbb{R}$ by

$$
f(x):= \begin{cases}g(x), & x \in(-1,+\infty) \\ G(\{x\})-g(-x), & x \in(-\infty,-1]\end{cases}
$$

where $\{x\}$ denotes the fractal part of x. Observe that for every $x \in(0,1)$ we have

$$
\begin{aligned}
G(\{-x\}) & =G(1-x)=g(1-x)+g(x-1) \\
& =[g(-x)-g(-x(-x+1))]+g(x-1) \\
& =g(-x)-g(x(x-1))+g(x-1) \\
& =g(-x)-[g(x-1)-g(x)]+g(x-1) \\
& =g(x)+g(-x)=G(\{x\})
\end{aligned}
$$

whence

$$
G(\{-x\})=G(\{x\}) \quad \text { for } \quad x \in \mathbb{R} .
$$

Now we shall show that f is a solution of (1). Of course (1) holds for $x \in$ $(-1,+\infty)$. Assume now that $n \in \mathrm{~N}$ and (1) holds for every $x \in(-n,+\infty)$. Then for $x \in(-n-1,-n]$ we have

$$
\begin{aligned}
f(x) & =G(\{-x\})-f(-x)=G(\{-x-1\})-f(-x) \\
& =f(x+1)+g(-x-1)-f(-x) \\
& =f(x+1)+g(-x)+g(-x(-x-1))-f(-x) \\
& =f(x+1)+f(x(x+1))
\end{aligned}
$$

and so f is a solution of (1). Finally, if \tilde{f} is an extension g to a solution of (1) then applying Lemma 2 we see that

$$
\tilde{f}(x)+\tilde{f}(-x)=\tilde{f}(\{x\})+\tilde{f}(-\{x\})=g(\{x\})+g(-\{x\})=G(\{x\})
$$

for $x \in \mathbb{R}$, whence for $x \in(-\infty,-1]$ we obtain

$$
f(x)=G(\{x\})-g(-x)=\tilde{f}(x)+\tilde{f}(-x)-\tilde{f}(-x)=\tilde{f}(x)
$$

which ends the proof.

Theorem 4. If $a \in(2,6]$ then for every real function f_{0} defined on the set

$$
\left[-\frac{1}{2},-\frac{1}{4}\right) \cup\{0\} \cup\left[\frac{\sqrt{1+4 a}-1}{2}, 2\right) \cup(2, a)
$$

there exists exactly one solution $f: \mathbb{R} \rightarrow \mathbb{R}$ of (1) which is an extension of f_{0}.

Proof. First of all let us observe that any solution of (1) defined on $[0,+\infty)$ vanishes at 1 and 2. Hence, extending f_{0} onto $\left[\frac{\sqrt{1+4 a}-1}{2}, a\right)$ by putting $f_{0}(2)=0$ and applying Theorem 1 we see that f_{0} has a unique extension to a solution $\tilde{f}_{0}:(0,+\infty) \rightarrow \mathbb{R}$ of (1). Extend now \tilde{f}_{0} onto $[0,+\infty)$ by putting $\tilde{f}_{0}(0)=f_{0}(0)$. Then \tilde{f}_{0} is the unique extension of f_{0} to a solution of (1) defined on $[0,+\infty)$. Define $\varphi:\left[-\frac{1}{4}, 0\right) \rightarrow\left[-\frac{1}{2}, 0\right)$ by (3) and the sequence ($x_{n}: n \in \mathrm{~N}_{0}$) putting

$$
x_{0}:=-\frac{1}{2} \quad \text { and } \quad x_{n}:=\varphi^{-1}\left(x_{n-1}\right) \text { for } n \in \mathbf{N} .
$$

This sequence strictly increases to zero. For every positive integer n define a function $f_{n}:\left[x_{n}, x_{n+1}\right) \rightarrow \mathbb{R}$ by

$$
f_{n}(x):=f_{n-1}(\varphi(x))-\tilde{f}_{0}(\varphi(x)+1), \quad x \in\left[x_{n}, x_{n+1}\right)
$$

The formula

$$
\tilde{f}_{1}:=f_{n}(x) \quad \text { for } \quad x \in\left[x_{n}, x_{n+1}\right) \quad \text { and } \quad n \in \mathrm{~N}_{0}
$$

defines a function $\tilde{f}_{1}:\left[-\frac{1}{2}, 0\right) \rightarrow \mathbb{R}$. With the aid of \tilde{f}_{0} and \tilde{f}_{1} define $\tilde{f}_{2}:$ $\left(-1,-\frac{1}{2}\right) \rightarrow \mathbb{R}$ putting

$$
\tilde{f}_{2}(x):=\tilde{f}_{0}(x+1)+\tilde{f}_{1}(x(x+1))
$$

Finally we define $\tilde{f}:(-1,+\infty) \rightarrow \mathbf{R}$ by

$$
\tilde{f}:=\tilde{f}_{0} \cup \tilde{f}_{1} \cup \tilde{f}_{2} .
$$

It is easy to see that \tilde{f} is the unique extension of f_{0} to a solution of (1) defined on $(-1,+\infty)$. An application of Lemma 3 ends the proof.

The following simple theorem describes even solution of (1).
Theorem 5. The only even solution of (1) on \mathbb{R} is the zero function.

Proof. If $f: \mathbb{R} \rightarrow \mathbb{R}$ is an even solution of (1) then an application of Lemma 2 shows that f is periodic with period 1 and (1) gives

$$
f(x(x+1))=0 \quad \text { for } \quad x \in \mathbb{R}
$$

In particular, $f(x)=0$ for $x \in[0,+\infty)$ and, as f is even, $f=0$.
All the odd solutions of equation (1) defined on \mathbb{R} describes the following theorem.

Theorem 6. If $a \in(2,6]$ then for every real function f_{0} defined on the set

$$
\left(0, \frac{1}{2}\right) \cup\left[\frac{\sqrt{1+4 a}+1}{2}, a\right)
$$

there exists exactly one odd solution $f: \mathbb{R} \rightarrow \mathbb{R}$ of (1) which is an extension of f_{0}.

Proof. It is easy to observe that the function $\tilde{f}_{0}:(0,1) \rightarrow \mathbb{R}$ given by

$$
\tilde{f}_{0}(x):= \begin{cases}f_{0}(x), & x \in\left(0, \frac{1}{2}\right) \tag{9}\\ \frac{1}{2} f_{0}\left(\frac{1}{4}\right), & x=\frac{1}{2} \\ f_{0}(x(1-x))-f_{0}(1-x), & x \in\left(\frac{1}{2}, 1\right)\end{cases}
$$

satisfies

$$
\begin{equation*}
\tilde{f}_{0}(x)+\tilde{f}_{0}(1-x)=\tilde{f}_{0}(x(1-x)) \quad \text { for } \quad x \in(0,1) . \tag{10}
\end{equation*}
$$

Define $\psi:(1,+\infty) \rightarrow \mathbf{R}$ by $\psi(x)=(x-1) x$ and $\left(x_{n}: n \in \mathbf{N}_{0}\right)$ by

$$
x_{0}:=1 \quad \text { and } \quad x_{n+1}:=\psi^{-1}\left(x_{n}\right) \text { for } \quad n \in \mathbf{N}
$$

This is a strictly increasing sequence with the limit equal to 2 . For every non-negative integer n define a function $g_{n}:\left[x_{n}, x_{n+1}\right) \rightarrow \mathbf{R}$ putting
(11) $g_{0}\left(x_{0}\right):=0 \quad$ and $g_{0}(x):=\tilde{f}_{0}(x-1)-\tilde{f}_{0}(\psi(x)), \quad x \in\left(x_{0}, x_{1}\right)$,

$$
\begin{equation*}
g_{n}(x):=\tilde{f}_{0}(x-1)-g_{n-1}(\psi(x)), \quad x \in\left[x_{n}, x_{n+1}\right), \quad n \in \mathbf{N}, \tag{12}
\end{equation*}
$$

and a function $\tilde{f}_{1}:[1,2) \rightarrow \mathbf{R}$ as

$$
\tilde{f}_{1}:=g_{0} \cup g_{1} \cup g_{2} \cup \ldots
$$

Consider also a sequence ($a_{n}: n \in \mathrm{~N}_{0}$) such that

$$
\left.a_{0}:=a \quad \text { and } \quad a_{n+1}:=\psi^{-1}\left(a_{n}\right)\right) \text { for } n \in \mathrm{~N} .
$$

This sequence strictly decreases to 2 . For every positive integer n define a function $h_{n}:\left[a_{n}, a_{n-1}\right) \rightarrow \mathbb{R}$ putting

$$
h_{1}(x):=f_{0}(x), \quad x \in\left[a_{1}, a_{0}\right),
$$

$$
\begin{equation*}
h_{n}(x):=\tilde{f}_{1}(x-1)-h_{n-1}(\psi(x)), \quad x \in\left[a_{n}, a_{n-1}\right), \quad n \geq 2, \tag{13}
\end{equation*}
$$

and a function $\tilde{f}_{2}:(2, a) \rightarrow \mathbb{R}$ as

$$
\tilde{f}_{2}:=h_{1} \cup h_{2} \cup \ldots
$$

Furthemore, let

$$
f_{1}:=\tilde{f}_{0} \cup \tilde{f}_{1} \cup \tilde{f}_{2}
$$

and extend f_{1} onto $[0, a)$ assuming additionally

$$
\begin{equation*}
f_{1}(0):=0, \quad f_{1}(2):=0 . \tag{14}
\end{equation*}
$$

It follows from (11)-(14) that

$$
f_{1}(x)=f_{1}(x-1)-f_{1}(\psi(x)) \quad \text { for } \quad x \in(1, a),
$$

i.e. f_{1} satisfy (1) for $x \in(0, a-1)$. Applying Theorem 1 to the function f_{1} restricted to $\left[\frac{\sqrt{1+4 a}-1}{2}, a\right)$ we obtain exactly one solution $f_{2}:(0,+\infty) \rightarrow \mathbb{R}$ of (1) which coincides with f_{1} on $\left[\frac{\sqrt{1+4 a}-1}{2}, a\right)$. As the function

$$
\begin{equation*}
\left.\left.f_{1}\right|_{(0, a)} \cup f_{2}\right|_{(a,+\infty)} \tag{15}
\end{equation*}
$$

coincides with f_{1} on $\left[\frac{\sqrt{1+4 a}-1}{2}, a\right)$ and is a solution of (1) it follows that (from Corollary 1) that the function (15) equals f_{2}. In particular f_{2} is an extension of f_{1}. Consequently f_{2} is an extension of $f_{0}, f_{2}(1)=0$ and (cf. (10))

$$
\begin{equation*}
f_{2}(x)+f_{2}(1-x)=f_{2}(x(1-x)) \quad \text { for } \quad x \in(0,1) \tag{16}
\end{equation*}
$$

Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be the odd extension of f_{2}. We shall check that f is a solution of (1). Of course (1) holds for $x \in[0,+\infty)$. If $x \in(-\infty,-1)$, then

$$
\begin{aligned}
f(x+1)+f(x(x+1)) & =-f_{2}(-x-1)+f_{2}(x(x+1)) \\
& =-f_{2}(-x-1)+f_{2}((-x-1)((-x-1)+1)) \\
& =-f_{2}(-x-1)+f_{2}(-x-1)-f_{2}(-x)=f(x) .
\end{aligned}
$$

Next, if $x \in(-1,0)$ then using (16) we have

$$
f(x+1)+f(x(x+1))=f_{2}(x+1)-f_{2}(-x(x+1))=-f_{2}(-x)=f(x) .
$$

Finally, since $f(-1)=-f(1)=0$ we see that (1) holds for $x=-1$ as well.
To end the proof, assume that $\tilde{f}: \mathbb{R} \rightarrow \mathbf{R}$ is an odd solution of (1) and an extension of f_{0}. It follows from (9) that $\left.\tilde{f}\right|_{(0,1)}=\tilde{f}_{0}$ whereas (1) gives $\tilde{f}(1)=0$. Hence and from (11) and (12) it follows that $\left.\tilde{f}\right|_{(1,2)}=\tilde{f}_{1}$. This jointly with (13) shows that $\left.\tilde{f}\right|_{(2, a)}=\tilde{f}_{2}$. Since (1) gives $\tilde{f}(2)=0$ we have $\left.\tilde{f}\right|_{(0, a)}=f_{1}$. Applying now Theorem 1 we obtain $\left.\tilde{f}\right|_{(0,+\infty)}=f_{2}$ and $\tilde{f}=f$.
4. Fix a positive real number a. Of course,

$$
\frac{1}{x}=\frac{a}{x(x+a)}+\frac{1}{x+a} \quad \text { for } \quad x \in(0,+\infty)
$$

In the other words, the function $f:(0,+\infty) \rightarrow \mathbf{R}$ defined by $f(x):=1 / x$ is a solution of

$$
\begin{equation*}
f(x)=f(x+a)+f\left(\frac{x(x+a)}{a}\right) \tag{17}
\end{equation*}
$$

as well of

$$
\begin{equation*}
f(x)=f(x+a)+a f(x(x+a)) \tag{18}
\end{equation*}
$$

In the case where $a=1$ each of these two equations reduce to (1). In fact (17) is equivalent to (1) for every $a>0$. For, if $f:(0,+\infty) \rightarrow \mathbf{R}$ is a solution of (1) then

$$
f\left(\frac{x}{a}\right)=f\left(\frac{x}{a}+1\right)+f\left(\frac{x}{a}\left(\frac{x}{a}+1\right)\right) \quad \text { for } \quad x \in(0,+\infty)
$$

and putting $\tilde{f}(x):=f(x / a)$ we obtain

$$
\tilde{f}(x)=\tilde{f}(x+a)+\tilde{f}\left(\frac{x(x+a)}{a}\right) \quad \text { for } \quad x \in(0,+\infty)
$$

i.e. \tilde{f} is a solution of (17). However, as it follows from Theorem 8 below, in general equations (18) and (1) are not equivalent.

In this part of the paper we shall examine solutions of (18) under the assumption that there exists the limit $\lim _{x \rightarrow+\infty} x f(x)$ (see Baron [1], [2]) and we obtain solutions of (18) which are not of the form $\frac{c}{x}$ on the whole interval $(0,+\infty)$.

Theorem 7. Let $a \in(0,+\infty)$. If $f:(0,+\infty) \rightarrow \mathbb{R}$ is a solution of (18) such that there exists the limit

$$
\begin{equation*}
\lim _{x \rightarrow+\infty} x f(x) \tag{19}
\end{equation*}
$$

then this limit is finite and

$$
f(x)=\frac{c}{x} \quad \text { for } \quad x \in(0,+\infty) \cap[1-a,+\infty)
$$

with c being the limit (19).
Similarly as K. Baron did in [2], let us start with the following lemma.
Lemma 4. Let $a \in(0,+\infty)$ and $f:(0,+\infty) \rightarrow \mathbb{R}$ be a solution of (18). If there exists an $M>0$ such that for some $c \in \mathbb{R}$ we have

$$
f(x) \leq \frac{c}{x} \quad \text { for } \quad x>M
$$

then

$$
f(x) \leq \frac{c}{x} \quad \text { for } \quad x \in(0,+\infty) \cap[1-a,+\infty)
$$

Proof. Replacing f by $\tilde{f}(x)=f(x)-c / x, x>0$, we may assume that $c=0$. Fix arbitrarily $x_{0} \in(0,+\infty) \cap(1-a,+\infty)$ and define the sequence $\left(x_{n}: n \in \mathrm{~N}\right)$ by

$$
x_{n+1}:=\min \left\{x_{n}+a, x_{n}\left(x_{n}+a\right)\right\} \quad \text { for } \quad n \in \mathbf{N}
$$

It is easy to see that the sequence ($x_{n}: n \in \mathrm{~N}$) increases to infinity. Using induction and (18) one can see that for every positive integer n there exists a sequence

$$
\left(l_{1}, \ldots, l_{2^{n}}\right)
$$

of non-negative integers and a sequence

$$
\left(\alpha_{1}, \ldots, \alpha_{2^{n}}\right)
$$

of numbers not smaller than x_{n} such that

$$
\begin{equation*}
f\left(x_{0}\right)=\sum_{i=1}^{2^{n}} a^{l_{i}} f\left(\alpha_{i}\right) \tag{20}
\end{equation*}
$$

Now, if n is a positive integer such that $x_{n}>M$ then (20) gives $f\left(x_{0}\right) \leq 0$. This proves that f is nonpositive on $(0,+\infty) \cap(1-a,+\infty)$. If $1-a>0$ then applying (18) we obtain that also $f(1-a) \leq 0$.

Proof of Theorem. 7. When having Lemma 4, our Theorem 7 may be proved as the main result of [2]. For the sake of completeness we repeat this proof here.

Assume the limit (19) equals $-\infty$ and fix arbitrarily a real number c. Then there exists an $M>0$ such that

$$
x f(x) \leq c \quad \text { for } \quad x>M .
$$

Hence and from the lemma we obtain

$$
x f(x) \leq c \quad \text { for } \quad x \in(0,+\infty) \cap(1-a,+\infty)
$$

which leads to a contradiction as c was fixed arbitriarily. The case when the limit (19) equals $+\infty$ reduces to the previous one by considering the function $-f$. Up to now we have proved that the limit (19) is finite. Denote it by c and fix arbitriarily an $\varepsilon>0$. Then there exists an $M>0$ such that

$$
x f(x) \leq c+\varepsilon \quad \text { for } \quad x>M
$$

Hence and from the lemma we obtain

$$
x f(x) \leq c+\varepsilon \quad \text { for } \quad x \in(0,+\infty) \cap(1-a,+\infty)
$$

Consequently, as the positive number ε has been fixed arbitriarily we have

$$
x f(x) \leq c \quad \text { for } \quad x \in(0,+\infty) \cap(1-a,+\infty)
$$

Applying it to the function $-f$ we shall obtain the reverse inequality which ends the proof.

Theorem 8. If $a \in(0,1), x_{0} \in[1-2 a, 1-a) \cap(0,1)$ and $x_{1}:=\frac{\sqrt{a^{2}+4 x_{0}}-a}{2}$ then for every $c \in \mathbb{R}$ and for every $u:\left[x_{0}, x_{1}\right) \rightarrow \mathbb{R}$ there exists exactly one solution $f:(0,+\infty) \rightarrow \mathbb{R}$ of (18) which is an extension of u and

$$
\begin{equation*}
\lim _{x \rightarrow+\infty} x f(x)=c \tag{21}
\end{equation*}
$$

moreover, f is continuous iff u is continuous and

$$
\begin{equation*}
\lim _{x \rightarrow x_{1}} u(x)=a u\left(x_{0}\right)+\frac{c}{x_{1}+a} \tag{22}
\end{equation*}
$$

Proof. As in the proof of Lemma 4 we may assume that $c=0$. Define $\varphi:(0,+\infty) \rightarrow \mathbb{R}$ by

$$
\varphi(x):=\frac{\sqrt{a^{2}+4 x}-a}{2}
$$

Putting $\varphi(x)$ instead of x in (18) we obtain that $f:(0,+\infty) \rightarrow \mathbb{R}$ is a solution of (18) if and only if it is a solution of

$$
\begin{equation*}
f(x)=a^{-1} f(\varphi(x))-a^{-1} f(\varphi(x)+a) \tag{23}
\end{equation*}
$$

Let $\left(x_{n}: n \in \mathbb{Z}\right)$ be the sequence such that

$$
x_{n+1}=\varphi\left(x_{n}\right) \quad \text { for } \quad n \in \mathbf{Z}
$$

Of course it is strictly increasing and $\lim _{n \rightarrow-\infty} x_{n}=0, \lim _{n \rightarrow+\infty} x_{n}=1-a$. Given $u:\left[x_{0}, x_{1}\right) \rightarrow \mathbf{R}$ define a function $f_{0}:\left[x_{0},+\infty\right) \rightarrow \mathbf{R}$ by

$$
f_{0}(x):= \begin{cases}a^{n} u\left(\varphi^{-n}(x)\right), & x \in\left[x_{n}, x_{n+1}\right), n \in \mathrm{~N}_{0} \\ 0, & x \in[1-a,+\infty)\end{cases}
$$

Clearly, f_{0} is an extension of u. We shall proof that f_{0} is a solution of (23). It is obvious that (23) holds for $x \in[1-a,+\infty)$. Let $x \in\left[x_{0}, 1-a\right)$. Then there exists an $n \in \mathbf{N}_{0}$ such that $x \in\left[x_{n}, x_{n+1}\right)$ and

$$
\varphi(x) \in \varphi\left(\left(x_{n}, x_{n+1}\right)\right)=\left[x_{n+1}, x_{n+2}\right) .
$$

Since $x \geq x_{0} \geq 1-2 a$, we have $\varphi(x)+a \geq 1-a$ and $f_{0}(\varphi(x)+a)=0$. Consequently,

$$
\begin{aligned}
a^{-1} f_{0}(\varphi(x))-a^{-1} f_{0}(\varphi(x)+a) & =a^{-1} f_{0}(\varphi(x)) \\
& =a^{-1} a^{n+1} u\left(\varphi^{-(n+1)}(\varphi(x))\right) \\
& =a^{-n} u\left(\varphi^{-n}(x)\right)=f_{0}(x)
\end{aligned}
$$

Furthemore, if f_{0} is continuous then so is u and (22) holds. Assume now u is continuous and (22) holds. It is easy to see that then $\left.f_{0}\right|_{\left(x_{0,1-a)}\right)}$ is continuous and u is bounded, say $|u(x)| \leq M$ for $x \in\left[x_{0}, x_{1}\right)$, whence $\left|f_{0}(x)\right| \leq a^{n} M$ for $x \in\left[x_{n}, x_{n+1}\right], n \in \mathrm{~N}$ and, consequently, $\lim _{x \rightarrow 1-a} f(x)=0$. This proves
that the function f_{0} is continuous iff u is continuous and (22) holds. Now define $f_{n}:\left[x_{n},+\infty\right) \rightarrow \mathbb{R}$ for negative integers n by

$$
f_{n}(x):=\left\{\begin{array}{lr}
f_{n+1}(x), & x \in\left[x_{n+1},+\infty\right) \\
a^{-1} f_{n+1}(\varphi(x))-a^{-1} f_{n+1}(\varphi(x)+a), & x \in\left[x_{n}, x_{n+1}\right)
\end{array}\right.
$$

and observe that if for some negative integer n the function f_{n+1} is a continuous solution of (23) then f_{n} does. Hence we can define a function $f:(0,+\infty) \rightarrow \mathbb{R}$ by

$$
f:=f_{0} \cup f_{-1} \cup f_{-2} \cup \ldots
$$

This function is a solution of $\cdot(23)$, and so of (18), an extension of u, and f is continuous iff f_{0} does. Moreover, (21) holds as f vanishes on [$1-$ $a,+\infty)$. Finally, if \tilde{f} is an extension of u to a solution of (18) such that $\lim _{x \rightarrow+\infty} x \tilde{f}(x)=0$ then applying Theorem 7 and an induction we see that \tilde{f} coincides with f_{n} on $\left[x_{n},+\infty\right)$ for non-positive integers n whence $\tilde{f}=f$.

References

[1] K. Baron, P283R1, Aequationes Mathematicae 35 (1988), 301-303.
[2] K. Baron, On a problem of Z.Daróczy, Zeszyty Naukowe Politechniki Ślaskiej Z. 64 (1990), 51-54.
[3] Z. Daróczy, P283, Aequationes Mathematicae 32 (1987), 136-137.
[4] W. Jarczyk, On a problem of Z.Daróczy, Annales Mathematicae Silesianae 3 (1991), 83-90.
[5] M. Laczkovich and R. Redheffer, Oscillating solutions of integral equations and linear recursion, Aequationes Mathematicae 41 (1991), 13-32.
[6] Z. Moszner, P283R1, Aequationes Mathematicae 32 (1987), 146.

