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SOME REMARKS ON THE DAROCZY EQUATION

LECH .BARTLOMIEJCZYK

Abstract. The general solution of the functional equation

f(z) = fz+1) + f(z(z + 1)),

considered both on (0,40c0) and R, are studied. Constructions of odd and
even solutions are given.

In this paper we deal with the functional equation

(1) £() = £z +1) + f(a(z + 1))

and its real solution, generally defined on (0, +00). Some problems concern-
ing this equation was posed by Z.Daréczy during the XXIV ISFE in South
Hadley [3]. The main problem was solved by M.Laczkovich and R.Redheffer
[5]; see also [6], [1], [2], [4]. In part 1 we investigate the general solution
f: (0,4+00) — R of (1) in the spirit of [6] by Z.Moszner. Next we give
another construction of the general solution of the Daréczy equation which
bases on an equivalence relation on (0,+0c). In part 3 we present con-
structions of real solutions of equation (1) defined on R. In particular, we
construct of all the odd and all the even solutions of (1). Finally, in part
4 we introduce another equation, a generalization of (1), and give some in-
formations on its solutions under the assumption that there exists the limit
limz— 400 zf(), like it is in papers of K. Baron [1], [2] and W. Jarczyk [4].

1. Let us start with a simple remark: putting z instead of z(z 4 1) in (1)
we obtain : :
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REMARK 1. A function f: (0,+00) = R is a solution of (1) if and only if

2 = 1 (L) - p (L)

for z € (0, +00).
The following theorem brings a description of the general solution of (1).
In a special case (a = 6) it reduces to the result of Z.Moszner [6].

THEOREM 1. If a € (2,6] then for every real function fo defined on
[@, a) there exists exactly one solution f: (0, +00) = R of (1) which
is an extension of f.

PRrooF. Define ¢ : [0, 4+00) —+ R by

' VIi¥az -1
3 olz) = L
observe that
0<op(z)<z for z € (0,400), ¢(0)=0,

e Nz~-1)>z for z¢€ (2y+00)
and let (a, : n € Z), (b, : n € N) be the sequences such that

ao =p(a) and ¢(ap) =an-1 for neZ,
bo=a and b, = (b_; - 1) for neN.

The sequence (b, : n € N) is strictly increasing to infinity. Hence we can
find the number N € N such that

by_1<a+1 and by >a+1.
Then
a=a<by= <p‘1(bN_1 - <eHa) = ¢~ Yay) = a,.
Define now functions fy 1, f1,2,..., J1,N+41 in the following way:

fl,l (z) = fo((P(Z')) - fO(‘P(z) + 1)’ T € [ah bl)7
fl,ﬂ(x) = fO(‘P(z)) - fl,ﬂ—l (¢(z) + 1)’ z€ [bn—lvbn)v n= 21 oo )N7
fl.N+1(z) = fo (¢($)) - f1~,N(¢(z) + 1)1 zTE€ [bNa a2)a
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and put
N+1

A=

i=1

Also the sequence'(an : n € Z) is strictly increasing and limp o0 an = 0,
limy, 400 @ = +00. For every positive integer n > 2 define the function
fnt[@n,@nt1) = R by putting

far(@), € [an, o (an - 1)),
fn,2 (1")’ T € [So—l(an - 1)1an+1)1

fa(z) = {

where
fan (@) = fac1(p(2)) = facr(p(@) +1), 2 € [an, ¢ (an - 1)),
fr2(@) = fam1(9(2) = fimle(@) +1), 2 €[p7 (@n~ 1), an41).
To define f, : [an, ans1) = R for negative integers we put
f-1(@) = folz + 1) + fo(z(z+1)) for z €[a_1,a0),

for(a) = folx+ 1)+ fa(z(z+ 1)), =€ [an-1,a,)N[ap—1,a; — 1),
" fa@+ ) + fale(@ +1), 7 € [8am1,00) Nany = 1,00 - 1),
for n < —1. Finally we define f: (0;4+00) — R by
f(x) := fo(z) for z € [an,an41), n €Z.

It follows from the definition of f, for » > 1 that (2) holds for z > a,
whereas the definition of f, for n < —1 gives (1) for positive z < ap. Hence,
since z < a; implies (z) < ag, we have

fle(@) = fle(x)+ 1) + f(e)  for z € (a0, m).

In other words, f is a solution of (2). According to Remark 1 it is also a
solution of (1).

Finally, if f: (0,+400) — R is a solution of (1) and an extension of fy then
fu(z) = f(a:) for z € [@n,ant1) and n € Z whence f = f. a

COROLLARY 1. If two solutions of (1) defined on (0,+00) coincides on
[@, a) for some a € (2, 6], then they are identical.

4 ~ Annales...
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Later (in Remark 2 below) we shall show that the above theorem doesn’t
hold for a = 2. However, we have the following result.

THEOREM 2. Let f],fz (0,400) = R are solutzons of (1) such that

either
(i) there exist the limits

Jlim fi@),  lim f(s),

and at least one of them is finite;

or

(ii) there exists an € > 0 such that

H(Z) 2 fa(z)  for z€(2,2+¢).
If
hlny=falpe)
then ‘
h=h.
Proor. Defining
f=h-Ff

we observe that f is a solution of (1) vanishing on [1,2). We shall show, that
it vanishes on [1,6). Putting z = 1in (1) we obtain f(2) = 0. Fix o € (2, 6),
define ¢: (0,400) = R by (3) and the sequence (z, : n € N) putting

Zn = @(Tp-1)+ 1.

We can easy show that this sequence is strictly decreasing to 2 In partiCu"laLf,

p(za) € 9((2,6)) = (1,2).

Hence

0= F(p(aa)) = f(p(ea) + 1)+ Flplen)(plan) + 1) = fzapr) + flan)
ie. - |
f(@n41) = —f(zs) for n € No.

This gives :
f(za) =(-1)"f(zo) for n€eN.
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In case (i) the sequence (f(z,) : n € N) has a limit whence f(zo) = 0. In
case (ii)) we have f(z,) > 0 for n large enough and so f(zg) = 0 as well.
Thus we have proved that f vanishes on (1,6) and it follows from Corollary
1 that f vanishes everywhere. It means that f; = f;. a

Now we shall explain more precisely non-uniqueness in extending func-

tions from [1,2) to solutions of Daréczy equation on (0, 400).

REMARK 2. For any solution f; : (0,400) — R of (1), for any a €

(2,6] and for any function u : [ﬂ—'tﬁ— a) — R there exists a solution
fa: (0 +00) — R of (1) such that

fi(z) = falz) for z € (0,2]

and

fl(w) fz(fv) =u(z) for ze€ [____.1-1-2%-}-1’“).

We precede our proof of this remark by the following lemma.

LEMMA 1. If a solution of (1) on (0,+00) vanishes on (1,2] then it
vanishes on (0, 2]. :

PROOF. Let f: (0,400) = R be a solution of (1) vanishing on (1,2].
Define ¢: (0, +00) = R by (3) and the sequence (z, : n € N) putting

530 =2 and z,:=¢(%-) for neN.

This sequence is strictly decreasing to zero and z; = 1. Moreover, if n € N
and ¢ € (Ln41,%x] then 241 € (z1,20] and z(z + 1) € (2, Zpn—1]- Hence f
vanishes on (z1,z¢) and if f vanishes on (2, z,-1] then,as a solution of (1),
it vanishes also on (41, Zs). a

PROOF OF REMARK 2. We have to define a solution f: (0,+00) -+ R

of (1) which vanishes on (0,2} and coincides with u on [ﬂ"— a). Define
¥: (2,+00) = R by

P(z) =

and the sequence (¢, : n € N) putting

2

¢ i=a and cp41:=¥(c,) for ne€N.

4"
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This sequence is strictly decreasing to 2. Hence for every n € N we can
define the function f, : [¢p41,¢4) = R by

fa(2) = ()" Tu@~ V() for ze€ [ent1s€n).

Putting
fo(z) := Vvi¥da-1 2
2 1 })
and using Theorem 1 we obtain a solution f: (0, +00) — R of (1) which is
an extension of fy; in particular f coincides with u on [@ ) Now we
show that f vanishes on (0,2]. On virtue of Lemma. 1 and the definition of f
it is enough to check that f vanishes on (1, 3/1-—“_—) Let z € (1, VBTL)

Then z + 1 € (2,c2) and there exists an n > 2 such that z + 1 € [c,,.,.l,c,,)
Hence

fa(z), z€[ent1r6n),: :n €N,
0, z €|

2(z+1) =97z +1) € [ (ent1), ¥ (cn)) = [cny Cno1)
and ‘
f(@) =f(z+1) + f(z(z +1))
=(-1)""u($~ "N (2 +1)) + (= 1) u(p~ "D (2(z + 1))
=(-1)""u(p~ "N (@ +1)) + (~1)"u@@ "D (B (z +1)))
=(=1)"tu@~ " V(@ + 1)) + (=) u(yp~ "D (2 + 1)) = 0.
|

2. In this section we present another construction of solutions of Daréczy
equation and we give two examples of discontinuous at each point solutions:
such that there exists the limit at infinity and such that this limit does not
exist.

THEOREM 3. There exists a partition X' of (0,+00) consisting of count-
able and dense subsets of (0,+0c0) such that

(4) if: X€eX and z€X then z+1, z(z+1)€X;

in particular, a function f: (0,400) — R is a solution of (1) iff for every
X € X the function f |x does.

PROOF. Define ¢: (0,4+00) = R by (3) and 7: (0,+00) = R by
| T(z)=z+1,
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put

¢= {‘P’ (P—l’ T’ T_l}

and define the relation ~ on (0,+00) by
z~y<=>y=1(...(¢a(z)...) forsome ¢1,...,p, € D.

One can easily check that it is an equivalence relation and thus defines a
partition X' of (0,+00) consisting of its equivalence classes. It is clear that
if X € X then X is countable and (4) holds. We shall show that X is also
dense in (0,400). Suppose for the contrary that there exist a,b € (0, +00)
such that a < b and (a,b) N X = 0. Then

0=¢ " ((@,b)Ne7 (X) = (¢7"(a), o7 (B)) N X
and so (by induction)
(¢~"(a), e "(B))NX =0  forevery neN.

Since ¢~1(x) > z for z € (0,+00) and (¢~ ') (z) > 2a+1 for z > a we have

@~ (5) — o~ (a) > (20 4+ 1)(97"(B) - ¢ " (a))
for every n € N, whence

lim (¢7"(b) — ¢™"(a)) = +oo.

n—+00
Consequently there exists an n € N such that
e"(0) —¢7"(a) > 1.
Let z € X and fix an integer k such that
z+k € (¢7"(a), 07" (b))

Then
k@) = sk € (p7 (@) (BN X,

a contradiction. a

Theorem 3 allows us to give some interesting examples.

REMARK 3. (i) There exists a solution f: (0,+00) — (0,+o0) of (1)
which is discontinuous at each point and such that the limit

" (5) lim f(z).

zr+o00
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does not exist.

(ii) There exist a solution f: (0,400) — (0, +00) of (1) which is discon-
tinuous at each point and such that

(6) | lim f(z) = 0.

3+t o0

PROOF. Let X be a partition of (0, +00) with the properites mentioned
in Theorem 3, fix a non-constant function c: X — (0,40c) and define a
solution f: (0,+400) — (0,400) of (1) by

f(z) :=ﬁi£)- for z€eX, Xe&.

It is clear that f is discontinuous at each point. If ¢ is bounded then (6)
holds and we have (ii). Assume c is unbounded. We shall prove that limit
(5) does not exists. For, let (X, : n € N) be a sequence of elements
of X with lim,_,4c ¢(X,) = +0co0 and for every n € N choose an Ty, €
(e(Xn),2¢(Xn)) N X,. Then limy, 40 &5 = 400 and

1
(M) flzn) > 3 for neN.
If the limit (5) existed we would have
nllrr-irﬂloo f(zn) = :cll)t-}-loo f(z) = thoo f IX (m) =0

for every X € &, a contradiction with (7). . O

3. In this part of the paper we shall show a construction of all the solutions
of (1) defined on R. Let us start with two simple lemmas.

LEMMA 2. If g: R — R is a solution of (1) then the function G:R — R
defined by

®) G(z) :==g(z) + 9(-2)
is periodic with period 1.
Proor. Fix z € R. Then, according to (1),

9(~z - 1) = g(-2) + g(z(z + 1)) = g(~2) + [9(z) — g(z + 1)]
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ie. G(z+1) =G(2). o ' O

LEMMA 3. Every solution g:(—1,4+00) — R of (1) has a unique extension
to a solution f:R — R of (1). :

Proor. Define G:[0,1) SR by (8) and f:R — R by

| o g(z)v z € (__11+°°)1
fa) = {G({z}) - g(-z), z € (—00,-1],
where {z} denotes the fractal part of z. Observe that for every z € (0,1)
we have
G({-2}) =G(1-2)=g(1-2)+g(z-1)
=[g(-2) - g(-2(-z + 1)) + 9(z - 1)
=g(-2) - 9(z(z - 1)) +g(z - 1)
=g9(-2) - [9(z - 1) — g(2)] + 9(z - 1)
=g(2) + 9(-z) = G({=})
whence

G({-z})=G({z}) for zeR.

Now we shall show that f is a solution of (1). Of course (1) holds for z €
(=1,400). Assume now that n € N and (1) holds for every z € (—n, +o0).
Then for z € (—n — 1, —n] we have

f(z) =G({-2}) - f(-2) =G({-z - 1}) - f(-=)
=f(z+1)+g(-z~1) - f(~=)
=fz+1)+9(-2z) + g(~z(~2z - 1)) - f(-=)
=f(z + 1)+ f(z(z + 1))

and so f is a solution of (1). Finally, if f is an extension g to a solution of
(1) then applying Lemma 2 we see that

fl@)+ f(=2) = f{=}) + F(~{=}) = 9({z}) + 9(~{2}) = G({=})

for z € R, whence for z € (—o0, —1] we obtain

f(2) = G({z}) = g(=2) = f(2) + f(~2) - f(~2) = f(=z)

which ends the proof. ‘ ' .3
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THEOREM 4. If a € (2,6] then for every real function fy defined on the

T e [TEE ) e

there exists exactly one solution f: R — R of (1) which is an extension of

Jo.

ProOF. First of all let us observe that any solution of (1) defined on
[0,4+00) vanishes at 1 and 2. Hence, extending fy onto [@l,a) by
putting fo(2) = 0 and applying Theorem 1 we see that f, has a unique
extension to a solution fy: (0, +00) — R of (1). Extend now f, onto [0, +00)

by putting fo (0) = fo(0). Then fj is the unique extension of f; to a solution
of (1) defined on [0,+00). Define ¢ :[-1,0) = [-1,0) by (3) and the
sequence (Z, : n € Np) putting

] ,
Tg 1= -3 and 2z, := <p'1(:c,,_1) for neN.

This sequence strictly increases to zero. For every positive integer n define
a function f,:[z,,Zn+1) = R by

fn(z) = fn—l (30(2?)) - fo(‘P(z) + 1)1 T € [xm mn+1)-
The formula
fi=fale) for z€[Tn,2np1) and n € Np

defines dfunction fl : [—-;—,0) — R. With the aid of fo and fl define fz :
(-1,-3) = R putting

fa(@) = folz + 1) + fi(z(z +1)).
Finally we define f: (=1,400) = R by
f=fuhfuf.

- Tt is easy to see that f is the unique extension of fy to a solution of (1)
defined on (—1,+00). An application of Lemma 3 ends the proof. 0

The following simple theorem describes even solution of (1).

THEOREM 5. The only even solution of (1) on R is the zero function.
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Proor. If f: R — R is an even solution of (1) then an application of
Lemma 2 shows that f is periodic with period 1 and (1) gives

f(z(z+1))=0 for z€R.

In particular, f(z) = 0 for z € [0, +00) and, as f is even, f =0. O

All the odd solutions of equation (1) defined on R describes the following
theorem.

THEOREM 6. If a € (2,6] then for every real function f, defined on the

sel
(03) ¢ [F )

there ezists ezactly one odd solution f:R — R of (1) which is an extension

of fo.

PROOF. It is easy to observe that the function fy: (0,1) = R given by

r fo((v), T ev (0’ %) 1.
© @ =1{160), s,
‘ fo(a:(l —-z))-fo(l-2), z€ (%, 1) ,

satisfies

10 hE@+h-2)=hel-2) fr ze@1).

Define % (1, +00) = R by %(z) = (z — 1)z and (zn : n € No) by
soi=1 and zns1i= 9~ (za) for neN.

This is a strictly increasing sequence with the limit equal to 2. For every
non-negative integer n define a function g,,:[zy, Zn41) = R putting

(A1) meo) =0 and gole) = ole - 1= (@), =€ (g,

(12)  gal2) = folz = 1) = gns (¥(2)), z€len,znsr), neEN,
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and a function fl :[1,2)'-—) R as

fi=gpUnugnu....
Consider also a sequence (a, : n € No) such that
Cap:=a ° and apyp = v~ a,)) for neN.

This sequence strictly decreases to 2. For every positive integer n define a
function hy:[an,an—1) = R putting

hi(z) :=fo(z), z € [a1,a0),

U3 (@) i=Fi (0 = 1) = hacs (B(2)), @ € [amyanot)y 732,

and a function f5:(2,a) = R as
<f2 :=h1ullgu....

Furthemore, let
fi=foUHUFS
and extend f; onto [0, @) assuming additionally

(14)  A©)=0, fi(2):=0.

It follows from (11)—(14) that

fi(@) = filz—-1)- fi(¥(z)) for z€(1,a),

i.e. fi satisfy (1) for z € (0,a — 1). Applying Theorem 1 to the function f;
restricted to [@—“—l,a) we obtain exactly one solution f;:(0,+00) & R
of (1) which coincides with f; on [-\/r—'"zz—'l,a). As the function

(15) . . . fl |(0,a) Uf2 I[a,+oo)

coincides with f; on [3@, a) and is a solution of (1) it follows that (from
Corollary 1) that the function (15) equals f;. In particular f; is an extension
of fi. Consequently f; is an extension of fo, f2(1) = 0 and (cf. (10))

(16) L@+ (1-2) =zl -2) for z€(0,1)..
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Let f:R — R be the odd extension of f;. We shall check that f is a solution
of (1). Of course (1) holds for z € [0, +00). If z € (—00, —1), then

S+ D)+ f(a+ 1) = - fil-z = 1) + filz(z +1))
=- fi(-z - 1)+ fal(~s - D((-z - 1) + 1))
== fo(~z - 1)+ fa(-z = 1) = fa(-2) = f(2).

Next, if z € (—1,0) then using (16) we have

@+ 1)+ f(ele+1) = folz +1) - fo(-2(e + 1) = = fa(~2) = f(a).

Finally, since f(—-1) =—-f(1) =0 Wg see that (1) holds for z = —1 as well.
To end the proof, assume that, f : R — R is an odd solution of (1) and
an extension of fo. It follows from (9) that f |(o1)= fo whereas (1) gives
f(1) = 0. Hence and from (11) and (12) it follows that f 2= fi. This
jointly with (13) shows that f |(3,4)= f2. Since (1) gives f(2) = 0 we have
i lio,a)= fi. Applying now Theorem 1 we obtain f l(0,400)= f2 and f=17.
v O

4. Fix a positive real number a. Of course, .

1 a 1
;_m(a:+a)+x+a for z € (0,+00).

In the other words, the function f: (0,400) = R defined by f(z) := l/x is
a solution of

(17) @ =feta+ s (2EED)
as well of ‘ |
(18) f@) = f(a +a) + af(a(c + a)).

In the case where a = 1 each of these two equations reduce to (1). In fact
(17) is equivalent to (1) for every @ > 0. For, if f: (0,400) — R is a solution
of (1) then '

' z z ’ z (% '
‘f,(—)_-zf(;+1)+f(;(;+1)) for z € (0,+00)

a

and putting f(z) = f(z/a) we obtain

f@)=flz+ ) +f (f(—z—ﬂ—)—> for z € (0,+00),
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i.e. f is a solution of (17). However, as it follows from Theorem 8 below, in
general equations (18) and (1) are not equivalent.

In this part of the paper we shall examine solutions of (18) under the
assumption that there exists the limit lim;_, 4o 2 f(2) (see Baron [1], [2])
and we obtain solutions of (18) which are not of the form £ on the whole
interval (0, +00).

THEOREM 7. Let a € (0,+00). If f: (0,400) — R is a solution of (18)
such that there exists the limit

(19) lim zf(z}),

T=r400

then this limit is finite and
flz) = 5 for z € (0,+00)N[1 - a,+00)
with ¢ being the limit (19).
Similarly as K. Baron did in [2], let us start with the following lemma.

LEMMA 4. Let a € (0,+00) and f: (0,+00) = R be a solution of (18). If
there exists an M > 0 such that for some ¢ € R we have

f(z) < for z>M

80

then
f(=z) <

8|6

for z € (0,400)N[1 — a,+00).

ProoF. Replacing f by f(a:) = f(z) — ¢/z, z > 0, we may assume that
¢ = 0. Fix arbitrarily zo € (0,+00) N (1 — @, +0o0) and define the sequence
(zn :mn € N) by

Tpy1 :=min{z, +a,z,(zn+a)} for neN

It is easy to see that the sequence (z, : n € N) increases to infinity. Using
induction and (18) one can see that for every positive integer n there exists
a sequence

(ll,... ,I2n)

of non-negative integers and a sequence

S (Q1y... 0m)
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of numbers not smaller than z, such that

2n
(20) flzo) =) a" f(as).
i=1

Now, if n is a positive integer such that z, > M then (20) gives f(zo) < 0.
This proves that f is nonpositive on (0,400)N (1 — a,400). f1—a >0
then applying (18) we obtain that also f(1—a) <0. O

PROOF OF THEOREM,7. When having Lemma 4, our Theorem 7 may be
proved as the main result of [2]. For the sake of completeness we repeat this
proof here.

Assume the limit (19) equals —oco and fix arbitrarily a real number c.
Then there exists an M > 0 such that

zf(z) <c for z > M.

Hence and from the lemma we obtain
zf(z)<e for z € (0,+00)N(1—a,+o0),

which leads to a contradiction as ¢ was fixed arbitriarily. The case when the
limit (19) equals 400 reduces to the previous one by considering the function
—f. Up to now we have proved that the limit (19) is finite. Denote it by ¢
and fix arbitriarily an € > 0. Then there exists an M > 0 such that

zf(z) <c+e for =z > M.
Hence and from the lemma we obtain ‘
zf(z) <c+e  for z € (0,400)N (1~ a,+00).
Consequently, as the positive number € has been fixed érbitriarily we have
| zf(z)<c for z € (0,+00)N(1l—a,+00).

Applying it to the function — f we shall obtain the reverse inequality which
ends the proof. : g

THEOREM 8. Ifa € (0,1), 29 € [1—2a,1-a)N(0,1) and z1 := @'—“
then for every ¢ € R and for every u:[zo,21) — R there exists exactly one

solution f:(0,-+00) — R of (18) which is an extension of u and

(21) : o lim zf(z)=c

x—r+o00
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moreover, f is continuous iff u is continuous and

(22) lim u(z) = au(zo) +

T zy+a’

PROOF. As in the proof of Lemma 4 we may assume that ¢ = 0. Define
¢:(0,+00) = R by

Putting o(z) instead of z in (18) we obtain that f:(0, +oo) —+Risa solutlon_
of (18) if and only if it is a solution of

(23) f(=) = a7 f(p(2)) - a7 f(p(2) + a).
Let (2 : n € Z) be the sequence such that
Tny1 = p(z,) for neZ.

Of course it is strictly increasing and limy oo 2, = 0, limy 4 oo Zn = 1 —a.
Given u: [zo,z1) — R define a function f;:[zo, +00) = R by

, a"u(p~"(z)), z € [Tn,Zny1),n € Ny,
fo(z) :==
0, z € [1 - a,+00).
Clearly, fo is an extension of u. We shall prodf that fo is a solution of (23).

It is obvious that (23) holds for z € [1 — a,+00). Let € [zg,1 — a). Then
there exists an n € Ng such that = € [z,,2,41) and ,

¢(z) € p([zn, Tnt1)) = [‘cn+iaxn+2)-
Since z > z9 > 1 — 2a, we have ¢(z) + a > 1 — a and' fo(p(z) + a) = 0.
Consequently,

a” fo(p(2)) — a7 fo(p(2) + @) =a™ fo((x))
=a~ta"u(p™ (") (4 (2)))
=a""u(p~"(z)) = fo(z).

Furthemore, if f; is continuous then so is u and (22) holds. Assume now u is
continuous and (22) holds. It is easy to see that then f; |[zo 1—a) is continuous

and u is bounded, say | u(z) [< M for z € [2o, z1), whence | fo(z) |< a™M
for z € [zn,z,,+1], n € N and, consequently, lim,_;_, f(z) = 0. This proves
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that the function fo is continuous iff « is continuous and (22) holds. Now
define f,:[z,,+00) — R for negative integers n by

fa(z) = {fn+1(f"), v ? € [, +oo),
" ") a” fugi (p(2) - 0! fap1(o(z) + a),. Z € [Zn, Tns1),

and observe that if for some negative integer n the function fr41 is a con-
tinuous solution of (23) then f, does. Hence we can define a function
f:(0,400) = R by

f=foUfUfU....

This function is a solution of (23), and so of (18), an extension of u, and
f is continuous iff fo does. Moreover, (21) holds as f vanishes on [1 —
a,+o00). Finally, if f is an extension of u to a solution of (18) such that
limzyto0 2 f (z) = 0 then applying Theorem 7 and an induction we see that

f coincides with f, on [z, 400) for non—posmve integers n whence f = f.
(|
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