Annales Mathematicae Silesianae 9. Katowice 1995, 47-63

Prace Naukowe Uniwersytetu Śląskiego nr 1523

11

SOME REMARKS ON THE DARÓCZY EQUATION

LECH BARTLOMIEJCZYK

Abstract. The general solution of the functional equation

$$f(x) = f(x+1) + f(x(x+1)),$$

considered both on $(0, +\infty)$ and \mathbb{R} , are studied. Constructions of odd and even solutions are given.

In this paper we deal with the functional equation

(1)
$$f(x) = f(x+1) + f(x(x+1))$$

and its real solution, generally defined on $(0, +\infty)$. Some problems concerning this equation was posed by Z.Daróczy during the XXIV ISFE in South Hadley [3]. The main problem was solved by M.Laczkovich and R.Redheffer [5]; see also [6], [1], [2], [4]. In part 1 we investigate the general solution $f: (0, +\infty) \rightarrow \mathbb{R}$ of (1) in the spirit of [6] by Z.Moszner. Next we give another construction of the general solution of the Daróczy equation which bases on an equivalence relation on $(0, +\infty)$. In part 3 we present constructions of real solutions of equation (1) defined on \mathbb{R} . In particular, we construct of all the odd and all the even solutions of (1). Finally, in part 4 we introduce another equation, a generalization of (1), and give some informations on its solutions under the assumption that there exists the limit $\lim_{x\to +\infty} xf(x)$, like it is in papers of K. Baron [1], [2] and W. Jarczyk [4].

1. Let us start with a simple remark: putting x instead of x(x+1) in (1) we obtain

AMS (1991) Subject Classification: Primary 39B12, 39B22.

REMARK 1. A function $f: (0, +\infty) \to \mathbb{R}$ is a solution of (1) if and only if

(2)
$$f(x) = f\left(\frac{\sqrt{1+4x}-1}{2}\right) - f\left(\frac{\sqrt{1+4x}+1}{2}\right)$$

for $x \in (0, +\infty)$.

The following theorem brings a description of the general solution of (1). In a special case (a = 6) it reduces to the result of Z.Moszner [6].

THEOREM 1. If $a \in (2,6]$ then for every real function f_0 defined on $\left[\frac{\sqrt{1+4a}-1}{2},a\right)$ there exists exactly one solution $f:(0,+\infty) \to \mathbb{R}$ of (1) which is an extension of f_0 .

PROOF. Define $\varphi : [0, +\infty) \to \mathbb{R}$ by

(3)
$$\varphi(x):=\frac{\sqrt{1+4x}-1}{2},$$

observe that

$$\begin{array}{ll} 0 < \varphi(x) < x & \text{for } x \in (0, +\infty), \quad \varphi(0) = 0, \\ \varphi^{-1}(x-1) > x & \text{for } x \in (2, +\infty) \end{array}$$

and let $(a_n : n \in \mathbb{Z})$, $(b_n : n \in \mathbb{N})$ be the sequences such that

$$a_0 = \varphi(a)$$
 and $\varphi(a_n) = a_{n-1}$ for $n \in \mathbb{Z}$,
 $b_0 = a$ and $b_n = \varphi^{-1}(b_{n-1} - 1)$ for $n \in \mathbb{N}$.

The sequence $(b_n : n \in \mathbb{N})$ is strictly increasing to infinity. Hence we can find the number $N \in \mathbb{N}$ such that

$$b_{N-1} < a+1$$
 and $b_N > a+1$.

Then

$$a_1 = a < b_N = \varphi^{-1}(b_{N-1} - 1) < \varphi^{-1}(a) = \varphi^{-1}(a_1) = a_2.$$

Define now functions $f_{1,1}, f_{1,2}, \ldots, f_{1,N+1}$ in the following way:

$$\begin{aligned} f_{1,1}(x) &:= f_0(\varphi(x)) - f_0(\varphi(x) + 1), & x \in [a_1, b_1), \\ f_{1,n}(x) &:= f_0(\varphi(x)) - f_{1,n-1}(\varphi(x) + 1), & x \in [b_{n-1}, b_n), n = 2, \dots, N, \\ f_{1,N+1}(x) &:= f_0(\varphi(x)) - f_{1,N}(\varphi(x) + 1), & x \in [b_N, a_2), \end{aligned}$$

and put

$$f_1 := \bigcup_{j=1}^{N+1} f_{1,j}$$

Also the sequence $(a_n : n \in \mathbb{Z})$ is strictly increasing and $\lim_{n \to -\infty} a_n = 0$, $\lim_{n \to +\infty} a_n = +\infty$. For every positive integer $n \ge 2$ define the function $f_n: [a_n, a_{n+1}) \to \mathbb{R}$ by putting

$$f_n(x) := \begin{cases} f_{n,1}(x), & x \in [a_n, \varphi^{-1}(a_n - 1)), \\ f_{n,2}(x), & x \in [\varphi^{-1}(a_n - 1), a_{n+1}), \end{cases}$$

where

$$f_{n,1}(x) := f_{n-1}(\varphi(x)) - f_{n-1}(\varphi(x)+1), \qquad x \in [a_n, \varphi^{-1}(a_n-1)),$$

$$f_{n,2}(x) := f_{n-1}(\varphi(x)) - f_{1,n}(\varphi(x)+1), \qquad x \in [\varphi^{-1}(a_n-1), a_{n+1}).$$

To define $f_n: [a_n, a_{n+1}) \to \mathbb{R}$ for negative integers we put

$$f_{-1}(x) := f_0(x+1) + f_0(x(x+1))$$
 for $x \in [a_{-1}, a_0)$,

$$f_{n-1}(x) := \begin{cases} f_0(x+1) + f_n(x(x+1)), & x \in [a_{n-1}, a_n) \cap [a_0 - 1, a_1 - 1), \\ f_{-1}(x+1) + f_n(x(x+1)), & x \in [a_{n-1}, a_n) \cap [a_{-1} - 1, a_0 - 1), \end{cases}$$

for $n \leq -1$. Finally we define $f: (0, +\infty) \to \mathbb{R}$ by

$$f(x) := f_n(x)$$
 for $x \in [a_n, a_{n+1})$, $n \in \mathbb{Z}$.

It follows from the definition of f_n for $n \ge 1$ that (2) holds for $x \ge a_1$, whereas the definition of f_n for $n \le -1$ gives (1) for positive $x < a_0$. Hence, since $x \le a_1$ implies $\varphi(x) < a_0$, we have

$$f(\varphi(x)) = f(\varphi(x) + 1) + f(x)$$
 for $x \in (a_0, a_1)$.

In other words, f is a solution of (2). According to Remark 1 it is also a solution of (1).

Finally, if $\overline{f}: (0, +\infty) \to \mathbb{R}$ is a solution of (1) and an extension of f_0 then $f_n(x) = \overline{f}(x)$ for $x \in [a_n, a_{n+1})$ and $n \in \mathbb{Z}$ whence $f = \overline{f}$.

COROLLARY 1. If two solutions of (1) defined on $(0, +\infty)$ coincides on $\left[\frac{\sqrt{1+4a}-1}{2}, a\right)$ for some $a \in (2, 6]$, then they are identical.

4 - Annales...

Later (in Remark 2 below) we shall show that the above theorem doesn't hold for a = 2. However, we have the following result.

THEOREM 2. Let $f_1, f_2 : (0, +\infty) \to \mathbb{R}$ are solutions of (1) such that either

(i) there exist the limits

$$\lim_{x\to 2^+} f_1(x), \qquad \lim_{x\to 2^+} f_2(x),$$

and at least one of them is finite; or

(ii) there exists an $\varepsilon > 0$ such that

$$f_1(x) \ge f_2(x)$$
 for $x \in (2, 2+\varepsilon)$.

If

$$f_1|_{[1,2)} = f_2|_{[1,2)}$$

then

$$f_1=f_2.$$

PROOF. Defining

 $f := f_1 - f_2$

we observe that f is a solution of (1) vanishing on [1, 2). We shall show that it vanishes on [1, 6). Putting x = 1 in (1) we obtain f(2) = 0. Fix $x_0 \in (2, 6)$, define $\varphi: (0, +\infty) \to \mathbb{R}$ by (3) and the sequence $(x_n : n \in \mathbb{N})$ putting

 $x_n := \varphi(x_{n-1}) + 1.$

We can easy show that this sequence is strictly decreasing to 2. In particular,

$$\varphi(x_n)\in\varphi((2,6))=(1,2).$$

Hence

$$0 = f(\varphi(x_n)) = f(\varphi(x_n) + 1) + f(\varphi(x_n)(\varphi(x_n) + 1)) = f(x_{n+1}) + f(x_n)$$

i.e.

$$f(x_{n+1}) = -f(x_n) \quad \text{for} \quad n \in \mathbb{N}_0$$

This gives

$$f(x_n) = (-1)^n f(x_0) \quad \text{for} \quad n \in \mathbb{N}.$$

In case (i) the sequence $(f(x_n) : n \in \mathbb{N})$ has a limit whence $f(x_0) = 0$. In case (ii) we have $f(x_n) \ge 0$ for n large enough and so $f(x_0) = 0$ as well. Thus we have proved that f vanishes on (1, 6) and it follows from Corollary 1 that f vanishes everywhere. It means that $f_1 = f_2$.

Now we shall explain more precisely non-uniqueness in extending functions from [1,2) to solutions of Daróczy equation on $(0, +\infty)$.

REMARK 2. For any solution $f_1: (0, +\infty) \to \mathbb{R}$ of (1), for any $a \in (2, 6]$ and for any function $u: [\frac{\sqrt{1+4a}+1}{2}, a) \to \mathbb{R}$ there exists a solution $f_2: (0, +\infty) \to \mathbb{R}$ of (1) such that

$$f_1(x) = f_2(x)$$
 for $x \in (0, 2]$

and

4*

$$f_1(x) - f_2(x) = u(x)$$
 for $x \in \left[\frac{\sqrt{1+4a+1}}{2}, a\right)$.

We precede our proof of this remark by the following lemma.

LEMMA 1. If a solution of (1) on $(0, +\infty)$ vanishes on (1, 2] then it vanishes on (0, 2].

PROOF. Let $f: (0, +\infty) \to \mathbb{R}$ be a solution of (1) vanishing on (1,2]. Define $\varphi: (0, +\infty) \to \mathbb{R}$ by (3) and the sequence $(x_n : n \in \mathbb{N})$ putting

$$x_0 := 2$$
 and $x_n := \varphi(x_{n-1})$ for $n \in \mathbb{N}$.

This sequence is strictly decreasing to zero and $x_1 = 1$. Moreover, if $n \in \mathbb{N}$ and $x \in (x_{n+1}, x_n]$ then $x + 1 \in (x_1, x_0]$ and $x(x+1) \in (x_n, x_{n-1}]$. Hence f vanishes on $(x_1, x_0]$ and if f vanishes on $(x_n, x_{n-1}]$ then, as a solution of (1), it vanishes also on $(x_{n+1}, x_n]$.

PROOF OF REMARK 2. We have to define a solution $f: (0, +\infty) \to \mathbb{R}$ of (1) which vanishes on (0, 2] and coincides with u on $\left[\frac{\sqrt{1+4a}+1}{2}, a\right)$. Define $\psi: (2, +\infty) \to \mathbb{R}$ by

$$\psi(x):=\frac{\sqrt{1+4x}+1}{2}$$

and the sequence $(c_n : n \in \mathbb{N})$ putting

 $c_1 := a$ and $c_{n+1} := \psi(c_n)$ for $n \in \mathbb{N}$.

This sequence is strictly decreasing to 2. Hence for every $n \in \mathbb{N}$ we can define the function $f_n : [c_{n+1}, c_n) \to \mathbb{R}$ by

$$f_n(x) := (-1)^{n-1} u(\psi^{-(n-1)}(x))$$
 for $x \in [c_{n+1}, c_n)$.

Putting

$$f_0(x) := \left\{ egin{array}{ll} f_n(x), & x \in [c_{n+1}, c_n), :: n \in \mathbb{N} \ 0, & x \in [rac{\sqrt{1+4a}-1}{2}, 2], \end{array}
ight.$$

and using Theorem 1 we obtain a solution $f: (0, +\infty) \to \mathbb{R}$ of (1) which is an extension of f_0 ; in particular f coincides with u on $\left[\frac{\sqrt{1+4a}+1}{2}, a\right]$. Now we show that f vanishes on (0, 2]. On virtue of Lemma 1 and the definition of f_0 it is enough to check that f vanishes on $(1, \frac{\sqrt{1+4a}-1}{2})$. Let $x \in (1, \frac{\sqrt{1+4a}-1}{2})$. Then $x + 1 \in (2, c_2)$ and there exists an $n \ge 2$ such that $x + 1 \in [c_{n+1}, c_n)$. Hence

$$x(x+1) = \psi^{-1}(x+1) \in [\psi^{-1}(c_{n+1}), \psi^{-1}(c_n)) = [c_n, c_{n-1})$$

and

$$\begin{aligned} f(x) &= f(x+1) + f(x(x+1)) \\ &= (-1)^{n-1} u(\psi^{-(n-1)}(x+1)) + (-1)^{n-2} u(\psi^{-(n-2)}(x(x+1))) \\ &= (-1)^{n-1} u(\psi^{-(n-1)}(x+1)) + (-1)^n u(\psi^{-(n-2)}(\psi^{-1}(x+1))) \\ &= (-1)^{n-1} u(\psi^{-(n-1)}(x+1)) + (-1)^n u(\psi^{-(n-1)}(x+1)) = 0. \end{aligned}$$

2. In this section we present another construction of solutions of Daróczy equation and we give two examples of discontinuous at each point solutions: such that there exists the limit at infinity and such that this limit does not exist.

THEOREM 3. There exists a partition \mathcal{X} of $(0, +\infty)$ consisting of countable and dense subsets of $(0, +\infty)$ such that

(4) if:
$$X \in \mathcal{X}$$
 and $x \in X$ then $x + 1$, $x(x + 1) \in X$;

in particular, a function $f: (0, +\infty) \to \mathbb{R}$ is a solution of (1) iff for every $X \in \mathcal{X}$ the function $f|_X$ does.

PROOF. Define $\varphi: (0, +\infty) \to \mathbb{R}$ by (3) and $\tau: (0, +\infty) \to \mathbb{R}$ by

$$\tau(x)=x+1,$$

put

$$\Phi=\{\varphi,\ \varphi^{-1},\ \tau,\ \tau^{-1}\}$$

and define the relation \sim on $(0, +\infty)$ by

 $x \sim y \iff y = \varphi_1(\ldots(\varphi_n(x)\ldots))$ for some $\varphi_1, \ldots, \varphi_n \in \Phi$.

One can easily check that it is an equivalence relation and thus defines a partition \mathcal{X} of $(0, +\infty)$ consisting of its equivalence classes. It is clear that if $X \in \mathcal{X}$ then X is countable and (4) holds. We shall show that X is also dense in $(0, +\infty)$. Suppose for the contrary that there exist $a, b \in (0, +\infty)$ such that a < b and $(a, b) \cap X = \emptyset$. Then

$$\emptyset = \varphi^{-1}((a,b)) \cap \varphi^{-1}(X) = (\varphi^{-1}(a), \varphi^{-1}(b)) \cap X$$

and so (by induction)

 $(\varphi^{-n}(a), \varphi^{-n}(b)) \cap X = \emptyset$ for every $n \in \dot{\mathbf{N}}$.

Since $\varphi^{-1}(x) > x$ for $x \in (0, +\infty)$ and $(\varphi^{-1})'(x) \ge 2a + 1$ for $x \ge a$ we have

$$\varphi^{-(n+1)}(b) - \varphi^{-(n+1)}(a) \ge (2a+1)(\varphi^{-n}(b) - \varphi^{-n}(a))$$

for every $n \in \mathbb{N}$, whence

$$\lim_{n\to+\infty}(\varphi^{-n}(b)-\varphi^{-n}(a))=+\infty.$$

Consequently there exists an $n \in \mathbb{N}$ such that

 $\varphi^{-n}(b)-\varphi^{-n}(a)>1.$

Let $x \in X$ and fix an integer k such that

$$x+k \in (\varphi^{-n}(a), \varphi^{-n}(b)).$$

Then

$$\tau^k(x) = x + k \in (\varphi^{-n}(a), \varphi^{-n}(b)) \cap X,$$

a contradiction.

Theorem 3 allows us to give some interesting examples.

REMARK 3. (i) There exists a solution $f: (0, +\infty) \to (0, +\infty)$ of (1) which is discontinuous at each point and such that the limit

(5)
$$\lim_{x \to +\infty} f(x).$$

does not exist.

(ii) There exist a solution $f: (0, +\infty) \to (0, +\infty)$ of (1) which is discontinuous at each point and such that

(6)
$$\lim_{x \to +\infty} f(x) = 0.$$

PROOF. Let \mathcal{X} be a partition of $(0, +\infty)$ with the properites mentioned in Theorem 3, fix a non-constant function $c: \mathcal{X} \to (0, +\infty)$ and define a solution $f: (0, +\infty) \to (0, +\infty)$ of (1) by

$$f(x) := \frac{c(X)}{x}$$
 for $x \in X$, $X \in \mathcal{X}$.

It is clear that f is discontinuous at each point. If c is bounded then (6) holds and we have (ii). Assume c is unbounded. We shall prove that limit (5) does not exists. For, let $(X_n : n \in \mathbb{N})$ be a sequence of elements of \mathcal{X} with $\lim_{n \to +\infty} c(X_n) = +\infty$ and for every $n \in \mathbb{N}$ choose an $x_n \in (c(X_n), 2c(X_n)) \cap X_n$. Then $\lim_{n \to +\infty} x_n = +\infty$ and

(7)
$$f(x_n) > \frac{1}{2}$$
 for $n \in \mathbb{N}$.

If the limit (5) existed we would have

$$\lim_{n \to +\infty} f(x_n) = \lim_{x \to +\infty} f(x) = \lim_{x \to +\infty} f|_X(x) = 0$$

for every $X \in \mathcal{X}$, a contradiction with (7).

3. In this part of the paper we shall show a construction of all the solutions of (1) defined on \mathbb{R} . Let us start with two simple lemmas.

LEMMA 2. If $g: \mathbb{R} \to \mathbb{R}$ is a solution of (1) then the function $G: \mathbb{R} \to \mathbb{R}$ defined by

$$(8) G(x) := g(x) + g(-x)$$

is periodic with period 1.

PROOF. Fix $x \in \mathbb{R}$. Then, according to (1),

g(-x-1) = g(-x) + g(x(x+1)) = g(-x) + [g(x) - g(x+1)]

i.e. G(x+1) = G(x).

LEMMA 3. Every solution $g:(-1,+\infty) \to \mathbb{R}$ of (1) has a unique extension to a solution $f:\mathbb{R} \to \mathbb{R}$ of (1).

PROOF. Define $G:[0,1) \to \mathbb{R}$ by (8) and $f:\mathbb{R} \to \mathbb{R}$ by

$$f(x) := egin{cases} g(x), & x \in (-1, +\infty), \ G(\{x\}) - g(-x), & x \in (-\infty, -1], \end{cases}$$

where $\{x\}$ denotes the fractal part of x. Observe that for every $x \in (0, 1)$ we have

$$G(\{-x\}) = G(1-x) = g(1-x) + g(x-1)$$

= [g(-x) - g(-x(-x+1))] + g(x-1)
= g(-x) - g(x(x-1)) + g(x-1)
= g(-x) - [g(x-1) - g(x)] + g(x-1)
= g(x) + g(-x) = G(\{x\})

whence

$$G(\{-x\}) = G(\{x\})$$
 for $x \in \mathbb{R}$.

Now we shall show that f is a solution of (1). Of course (1) holds for $x \in (-1, +\infty)$. Assume now that $n \in \mathbb{N}$ and (1) holds for every $x \in (-n, +\infty)$. Then for $x \in (-n-1, -n]$ we have

$$f(x) = G(\{-x\}) - f(-x) = G(\{-x-1\}) - f(-x)$$

= f(x + 1) + g(-x - 1) - f(-x)
= f(x + 1) + g(-x) + g(-x(-x - 1)) - f(-x)
= f(x + 1) + f(x(x + 1))

and so f is a solution of (1). Finally, if \tilde{f} is an extension g to a solution of (1) then applying Lemma 2 we see that

$$\tilde{f}(x) + \tilde{f}(-x) = \tilde{f}(\{x\}) + \tilde{f}(-\{x\}) = g(\{x\}) + g(-\{x\}) = G(\{x\})$$

for $x \in \mathbb{R}$, whence for $x \in (-\infty, -1]$ we obtain

$$f(x) = G(\{x\}) - g(-x) = \tilde{f}(x) + \tilde{f}(-x) - \tilde{f}(-x) = \tilde{f}(x)$$

which ends the proof.

П

THEOREM 4. If $a \in (2, 6]$ then for every real function f_0 defined on the set

$$\left[-\frac{1}{2},-\frac{1}{4}\right)\cup\{0\}\cup\left[\frac{\sqrt{1+4a-1}}{2},2\right)\cup(2,a)$$

there exists exactly one solution $f : \mathbb{R} \to \mathbb{R}$ of (1) which is an extension of f_0 .

PROOF. First of all let us observe that any solution of (1) defined on $[0, +\infty)$ vanishes at 1 and 2. Hence, extending f_0 onto $[\frac{\sqrt{1+4a}-1}{2}, a]$ by putting $f_0(2) = 0$ and applying Theorem 1 we see that f_0 has a unique extension to a solution $\tilde{f}_0: (0, +\infty) \to \mathbb{R}$ of (1). Extend now \tilde{f}_0 onto $[0, +\infty)$ by putting $\tilde{f}_0(0) = f_0(0)$. Then \tilde{f}_0 is the unique extension of f_0 to a solution of (1) defined on $[0, +\infty)$. Define $\varphi: [-\frac{1}{4}, 0) \to [-\frac{1}{2}, 0)$ by (3) and the sequence $(x_n: n \in \mathbb{N}_0)$ putting

$$x_0:=-rac{1}{2}$$
 and $x_n:=arphi^{-1}(x_{n-1})$ for $n\in\mathbb{N}.$

This sequence strictly increases to zero. For every positive integer n define a function $f_n:[x_n, x_{n+1}) \to \mathbb{R}$ by

$$f_n(x) := f_{n-1}(\varphi(x)) - \tilde{f}_0(\varphi(x)+1), \qquad x \in [x_n, x_{n+1}).$$

The formula

$$f_1 := f_n(x)$$
 for $x \in [x_n, x_{n+1})$ and $n \in \mathbb{N}_0$

defines a function $\tilde{f}_1: [-\frac{1}{2}, 0) \to \mathbb{R}$. With the aid of \tilde{f}_0 and \tilde{f}_1 define $\tilde{f}_2: (-1, -\frac{1}{2}) \to \mathbb{R}$ putting

$$\tilde{f}_2(x) := \tilde{f}_0(x+1) + \tilde{f}_1(x(x+1)).$$

Finally we define $\tilde{f}:(-1,+\infty)\to \mathbb{R}$ by

$$\tilde{f} := \tilde{f}_0 \cup \tilde{f}_1 \cup \tilde{f}_2.$$

It is easy to see that \overline{f} is the unique extension of f_0 to a solution of (1) defined on $(-1, +\infty)$. An application of Lemma 3 ends the proof.

The following simple theorem describes even solution of (1).

THEOREM 5. The only even solution of (1) on **R** is the zero function.

PROOF. If $f : \mathbb{R} \to \mathbb{R}$ is an even solution of (1) then an application of Lemma 2 shows that f is periodic with period 1 and (1) gives

$$f(x(x+1)) = 0$$
 for $x \in \mathbb{R}$.

In particular, f(x) = 0 for $x \in [0, +\infty)$ and, as f is even, f = 0.

All the odd solutions of equation (1) defined on \mathbb{R} describes the following theorem.

THEOREM 6. If $a \in (2, 6]$ then for every real function f_0 defined on the set

$$\left(0,\frac{1}{2}\right)\cup\left[\frac{\sqrt{1+4a}+1}{2},a\right)$$

there exists exactly one odd solution $f: \mathbb{R} \to \mathbb{R}$ of (1) which is an extension of f_0 .

PROOF. It is easy to observe that the function $\tilde{f}_0:(0,1)\to \mathbb{R}$ given by

satisfies

(10)
$$\tilde{f}_0(x) + \tilde{f}_0(1-x) = \tilde{f}_0(x(1-x))$$
 for $x \in (0,1)$.

Define $\psi:(1,+\infty) \to \mathbb{R}$ by $\psi(x) = (x-1)x$ and $(x_n: n \in \mathbb{N}_0)$ by

$$x_0 := 1$$
 and $x_{n+1} := \psi^{-1}(x_n)$ for $n \in \mathbb{N}$.

This is a strictly increasing sequence with the limit equal to 2. For every non-negative integer n define a function $g_n:[x_n, x_{n+1}) \to \mathbb{R}$ putting

(11)
$$g_0(x_0) := 0$$
 and $g_0(x) := \tilde{f}_0(x-1) - \tilde{f}_0(\psi(x)), x \in (x_0, x_1),$

(12)
$$g_n(x) := f_0(x-1) - g_{n-1}(\psi(x)), \quad x \in [x_n, x_{n+1}), \quad n \in \mathbb{N},$$

and a function $\tilde{f}_1:[1,2)\to \mathbb{R}$ as

$$\tilde{f}_1 := g_0 \cup g_1 \cup g_2 \cup \ldots$$

Consider also a sequence $(a_n : n \in N_0)$ such that

$$a_0 := a$$
 and $a_{n+1} := \psi^{-1}(a_n)$ for $n \in \mathbb{N}$.

This sequence strictly decreases to 2. For every positive integer n define a function $h_n:[a_n, a_{n-1}) \to \mathbb{R}$ putting

(13)
$$\begin{array}{l} h_1(x) := f_0(x), \quad x \in [a_1, a_0), \\ h_n(x) := \tilde{f}_1(x-1) - h_{n-1}(\psi(x)), \quad x \in [a_n, a_{n-1}), \quad n \ge 2 \end{array}$$

and a function $\tilde{f}_2:(2,a)\to\mathbb{R}$ as

$$f_2 := h_1 \cup h_2 \cup \ldots$$

Furthemore, let

$$f_1 := \tilde{f}_0 \cup \tilde{f}_1 \cup \tilde{f}_2$$

and extend f_1 onto [0, a) assuming additionally

(14) $f_1(0) := 0, \quad f_1(2) := 0.$

It follows from (11)-(14) that

$$f_1(x) = f_1(x-1) - f_1(\psi(x))$$
 for $x \in (1, a)$,

i.e. f_1 satisfy (1) for $x \in (0, a - 1)$. Applying Theorem 1 to the function f_1 restricted to $\left[\frac{\sqrt{1+4a}-1}{2}, a\right)$ we obtain exactly one solution $f_2: (0, +\infty) \to \mathbb{R}$ of (1) which coincides with f_1 on $\left[\frac{\sqrt{1+4a}-1}{2}, a\right)$. As the function

(15)
$$f_1|_{(0,a)} \cup f_2|_{[a,+\infty)}$$

coincides with f_1 on $\left[\frac{\sqrt{1+4a}-1}{2}, a\right)$ and is a solution of (1) it follows that (from Corollary 1) that the function (15) equals f_2 . In particular f_2 is an extension of f_1 . Consequently f_2 is an extension of f_0 , $f_2(1) = 0$ and (cf. (10))

(16)
$$f_2(x) + f_2(1-x) = f_2(x(1-x))$$
 for $x \in (0,1)$.

Let $f: \mathbb{R} \to \mathbb{R}$ be the odd extension of f_2 . We shall check that f is a solution of (1). Of course (1) holds for $x \in [0, +\infty)$. If $x \in (-\infty, -1)$, then

$$f(x+1) + f(x(x+1)) = -f_2(-x-1) + f_2(x(x+1))$$

= -f_2(-x-1) + f_2((-x-1)((-x-1)+1))
= -f_2(-x-1) + f_2(-x-1) - f_2(-x) = f(x).

Next, if $x \in (-1, 0)$ then using (16) we have

$$f(x+1) + f(x(x+1)) = f_2(x+1) - f_2(-x(x+1)) = -f_2(-x) = f(x).$$

Finally, since f(-1) = -f(1) = 0 we see that (1) holds for x = -1 as well.

To end the proof, assume that $\tilde{f}: \mathbb{R} \to \mathbb{R}$ is an odd solution of (1) and an extension of f_0 . It follows from (9) that $\tilde{f}|_{(0,1)} = \tilde{f}_0$ whereas (1) gives $\tilde{f}(1) = 0$. Hence and from (11) and (12) it follows that $\tilde{f}|_{[1,2]} = \tilde{f}_1$. This jointly with (13) shows that $\tilde{f}|_{(2,a)} = \tilde{f}_2$. Since (1) gives $\tilde{f}(2) = 0$ we have $\tilde{f}|_{[0,a]} = f_1$. Applying now Theorem 1 we obtain $\tilde{f}|_{(0,+\infty)} = f_2$ and $\tilde{f} = f$.

4. Fix a positive real number a. Of course,

$$\frac{1}{x} = \frac{a}{x(x+a)} + \frac{1}{x+a} \quad \text{for} \quad x \in (0, +\infty).$$

In the other words, the function $f: (0, +\infty) \to \mathbb{R}$ defined by f(x) := 1/x is a solution of

(17)
$$f(x) = f(x+a) + f\left(\frac{x(x+a)}{a}\right)$$

as well of

(18)
$$f(x) = f(x+a) + af(x(x+a)).$$

In the case where a = 1 each of these two equations reduce to (1). In fact (17) is equivalent to (1) for every a > 0. For, if $f: (0, +\infty) \to \mathbb{R}$ is a solution of (1) then

$$f\left(\frac{x}{a}\right) = f\left(\frac{x}{a}+1\right) + f\left(\frac{x}{a}\left(\frac{x}{a}+1\right)\right) \quad \text{for} \quad x \in (0, +\infty)$$

and putting $\tilde{f}(x) := f(x/a)$ we obtain

$$\tilde{f}(x) = \tilde{f}(x+a) + \tilde{f}\left(\frac{x(x+a)}{a}\right)$$
 for $x \in (0, +\infty)$,

i.e. \tilde{f} is a solution of (17). However, as it follows from Theorem 8 below, in general equations (18) and (1) are not equivalent.

In this part of the paper we shall examine solutions of (18) under the assumption that there exists the limit $\lim_{x\to+\infty} xf(x)$ (see Baron [1], [2]) and we obtain solutions of (18) which are not of the form $\frac{c}{x}$ on the whole interval $(0, +\infty)$.

THEOREM 7. Let $a \in (0, +\infty)$. If $f: (0, +\infty) \to \mathbb{R}$ is a solution of (18) such that there exists the limit

(19)
$$\lim_{x\to+\infty} xf(x),$$

then this limit is finite and

$$f(x) = \frac{c}{x}$$
 for $x \in (0, +\infty) \cap [1 - a, +\infty)$

with c being the limit (19).

Similarly as K. Baron did in [2], let us start with the following lemma.

LEMMA 4. Let $a \in (0, +\infty)$ and $f: (0, +\infty) \to \mathbb{R}$ be a solution of (18). If there exists an M > 0 such that for some $c \in \mathbb{R}$ we have

$$f(x) \leq \frac{c}{x}$$
 for $x > M$

then

$$f(x) \leq \frac{c}{x}$$
 for $x \in (0, +\infty) \cap [1-a, +\infty)$.

PROOF. Replacing f by $\tilde{f}(x) = f(x) - c/x$, x > 0, we may assume that c = 0. Fix arbitrarily $x_0 \in (0, +\infty) \cap (1 - a, +\infty)$ and define the sequence $(x_n : n \in \mathbb{N})$ by

$$x_{n+1} := \min\{x_n + a, x_n(x_n + a)\} \quad \text{for} \quad n \in \mathbb{N}$$

It is easy to see that the sequence $(x_n : n \in \mathbb{N})$ increases to infinity. Using induction and (18) one can see that for every positive integer n there exists a sequence

 (l_1, \ldots, l_{2^n})

of non-negative integers and a sequence

 $(\alpha_1,\ldots,\alpha_{2^n})$

of numbers not smaller than x_n such that

(20)
$$f(x_0) = \sum_{i=1}^{2^n} a^{l_i} f(\alpha_i).$$

Now, if n is a positive integer such that $x_n > M$ then (20) gives $f(x_0) \le 0$. This proves that f is nonpositive on $(0, +\infty) \cap (1 - a, +\infty)$. If 1 - a > 0 then applying (18) we obtain that also $f(1 - a) \le 0$.

PROOF OF THEOREM 7. When having Lemma 4, our Theorem 7 may be proved as the main result of [2]. For the sake of completeness we repeat this proof here.

Assume the limit (19) equals $-\infty$ and fix arbitrarily a real number c. Then there exists an M > 0 such that

$$xf(x) \leq c$$
 for $x > M$.

Hence and from the lemma we obtain

$$xf(x) \leq c$$
 for $x \in (0, +\infty) \cap (1-a, +\infty)$,

which leads to a contradiction as c was fixed arbitriarily. The case when the limit (19) equals $+\infty$ reduces to the previous one by considering the function -f. Up to now we have proved that the limit (19) is finite. Denote it by c and fix arbitriarily an $\varepsilon > 0$. Then there exists an M > 0 such that

$$xf(x) \leq c + \varepsilon$$
 for $x > M$.

Hence and from the lemma we obtain

$$xf(x) \leq c + \varepsilon$$
 for $x \in (0, +\infty) \cap (1 - a, +\infty)$.

Consequently, as the positive number ε has been fixed arbitriarily we have

$$xf(x) \leq c$$
 for $x \in (0, +\infty) \cap (1-a, +\infty)$.

Applying it to the function -f we shall obtain the reverse inequality which ends the proof.

THEOREM 8. If $a \in (0, 1)$, $x_0 \in [1-2a, 1-a) \cap (0, 1)$ and $x_1 := \frac{\sqrt{a^2+4x_0-a}}{2}$ then for every $c \in \mathbb{R}$ and for every $u: [x_0, x_1) \to \mathbb{R}$ there exists exactly one solution $f: (0, +\infty) \to \mathbb{R}$ of (18) which is an extension of u and

(21)
$$\lim_{x\to+\infty} xf(x) = c;$$

moreover, f is continuous iff u is continuous and

(22)
$$\lim_{x \to x_1} u(x) = au(x_0) + \frac{c}{x_1 + a}.$$

PROOF. As in the proof of Lemma 4 we may assume that c = 0. Define $\varphi: (0, +\infty) \to \mathbb{R}$ by

$$\varphi(x):=\frac{\sqrt{a^2+4x}-a}{2}.$$

Putting $\varphi(x)$ instead of x in (18) we obtain that $f:(0, +\infty) \to \mathbb{R}$ is a solution of (18) if and only if it is a solution of

(23)
$$f(x) = a^{-1}f(\varphi(x)) - a^{-1}f(\varphi(x) + a).$$

Let $(x_n : n \in \mathbb{Z})$ be the sequence such that

$$x_{n+1} = \varphi(x_n)$$
 for $n \in \mathbb{Z}$.

Of course it is strictly increasing and $\lim_{n\to-\infty} x_n = 0$, $\lim_{n\to+\infty} x_n = 1-a$. Given $u: [x_0, x_1) \to \mathbb{R}$ define a function $f_0: [x_0, +\infty) \to \mathbb{R}$ by

$$f_0(x) := \begin{cases} a^n u(\varphi^{-n}(x)), & x \in [x_n, x_{n+1}), n \in \mathbb{N}_0, \\ 0, & x \in [1-a, +\infty). \end{cases}$$

Clearly, f_0 is an extension of u. We shall proof that f_0 is a solution of (23). It is obvious that (23) holds for $x \in [1-a, +\infty)$. Let $x \in [x_0, 1-a)$. Then there exists an $n \in N_0$ such that $x \in [x_n, x_{n+1})$ and

$$\varphi(x)\in\varphi([x_n,x_{n+1}))=[x_{n+1},x_{n+2}).$$

Since $x \ge x_0 \ge 1 - 2a$, we have $\varphi(x) + a \ge 1 - a$ and $f_0(\varphi(x) + a) = 0$. Consequently,

$$\begin{aligned} a^{-1}f_0(\varphi(x)) - a^{-1}f_0(\varphi(x) + a) &= a^{-1}f_0(\varphi(x)) \\ &= a^{-1}a^{n+1}u(\varphi^{-(n+1)}(\varphi(x))) \\ &= a^{-n}u(\varphi^{-n}(x)) = f_0(x). \end{aligned}$$

Furthemore, if f_0 is continuous then so is u and (22) holds. Assume now u is continuous and (22) holds. It is easy to see that then $f_0|_{[x_0,1-a)}$ is continuous and u is bounded, say $|u(x)| \leq M$ for $x \in [x_0, x_1)$, whence $|f_0(x)| \leq a^n M$ for $x \in [x_n, x_{n+1}]$, $n \in \mathbb{N}$ and, consequently, $\lim_{x \to 1-a} f(x) = 0$. This proves

that the function f_0 is continuous iff u is continuous and (22) holds. Now define $f_n:[x_n, +\infty) \to \mathbb{R}$ for negative integers n by

$$f_n(x) := \begin{cases} f_{n+1}(x), & x \in [x_{n+1}, +\infty), \\ a^{-1}f_{n+1}(\varphi(x)) - a^{-1}f_{n+1}(\varphi(x) + a), & x \in [x_n, x_{n+1}), \end{cases}$$

and observe that if for some negative integer n the function f_{n+1} is a continuous solution of (23) then f_n does. Hence we can define a function $f:(0,+\infty) \to \mathbb{R}$ by

$$f := f_0 \cup f_{-1} \cup f_{-2} \cup \ldots$$

This function is a solution of (23), and so of (18), an extension of u, and f is continuous iff f_0 does. Moreover, (21) holds as f vanishes on $[1 - a, +\infty)$. Finally, if \tilde{f} is an extension of u to a solution of (18) such that $\lim_{x \to +\infty} x \tilde{f}(x) = 0$ then applying Theorem 7 and an induction we see that \tilde{f} coincides with f_n on $[x_n, +\infty)$ for non-positive integers n whence $\tilde{f} = f$.

References

- [1] K. Baron, P283R1, Aequationes Mathematicae 35 (1988), 301-303.
- [2] K. Baron, On a problem of Z.Daróczy, Zeszyty Naukowe Politechniki Śląskiej Z. 64 (1990), 51–54.
- [3] Z. Daróczy, P283, Aequationes Mathematicae 32 (1987), 136-137.
- [4] W. Jarczyk, On a problem of Z.Daróczy, Annales Mathematicae Silesianae 5 (1991), 83-90.
- [5] M. Laczkovich and R. Redheffer, Oscillating solutions of integral equations and linear recursion, Aequationes Mathematicae 41 (1991), 13-32.
- [6] Z. Moszner, P283R1, Aequationes Mathematicae 32 (1987), 146.

Instytut Matematyki Uniwersytet Śląski 40–007 Katowice