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E Q U A T I O N S O F G O Ł Ą B — S C H I N Z E L T Y P E 

JANUSZ BRZDĘK 

Abstract. We consider equation (6) in the class of continuous functions 
/:/—>• tt satisfying (7), where / is a non-trivial real interval and n, Jfc are 
fixed positive integers. The obtained results are applied to get the solutions 
of the system of functional equations (3)-(5) in the class of pairs of functions 
f,g:I—>M. such that / is continuous. Some connections between solutions of 
the equations and a class of subsemigroups of some Lie groups are established 
as well. 

Let N, Z , Q, and R stand for the sets of positive integers, integers, ratio-
nals, and reals, respectively. The system of functional equations 

where the unknown functions / and g map R into R , has been introduced by 
S. Midura (see [7]) in connection with the problem of finding subsemigroups 
of the Lie group L\. It is solved in [7] under the assumption that / is 
continuous. Namely we have the following 

T H E O R E M M (see [7], p. 47-48). A pair of functions f,g : R —• R such 
that f is continuous satisfies the system of functional equations (1), (2) iff 
either 

(1) f(xf(y)2 + yf(x)) = f(x)f(y), 

(2) g{xf{y? +•»/(*)) = f(x)g(y) + Zxyf(y) + g(x)f(y)3, 

f(x) = 0 and (̂0) = 0 

or 
f(x) = 1 and g(x) = h(x) + -x1 for z g R 

AMS (1991) subject classification: 39B22, 39B62. 

5 - A n n a l e s . 
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with some additive function h : R —> R. 

In the paper we consider the following conditional generalization of the 
system (1), (2): 

(3) /(*/(y) 2 + y/(*)) = /(*)/(y) 

whenever f(x)f(y) ^ 0, 

(4) 9(xf{y)2 + yf(x)) = f(x)g(y) + Zxyf{y) + g(x)f(y)3 

where the unknown functions / and g map a non-trivial real interval J into 
R with the additional assumption that 

(5) xf(y)2 + yf(x) <E / for every x, y e I with f{x)f(y) ^ 0. 

Let us note that every pair of functions f,g : R R satisfying (1), (2) is 
also a solution of (3), (4). The converse is not true. For instance, a pair of 
functions fo,go ' R —• R, given by: go(x) = 0 and 

f l if 
'»<*> = { o if 

1 if x = 0; 
, n for x € R, 

17^ 0 

is a solution of the system (3), (4) and does not satisfy (1), (2). 
We as well will investigate the conditional equation 

(6) f(xf{y)k + yf(x)n) = / (*) / (« / ) whenever f(x)f(y) ? 0 

in the class of continuous functions / : / —> R satisfying 

(7) xf{y)k + yf(x)nel for every x,yel with f{x)f(y)^0, 

where ktn € N are fixed. Equation (6) is a conditional generalization of (1) 
and the functional equation 

(8) f(Hy)kx + f(x)ny) = f(x)f(y) 

studied in different cases e.g. in [2]-[4] and [7]-[9]. For example it is known 
that, for n, k £ N, the only continuous solutions of (8) in the class of functions 
mapping a real topological linear space into R are functions /i(x) = 1 and 
f2(x) = 0 (cf. [3] and [9]). In the class of functions / : [0,+oo) [0,+oo) 
equation (8) has been considered in [8]. 

Now, we will give a justification for the study of (3)-(5) and (6)-(7). For 
this we need some definitions. 
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Put Di = (R\{0}) xRand D2 = (R\{0}) x R x R a n d fix n,ke N. We 
define binary operations • : D\ X D\ -¥ D\ and • : D2 X D 2 -4 D2 by the 
formulas: 

{xi,x2) • {yi,y2) = {xm,x^y2 + 2/*x2) for (xi,x2),(j/i,y2) G Du 

{xx,x2,xz) • {y\,y2,yz) = (xiyi,xiy2 +yiZ2,xiy3 + 3x 2y 2yi +x 3 yi) 

for {xux2,x3),{yuy2,y3) € D2. 

It is easy to check that (D\, •) (with any k,n € N) and (D2,-) are groups. 
Furthermore (see e.g. [3], p. 261, [6], p. 6, and [4], p. 60): 

- if n = 0 and k — 1, D\ is isomorphic to the one-dimensional affine 
group, 

- if n — 1 and fc = 2, Di is isomorphic to the Lie group L\, 
- if n = 1, D\ is isomorphic to a subgroup of the Lie group L\, 
- if n = k = 1, Di is isomorphic to the Clifford group of the field R, 
- D2 is isomorphic to the Lie group L 3 . 
Let us introduce the following. 

DEFINITION 1. Let S ̂  0 be a set. We say a pair ( D , F) is a parametriza-
tion. of S provided D is a non-empty set and F is a function mapping D 
onto 5. 

Of course every non-empty set S has a paranietrization; it suffices to take 
D = S and F(a) = a for every a € D. 

DEFINITION 2. A subset 5 of Di (D2 respectively) is of type j, with 
j € {1,2} (J € {1,2,3}, resp.), provided there is a parametrization (D,F) 
of S such that the function Fj is one-to-one, where F = (Fi,F2) (F = 
(Fx ,F 2 ,F 3 ) , resp.). 

Now, we are in a position to formulate the subsequent 

PROPOSITION 1. Let n, k € N. The following two conditions are vaJid. 
(i) S is a subsemigroup of type 2 of tAe group D\ iff there is a function 

f : R —ł R satisfying the conditional functional equation (6) such that 
/(R) ^ {0} and 

5 = {(/(*),*): x e R , / ( ^ 0 } . 

(ii) S is a subsemigroup of type 2 of the group D2 iff there is a pair of 
functions f,g : R - f R satisfying the system (3), (4) such that /(R) ^ {0} 
and 

S = {(f{x),x,g(x)):x£R,f{x)^0}. 

5 * 
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P R O O F . We prove only (ii). The proof of (i) is analogous. 
Let S be a subsemigroup of type 2 of Z)2 and (D, F), F = (Fj, F 2 , F 3 ) , be 

a parametrization of S with F2 one-to-one. Put 

/o = F 1 o F 2 - 1 and 5o = F 3 o F 2 - 1 . 

Then 

S = {{f0{x),x,g0{x)): x G F 2 (£>)}. 

Further, since for every (xi, x 2, x3), (yx, y2, y3) G 5 

(xiyi,x!y 2 +y 2 x 2 , x iy 3 + 3x2t/2yi + x 3y 3) = (xi,x 2 ,x 3) • (yi,y 2,y 3) G S, 

we have 

(9) (/o(x)/o(y))/o(x)y + /o(y)2x,/o(x)5o(y) + 3xy/o(y)+ffo(x)/o(y)3) G S 

for every x,y G F 2(D). Thus, for every x,y G F 2(£>), 

(10) /o(/o(x)y+ /0(y)2x) = /0(x)/0(y) 

(11) <7o(/o(x)y + / 0(y) 2x) = /o(x)fifo(y) + 3xy/ 0(y)+ 5 o(x)/o(y) 3. 

This implies that the functions / , g : R -» R, defined by: 

\ 0 otherwise, 

r<?o(x) if x G F 2 ( £ > ) ; 
nix) = < , 

^ 0 otherwise, 

for every x G R, satisfy the system (3), (4). 
Now, suppose that we are given functions f,g : R —¥ R, /(R) ̂  {0}, 

satisfying the system (3), (4). Put S{f) = R\/" 1({0}), / 0 = /| S(/) and 
gQ = g\s{j)- It Is easily seen that f0 and g0 are solutions of (10) and (11). 
Thus (9) holds for every x, y G S(f), because 

S = {(fo(x),x,g0(x)): x G S(/)}. 

Hence 5 is a subsemigroup of D2. Next (S(f),F), where F(x) = 
(/b(x),x,<7o(a0) f ° r x € £ ( / ) ) is a parametrizaton of 5. This completes 
the proof. • 
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Consideration of subsemigroups of types 1 and 3 of Di leads to some other 
systems of functional equations. Results concerning them will be published 
separately. 

We must mention yet that similar methods, as those presented in Propo
sition 1, of determining algebraic substructures were already used e.g. in [2], 

R E M A R K 1. Observe that if a function / -4 R , where / is a real 
interval, satisfies (6) and (7), then the function / : R -4 R given by: 

is a solution of equation (6)-Thus, according to Proposition 1, / (if /(/) ^ 
{0}) determines a subsemigroup of type 2 of D\. 

R E M A R K 2. For every A;, n G N u {0} equation (6) can be written in the 
following equivalent form 

(Of course, if we confine ourselves e.g. to a class of functions mapping a real 
interval / into R and satisfying (7).) 

Now, we will prove some lemmas useful in the sequel. 

L E M M A 1. Let I be a non-trivial real interval, n, k € N, and / : J - » R 
be a function satisfying (6) and (7). Then, for every x £ S(f) := {x £ I : 
f(x) ^ 0}r the functions 

are one-to-one. 

P R O O F . We prove only that the first function is one-to-one. The proof 
for the second function is analogous. 

Fix x G S(f) and suppose that 

for some z, w G 5(/). Then, by (6), f{x)f(z) = f(x)f(w) and consequently 
f(z) = f{w). Thus 

0 = (xf(z)n + zf{x)k) - (xf(w)n + wf(x)k) = (z- w)f(x)k, 

[3], [6], [7], and [4]. 

for x G R 

S(f) 3 * - » xf{z)n + zf(x)k G R , 

S{f)B z-+zf(x)n + xf(z)k ZR 

xf{z)n + zf{x)k = xf(w)n + wf{x)k 
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which means that z = w. This ends the proof. • 

L E M M A 2. Let I,n,k, and f be the same as in Lemma 1. Assume that 
f is continuous and put 7 + = {x € / : x > 0} and I~ = {x 6 / : x < 0}. 
Then 

r , ( {O»G{0,{O}, /+/-, /}. 

P R O O F . We will show that 

either /(/+) = {0} or 0 g /(/+ \ {0}) 

and 
either /(/") = {0} or 0 g / ( /" \ {0}) 

It is easily seen that those conditions yield the statement. 
Let IQ = I+ \ {0} and IQ = l~ \ {0}. For the proof by contradiction 

suppose that there are a, 6 € IQ (a, b € IQ , respectively) with 

/(6)#0 = /(o). 

Then, by (6) and (7), /(6)2 € /(/) and the continuity of / implies 

(12) [0,/(6) 2]C/(/). 

Since 

Lx := r1 ({0}) (1 70

+ # 0 (Li := Z" 1 ({0}) n / 0" # 0, resp.) 

and 
L2 := / 0

+ U i # 0 (̂ 2 := / 0" \ U + 0, resp.) 

is open in IQ (IQ, resp.), there are e € L\ and a sequence {ym}meN C Li 
with 

e= lim y m . 
m-+oo 

Note that, in view of (7), 

zm = ymf{ym)k + ymf{ym)n € / for every m € N 

and consequently 

(13) 0= lim z m = inf / + (0= lim zm = sup I ~ , resp.). 
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Further, by (12), there is d > 0 with (0,d) C {ef{y)k : y € /} ((-d,Q) C 
{e/(y)fc : y € /}, resp.) and, for every y € I with e/(y)* € / \ {0}, 

/(e/(y) f c)= Hm f(ymf(y)k + yf(ym)n) 
m—too 

= Hm /(y)/(ym) = /(y)/(e) = 0. 
m—•<» 

Thus, according to (13), there exists c > 0 such that 

( 0 , c ) C i i ( ( - c , 0 ) C l i , resp.). 

On account of (12), there is bo € / with 

0 < f{bQ)k < ce"1 (0 < f(b0)k < -ce-1, resp.). 

Put 

wm := b0f{ym)n + ymf{b0)k for every m € N. 

Then (6) gives 

(14) f{wm) = f{b0)f{ym) # 0 for every m € N. 

We have as well 

0 < lim wm = ef(b0)k <c (0 > lim tum = ef(b0)k > -c , resp.). 

Whence there is m € N such that 

0 < wm < c (0 > wm > -c , resp.), 

which means that f(wm) = 0. This brings a contradiction to (14). • 

For the next lemma we need a theorem of J. Aczćl [1] (see also [5]). Let 
us remind it. 

T H E O R E M A (see [5], p. 307). Let L be a reai non-trivial interval and 
let . : L x L —> L be a continuous cancellative associative operation. Then 
there exists a continuous bijection h : L —> J such that 

(15) x.y = h'1 (h(x) + h(y)) for every x,y £ L, 

where J is a (necessarily unbounded) real interval. 

L E M M A 3. Let n, k, I, and f be just the same as in Lemma 2. Let L C I 
be a non-trivial interval with 

xf{y)n + yf(^)k € L for every x,y e L 
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and O £ f{L). Then either f(x) = 1 for every x € L or / \ L is one-to-one, 
f{L) C (0, +oo) and there is s 6 R \ {0} such that, 

1° in the case n ̂  k, 

f{s(yn-yk)) = y for every y € /(L); 

2° in the case n = k, 

f(syn ln(y)) = y for every y 6 f{L). 

PROOF. The case f\i = const = c is trivial, because, according to the 
hypothesis, for x € L 

c = f(xf(x)n + xf(x)k) = f(x)2 = c2. 

So suppose that f\t is not constant. 
Setting x = y 6 L in (6) we get 

/(L)n(O,+oo)^0. 

Since 0 ̂  f(L) and / is continuous, this implies f(L) C (0, +oo). 
Define a binary operation . : L x L —t L by the formula: 

x.y = xf(y)n + yf{x)k for every x,y € L. 

Then, according to (6), for every x,y, z £ L vie have 

x.(y.z) =xf(y.z)n + (y.z)f(x)k = xf(y)nf(z)n + yf(z)nf(x)k 

+ zf{y)kf{x)k = (x.y)f(z)n + zf{x.y)k = (x.y).z. 

Thus the operation is associative. Further, it is easy to see that it is con
tinuous and, by Lemma 1, cancellative. Hence, on account of Theorem A, 
there exists a homeomorphism h : L -¥ J (where J is an unbounded real 
interval) such that (15) holds and, whence, 

f{h-x{h{x)))f{h-\h(y))) =/(x)/(y) = /(x.y) 

=f(h~l{h(x) + h(y))) for every x , y € £ . 

Hence there is d € (0, +oo) \ {1} such that 

f oh'1 (y) = dy for every y 6 J, 
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which means that f\i is one-to-one. 
First consider the case k ̂  n. Then (15) yields 

xf(y)n + yfix)k = x-y = V-x = yf(x)n + xf{y)k for every x, y G L. 

Thus setting 
•=(/(!*)"-/(Ito)*) - 1!*. 

for some fixed y0 € L \ {0}, /(j/o) i1 1> we obtain 1°. 
Next, let k — n. Note that g = (/ |r,) - 1 satisfies 

= g{x)yn + g{y)xn for every x,y€f(L). 

Consequently the function t : f(L) -4 R, given by: 

t{z) = g(z)z~n for every z G f(L), 

is a solution of the Cauchy equation: 

t{xy) = t(x)+t(y). 

Whence there exists s g R \ {0} such that 

t(x) = sln(x) for every x G f(L). 

This implies 2° and ends the proof. • 

L E M M A 4. Let n, k, I, and f be just the same as in Lemma 2. Then 
f(x) = 0 or I-, or there exists s 6 R \ {0} such for every x € S(f) := {x € 
/ : / (x )#0} , 

1° in tne case n ̂  fc, x = s(f(x)n - f(x)k); 
2° in the case n = k, x = s/(x) nln |/(x)|. 

Consequently f\s(f) i S one-to-one or f is constant. 

P R O O F . It is easy to see that if / = const, then /(x) = 1,0. So, it 
remains to study the situation where / is not constant. Then, according to 
Lemma 2, 

/-X({O})G{0,{O},/+,/"}. 

The case /_ 1({0}) # {0} results from Lemma 3 (with L G U o V o V } ) -
Therefore suppose that /_ 1({0}) = {0}. 

Observe that then, by (6), we get 

(16) xf(y)n + yf(x)k^0 for every x ,y€/ \{0} . 
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Next, since in view of the right hand side of equation (6) 

/(/)n(o,+oo)^0, 

we have 
/(tf)c(0,+cx>) or /(/ 0-)C(0,+oo). 

First suppose that / (#) C (0,+oo) and /(70

-) C (-oo,0) (/(7<f) C 
(-oo,0) and /{IQ) C (0,+OO), respecively). Then, by (6), for every x,y G 
1$ and x,y e IQ 

f(*f(y)n + yf(x)k) = f(x)f(y)>0, 

which means that 

( 1 7 ) */(!/)"+ y/(x) f ee/ 0+ (xf(y)n + yf(x)kelQ, resp.) 
for every x,y G IQ and x,y G IQ. 

Thus, on account of Lemma 3 with L = l£ (L = IQ, resp.), there is s G 
R \ {0} such that for every x G IQ {X G IQ, resp.) 

(18) x = I S { f { x ) n ' f { x ) h ) l f H * k ; 

1 ^ X \ s / (s ) n ln | / (x) | if n = k. 

Moreover, in view of (17), for every x G IQ (I £ / 0

+ , resp.) 

x/(x)" + xf(x)k G 70+ (x/(x)" + xf(x)k G IQ~, resp.) 

and consequently, by (6) and (18), in the case n^k, 

xf(x)n + xf(x)k = s(f(x)2n - /(x)2 f c) for x G 70" (x G 70+, resp.), 

and, in the case n = k, 

2xf(x)n = sf(x)2n ln(/(x)2) for , x G 70" (x G 70+, resp.). 

Since, according to (16), 

f(x)n + f{x)k # 0 for every xG7\{0}, 

this implies that (18) holds also for every x £ IQ (X G IQ, resp.). 
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To complete the proof it remains to study the case where /(/o~)U/(/(T) C 
(0, +00). Using Lemma 3, first with L = l£ and next with L = /<J", we obtain 
then that there are s, s0 G R \ {0} such that (18) holds for every x € IQ and 

x U < / ( . ) " - / ( . ) * ) if f o r x £ 

[ ' \s0f(x)n\n(f(x)) if n = k, 0 

Fix y <= IQ with f{y) ^ 1. Note that 0/(y)n + y/(0)fe = 0 and 

y/(y)n + y/(y)*<o. 

Thus Lemma 1 yields 

*/(y)n + yf{x)k > 0 for every x € . 
Hence, according to (6), (18) (with x € 7̂ "), and (19), for every x € To", in 
the case 71 ^ k, 

s(f(x)n - f(x)k)f(y)n + s0(f(y)n - f(y)k)f(x)k 

= xf(y)n + yf(x)k = s(f(x)nf(y)n-f(x)kf(y)k) 

and, in the case n = A;, 

(S/(x)"ln(/(a;)))/(y)" + (So/(y)Tlln(/(y)))/(x)" 

= */(y)n + y/(*)n = sf(x)nf(y)n ln(/(x)/(y)). 

Whence, for every x 6 Z "̂, in the case k, 

(sof(x)k - sf(x)k)(f(y)n - f(y)k) = 0 

and, in the case n — k, 

s0ln(/(y)) = sln(/(y)), 

which means that s0 = s, because /(/Q") ^ {1} and f(y) ^ 1. This implies 
the statement. • 

Now, we have all tools to prove the following 

T H E O R E M 1. Let n, k G N, I be a, non-trivial real interval, and f be a 
function mapping I into R. Then f is a non-constant continuous solution of 
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(6), (7) iff there are s G R \ {0} and a real interval K such that the function 
t : K -> R, defined by: 

(s(yn-yk) if n^k; 

(20) t(y)={ syn In |y| if n = k and y ̂  0; for y £ K, 
0 if 0 G X and y = 0 

is one-to-one and one of the following two conditions is valid: 
(i) xy G K for every x, y G /ć, t(/ć) = / , and / = i - 1 ; 
(ii) 0 G X , A' C [0,1), t(K) G {/0

+, /o"}, and 

' „ , J * _ 1 ( * ) ^ , C , 
(21) /(x) = < , for every i 6 i . 

10 otherwise 

Furthermore, f is a constant solution of (6), (7) iff f(x) = 0 or, only in 
the case where x + y G / for every x,y G / , f(x) = 1. 

P R O O F . The case where / is constant is trivial (see e.g. Lemma 4). 
Therefore assume that / is not constant. 

First we will show that if / has the form described in the statement, then 
it is a continuous solution of (6), (7). Since the cases n ̂  k and n = k are 
analogous, we consider only the first one. 

Fix x,y G / with f(x)f(y) ^ 0. Then according to the definition of 
/, f(x) = t-^x) and f(y) = t _ 1(y). Next f{x)J(y) G K which im
plies f(x)f(y) G K and t(f(x)f(y)) = t(f(x))f(y)n + t(f{y))f(x)k. Thus 
xf{y)n + yf{x)k G / and 

f(xf(y)n + yf(x)k) = f(x)f(y). 

To complete the first part of the proof it suffices to observe that / is contin
uous, because t is continuous. 

Now, assume that / is a continuous and non-constant solution of (6), (7). 
In view of Lemma 4, /|s(/) is one-to-one and there is s G R \ {0} such that 
conditions 1°, 2° of that lemma are valid for every x G S(f). Hence, if card 
f1 ({0}) < 1> / i s one-to-one and it suffices to put K = /(/) and t = 
So it remains to study the case card / - 1({0}) > 1. 

According to Lemma 2 we have then 

/ ^ ( { O } ) € { / + / - } . 

Consequently S(f) G {Io^o) a n < ^' b v Lemma 3 (with L = l£ or L = IQ, 
respectively), /(/) C [0,+oo). 
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if yei<\{0}; 
if y = 0. 

Then (21) holds, 0 6 A', 

t(K) = S(f) U {0} 6 {/-,/+}. 

and, since 0 ̂  S(f) and /|s(/) l s one-to-one, t is one-to-one. Consequently 
K C [0,1). This ends the proof. • 

Using Theorem 1 one can easily determine the continuous solutions / : 
I —> R of (6), (7) for any given k, n, and / . In particular we have the 
following 

COROLLARY 1. Let n,k € N. A function / : R —¥ R is a continuous 
solution of (6) iff /(x) = 0 or f(x) = 1. 

P R O O F . Let / be a continuous solution of (6). Then, according to Theo
rem 1, / is constant or there are s € R\ {0} and a real interval K such that 
the function t :/<"—> R , defined by (20), is one-to-one and one of conditions 
(i) , (ii) of that theorem is valid. It is easily seen that, for every real interval 
K, t is not one-to-one or t(K) / R and, for every interval K described by 
(ii) , t(K) is a bounded set. Hence / is constant, which ends the proof. • 

Finally we have the given below theorem. 

T H E O R E M 2. Let I be a non-trivial real interval and f, g : I -> R. Assume 
that f is continuous. Then f,g fulfil the system of functional equations (3), 
(4) and condition (5) iff one of the following three conditions holds: 

1° /(*) = 0, 
2° f(x) = 1, x + y G I for every x,y £ I, and there is an additive 

function h : I —> R such that g(x) = h(x) + | x 2 for every x € I, 
3° f has the form described in Theorem 1, by (i) or (ii), and there is 

C 6 R such that 

g(x) = Cf{x)3 -3s2f{x)2 + (3s2 -C)f{x) for x£l with f(x)^0. 

P R O O F . First assume that / is constant. Then ./(x) = 0 or /(x) = 1. In 
the case /(x) = 0 we get 1°. So suppose that /(x) = 1 and g satisfy (3)-(5). 
Then, by (4) and (5), x + y € / for every x,y£ I and 

g{x + y) = g(x) + 3xy + g{y) for every x,y£l. 
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Thus the function h : / —• R, defined by: 

3 
/t(x) = g(x) - -x2 for every x, y G / , 

satisfies 
h(x + y) = h(x) + h(y) for every x , y G / . 

Consequently 2° holds. Since it is easy to check that functions f,g, described 
by 2°, are solutions of (3)-(5), this ends the proof in the case where / is 
constant. 

Now suppose that / is non-constant and continuous and f,g satisfy (3)-
(5). Then / has the form described in Theorem 1, which means that f\s{/) 
is one-to-one and 

(22) x = s{f(x)2 - f(x)) for every x G 5(/) 

with some s G R \ {0}. Hence, in view of symmetry of the right hand side 
of (3) with respect to x and y, for every x, y 6 R(/) we have 

xf(y)2 + yf{x) = yf(x)2 + xf(y) 

and consequently, by (4), 

f{x)g(y) + 3xy/(y) + /(y)3ff(x) = /(y)y(x) + 3yx/(x) + f(x)3g(y). 

From this and (22), for every x, y G S(f) with /(y) ̂  {-1,1}, we get 

9(x) =(/(y)3 - /(y))~1(y(y)(/(x)3 - /(x)) + 3xy/(x) - 3xy/(y)) 

=(/(y) 3 - /(y))-x(y(y) + 3* 2(/( y) 2 - /(y)))/(x)3 - 3*2/(x)2 

+ (/(y)3 - /(y))-1(3^2(/(y)3 - /(y)2) - y(y))/(x). 

Now, setting 

C = (/(y)3 - f(y))-l(g(y) + Ss2(f(y)2 - f(y))), 

with some fixed y G 5(/), /(y) ^ {-1,1}, we obtain 

352 - C = (/(y)3 - /(y))- 1 (3s2(/(y)3 - /(y)2) - y(y)) 

and 

g(x) = C/(x) 3 - 3s 2/(x) 2 + (3s2 - C)/(x) for every x G 5(/). 



79 

To complete the proof suppose that / and g are described by 3°. Then, 
on account of Theorem 1, for every x,y £ I with f{x)f(y) ^ 0, (3) and (5) 
hold and consequently 

9(xf(y)2 + yf(x)) =Cf(xff(yf - Zs2f(x)2f(y)2 + (3s2 - C)f(x)f(y) 

=f(x)(Cf(yf - 3s2f(y)2 + (3s2 - C)f(y)) 

+ 3s2(/(y)2 - /(y))(/(x)2 - /(*))/(y) 

+ (Cf(x)3 - 3s2f(x)2 + (3s2 - C)f(x))f(yf 

=f(x)g(y) + Sxyf{y) + g{x)f(yf. 

This ends the proof. • 

R E M A R K 3. Observe that, in point 3° of Theorem 2, by virtue of (22), g 
can be written in the following equivalent forms: 

g(x) = C(f(xf-f(x))-3sx = -f(x)x+(- - 3s) x for x £ / , /(*) # 0. 

R E M A R K 4. We may consider equation (6) also for every n, k £ Z or 
even for n = n^i^1 and k = kik^1 with some odd n2,k2 £ Z \ {0} and 
ni,fci £ Z, n\ + k\ T£ 0. The statements and proofs of Lemmas 1, 3, 
and 4 remain true then. This is also valid if / : I -4 [0, +oo) and n, k £ 
R, n2 + k2 ^ 0. However, since it is not the case for Lemma 2 and a suitable 
modification of it demands some additional long and complicated reasoning, 
we have confined our consideration to n, k £ N . Some results concerning the 
mentioned situations will be published separately. 
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