Annales Mathematicae Silesianae 9. Katowice 1995, 65-80

Prace Naukowe Uniwersytetu $l§skiego nr 1523

ON SOME CONDITIONAL FUNCTIONAL
EQUATIONS OF GOLAB—SCHINZEL TYPE

JANUSZ BRZDEK

Abstract. We consider equation (6) in the class of continuous functions
f : I — R satisfying (7), where [ is a non—trivial real interval and n, k are
fixed positive integers. The obtained results are applied to get the solutions
of the system of functional equations (3)-(5) in the class of pairs of functions
f,9 : I — Rsuch that f is continuous. Some connections between solutions of
the equations and a class of subsemigroups of some Lie groups are established
as well.

Let N,Z,Q, and R stand for the sets of positive integers, integers, ratio-
nals, and reals, respectively. The system of functional equations

(1) f(=f(y)* + yf(2)) = £(=)f(»),

(2) 9(2f ()" +3f(2)) = f(=)g(v) + 3oy S(v) + 9(2)f ()’

where the unknown functions f and g map R into R, has been introduced by
S. Midura (see [7]) in connection with the problem of finding subsemigroups
of the Lie group Ll. It is solved in [7] under the assumption that f is
continuous. Namely we have the following

THEOREM M (see [7], p. 47-48). A pair of functions f,g : R — R such
that f is continuous satisfies the system of functional equations (1), (2) iff
either

f(z)=0 and g¢(0)=0

or

f(z)=1 and g(z)=h(z)+ ga:2 for z€R
AMS (1991) subject classification: 39B22, 39B62.

5 — Annales...



66

‘with some additive function h : R - R.

In the paper we consider the following conditional geheralization of the
system (1), (2):

(3) f2f(y)* +yf(2)) = f(2) f(v)
whenever f(z)f(y) # 0,

(4) 9(zf () +yf(2)) = f(z)g(y) + 3zyf(y) + 9(z) f (y)°

where the unknown functions f and g map a non—trivial real interval I into
R with the additional assumption that

5) =zf(y)?*+ yf(a:) €1l forevery z,yel with f(z)f(y) #0.

Let us note that every pair of functions f, g : R — R satisfying (1), (2) is
also a solution of (3), (4). The converse is not true. For instance, a pair of
functions fp, go : R = R, given by: go(z) =0 and

1 if z=0; ¢ R
f°(”‘)‘{o if z#0 or #eX,

is a solution of the system (3), (4) and does not satisfy (1), (2).
We as well will investigate the conditional equation

6) FEf@)* +yf(@)") = f(z)f(y) ~ whenever f(z)f(y)+#0

in the class of continuous functions f : I — R satisfying

(M =zf@)*+yf(z)"€l forevery z,yel with f(z)f(y)#0,

where k,n € N are fixed. Equation (6) is a conditional generalization of (1)
and the functional equation

(8) @)z + f2)"y) = f(2) f(y)

studied in different cases e.g. in [2]-[4] and [7]-[9]. For example it is known
that, for n, k € N, the only continuous solutions of (8) in the class of functions
mapping a real topological linear space into R are functions fi(z) = 1 and
f2(z) = 0 (cf. [3] and [9]). In the class of functlons f [0, 4+00) = [0, +00)
equation (8) has been considered in [8].

Now, we will give a justification for the study of (3)-(5) and (6)—(7). For
this we need some definitions.
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Put D; = (R\{0}) xRand D; = (R\{0}) x Rx R and fix n,k € N. We
define binary operations - : Dy x Dy = Dy and - : Dy X Dy = D; by the
formulas:

(z1,22) - (U1, 92) = (2191, 27y2 + y¥x2) for (z1,22), (1,%2) € Dy,
(21,22, 23) - (91, Y2, ¥3) = (T191, T1Y2 + Y22, T1y3 + 32323 + z3y3)
for (x1,22,23), (y1,Y2,¥3) € D1.

It is easy to check that (Dj,-) (with any k,n € N) and (D;,-) are groups.
Furthermore (see e.g. [3], p. 261, [6], p. 6, and [4], p. 60):
- if n = 0 and k = 1, D, is isomorphic to the one-dimensional affine
group, ’
—if n=1and k=2, D, is isomorphic to the Lie group L
—ifn=1,D;is 1somorph1c to a subgroup of the Lie group L},
- if n =k =1, D, is isomorphic to the Clifford group of the ﬁeld R,
- Dy is is‘omorphic to the Lie group L}.
Let us introduce the following.

DEFINITION 1. Let S # @ be aset. We say a pair (D, F) is a parametriza-
tion. of .S provided D is a non—empty set and F is a functlon mapping D
onto S.

Of course every non—empty set S has a parametrization; it suffices to take
D = S and F(a) = a for every a € D.

DEFINITION 2. A subset S of D; (D respectively) is of type j, with
j € {1,2} (5 € {1,2,3}, resp.), provided there is a parametrization (D, F)
of S such that the function Fj is one-to—one, where F = (F,, F;) (F =
(Fy, F2, F3), resp.).

Now, we are in a position to formulate the subsequent

ProposITION 1. Let n,k € N. The following two conditions are valid.
(i) S is a subsemigroup of type 2 of the group D, iff there is a function
f : R = R satisfying the conditional functional equatzon (6) such that

f(R) # {0} and
S ={(f(z),2): = €R, f(z) #0}.

(ii) S is a subsemigroup of type 2 of the group D, iff there is a pair of
functions f,g : R = R satisfying the system (3), (4) such that f(R) # {0}

and .
S ={(f(2),2,9(2)) : = €R, f(z) # O}

5=



Proor. We pro.ve only (ii). The proof of (i) is analogous.
Let S be a subsemigroup of type 2 of D; and (D, F), F = (F, Fy, F3), be
a parametrization of S with F; one-to—one. Put

fo = F] [} Fz—l and go = F3 o Fz_l.

Then
S ={(fo(z),2,90(z)) : = € F2(D)}.

Further, since for every (1, 3, 23), (y1,¥2,¥3) € S
(z191, 2192 + Yi €2, T1vs + 3229291 + 2393) = (21,22, 23) - (U1, v2,43) € S, .

we have

9) (fo(@)fo(w), fo(@)y+ fo(u)’e, fo(@)g0(y) +323fo(v) +90(2) fo(v)*) € S

for every z,y € F3(D). Thus, for every z,y € F(D),

(10) fo(fo(2)y + fo(¥)’=) = fo(z) fo(y)

(11) go(fo(2)y + fo(¥)?z) = fo(z)g0(y) + 32y fo(y) + go(=) fo(y)®.

This implies that the functions f,g : R — R, defined by:

fo(:r) if z€ Fz(D),
fle) = {0 otherwise,

_ go(:l:) if z€ Fz(D);
9(z) = 0 otherwise,

for every z € R, satisfy the system (3), (4).

Now, suppose that we are given functions f,g : R — R, f(R) # {0},
satisfying the system (3), (4). Put S(f) = R\ f~1({0}), fo = fls(y) and
9o = gls(s)- 1t Is easily seen that fo and go are solutions of (10) and (11).
Thus (9) holds for every z,y € S(f), because

S ={(fo(2),,90(2)) : = € S(f)}.

Hence S is a subsemigroup of D;. Next (S(f),F), where F(z) =
(fo(z), z,90(x)) for € S(f), is a parametrizaton of S. This completes
the proof. O
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Consideration of subsemigroups of types 1 and 3 of D, leads to some other
systems of functional equations. Results concerning them will be published
separately.

We must mention yet that similar methods, as those presented in Propo-
sition 1, of determining algebraic substructures were already used e.g. in [2],

(3], [6], [7], and [4].

REMARK 1. Observe that if a function f : I — R, where I is a real
interval, satisfies (6) and (7), then the function f: R — R given by:

f(z) if z€l;

T($)={O for z€R,

otherwise,

is a solution of equation (6).. Thus, according to Proposition 1, f (if f(I) #
{0}) determines a subsemigroup of type 2 of D;.

REMARK 2. For every k,n € NU {0} equation (6) can be written in the
following equivalent form

F@ ()" +yf(=)") - fl2)f(v)) =0

(Of course, if we confine ourselves e.g. to a class of functions mapping a real
interval I into R and satisfying (7).)
Now, we will prove some lemmas useful in the sequel.

LEMMA 1. Let I be a non~trivial real interval, n,k € N, and f: I =+ R
be a function satisfying (6) and (7). Then, for every z € S(f) :=={z € I:
f(z) # 0}, the functions

S(f) 3 z = zf(2)" + 2f(z)* €R,
S(f)dz—= 2f(x)"+zf(2)* €R

are one—to—one.

Proor. We prove only that the first function is one-to—one. The proof
for the second function is analogous.
Fix = € S(f) and suppose that

2 f(2)" + 2f(2)* = o f(w)" + wf(z)*

for some z, w € S(f). Then, by (6), f(2)f(z) = f(z)f(w) and consequently
f(2) = f(w). Thus

0= (2f(2)" + 2f(2)*) - (@f(0)" + wf(2)") = (z - W)f ()",
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which means that z = w. This ends the proof. O

LEMMA 2. Let I,n,k, and f be the same as in Lemma 1. Assume that
f is continuous and put I* ={ze€l: >0} and - ={zel: 2<0}.

Then
F71{0}) € {8, {0}, 1%,1,1}.

Proor. We will show that

either f(I*)={0} or 0¢ f(I*\{0})

and
either f(I7)={0} or 0¢ f(/I~\{0})

It is easily seen that those conditions yield the statement.
Let I§ = I*\ {0} and I; = I~ \ {0}. For the proof by contradiction
suppose that there are a,b € I (a,b € Iy, respectively) with

f(b) # 0= f(a).
Then, by (6) and (7), f(b)? € f(I) and the continuity of f implies
(12) [0, f(®)*] C £(1).
Since
Ly=fTY{oNNIF #0 (L= fT({0}) N 15 #9, resp.)

and
Ly:=If\Li #0 (Ly:=1I5\ L #8, resp.)

is open in I (I, resp.), there are e € L; and a sequence {ym}men C L2
with

e= lim yy,.
m=$00

Note that, in view of (7),

Zm = Ym f(Um)* + Ym f(ym)” € I forevery m e N

and consequently

(13) 0="£gnwzm=inf1+ (0=‘n}§_r’noozm-'—-sup1', resp.).
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Further, by (12), there is d > 0 with (0,d) C {ef(y)* : y € I} ((—d,0) C
{ef(y)* : y € I}, resp.) and, for every y € I with ef(y)* € I'\ {0},

flef()*) = lim f(ymf®)" +yf(ym)")
= lim f(y)f(ym) = f(y)f(e) = 0.
Thus, according to (13), there exists ¢ > 0 such that
(0,¢)Cc Ly ((—¢,0) C Ly, resp.).
On account of (12), there is by € I with
0 < f(bo)* < ce™® (0< f(bo)F < —ce™?, resp.).

Put
Wy = bOf(ym)n + ymf(b())k for every m € N.

Then (6) gives
(14) F(wn) = F60)f(ym) #0  for every m € N.
We have as well
0< n}i—IPoO wm =ef(bo)* <c (0> n}x_r)noo wy, = ef (bo)* > ~c, resp.).
Whence there is m € N such that
0<wm<c (0>wny > —c, resp.),

which means that f(w,,) = 0. This brings a contradiction to (14). (]

For the next lemma we need a theorem of J. Aczél [1] (see also [5]). Let
us remind it.

THEOREM A (see [5), p. 307). Let L be a real non-trivial interval and
let . : L x L = L be a continuous cancellative associative operation. Tben
there exists a continuous bijection h: L — J such that

(15) z.y = h™1(h(z) + h(y)) for every z,y € L,

where J is a (necessarily unbounded) real interval.

LEMMA 3. Let n,k, I, and f be just the same as in Lemma 2. Let L cI
be a non—trivial mterval with

zf(y)" +yf(x)* e L forevery z,y€ L
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and 0 ¢ f(L). Then either f(z) =1 for every = € L or f|. is one-to—one,
F(L) € (0,400) and there is s € R\ {0} such that,
1° in the case n # k,

fs@"—y¥)=y forevery ye f(L);

2° in the case n = k,

fy"in@) =y forevery ye f(L).

PROOF. The case f|L = const = ¢ is trivial, because, according to the
hypothesis, for z € L

c= fef(2)" +2f(2)") = f(2)* = &

So suppose that f|; is not constant.
Setting z =y € L in (6) we get

f(L) N (0, +00) # 0.

Since 0 ¢ f(L) and f is continuous, this implies f(L) C (0, +o0).
Define a binary operation . : L X L — L by the formula:

zy=zf(y)" +yf(z)* for every z,y€ L.
Then, according to (6), for every z,y, 2 € L we have
z.(y.2) =z f(y.2)" + (y.2) f (2)* = 2 f ()" ()" + yf (2)" f (z)*
+2f(y)* f(2)* = (29) f(2)" + 2f(z.9)* = (z.y).2.

Thus the operation is associative. Further, it is easy to see that it is con-
tinuous and, by Lemma 1, cancellative. Hence, on account of Theorem A,
there exists a homeomorphism h : L — J (where J is an unbounded real
interval) such that (15) holds and, whence,

S~ (h(2))) f (R~ (h(v))) =£(2) f (y) = f(=.y)
=f(h~'(h(z) + h(y))) for every =z,y€ L.

Hence there is d € (0, +00) \ {1} such that

foh ™Y (y)=d¥ for every y € J,
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which means that f|;, is one-to-one.
First consider the case k # n. Then (15) yields

2fW)" +yf(e)f =zy=yz=yf(e)" +f(y)* forevery z,y€L.

Thus setting
s=(f(w)" - f(%)*) %0

for some fixed yo € L\ {0}, f(vo) # 1, we obtain 1°.
Next, let k = n. Note that g = (f|1,)"1 satisfies

g(zy) = g(z)y™ + g(y)z" for every z,y € f(L).

Consequently the function ¢ : f(L) — R, given by:

t(z) = g(z)z~"  forevery zé€ f(L),
is a solution of the Cauchy equation:

t(zy) = t(z) +t(y)-

Whence there exists s € R\ {0} such that

t(z) =sln(z)  for every z € f(L).
This implies 2° and ends the proof. ' a

LEMMA 4. Let n,k,I, and f be just the same as in Lemma 2. Then
f(z) = 0 or 1, or there exists s € R\ {0} such for every = € S(f) = {z €

I: f(=) #0},

1° in the case n # k, z = s(f(z)" — f(2)*);

2° in the case n = k, z = sf(z)"In|f(z)|.
Consequently f|s(s) is one-to—one or f is constant.

PROOF. It is easy to see that if f = const, then f(z) = 1,0. So, it
remains to study the situation where f is not constant. Then, according to
Lemma 2,

f71({0Y) € {0, {0}, I*, 17}

The case f~1({0}) # {0} results from Lemma 3 (with L € {If,I;,I}).
Therefore suppose that f~1({0}) = {0}.
Observe that then, by (6), we get

(16) sf(y)" +yf(z)*#0 forevery =z,yeI\{0}.
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Next, since in view of the right hand side of equation (6)
f(1) N (0, +00) # 0,

~ we have
FUF) € (0,+00) or f(Ig) C (0,400).

First suppose that f(I§) C (0,+00) and f(Iy) C (—00,0) (f(IF) C
(—00,0) and f(I5) C (0,+00), respecively). Then, by (6), for every z,y €
If and z,y€ Iy

f@f)™ +yf(@)*) = f(z)Fy) > 0,

which means that

sfW)"+yf(@)* € If (=f(W)" +vf(z)* € Iy, resp)
for every z,y€If and z,yel;.

(17)

Thus, on account of Lemma 3 with L = If (L = I, resp.), there is s €
R\ {0} such that for every = € I (z € I, resp.)

(18) o= {s(f(w)" - f@F) i ik

sf(z)"In|f(z)]| if n=k.
Moreover, in view of (17), for every z € Iy (z € I}, resp.)
2f(2)" +2f(2)* € If (ef(e)" +2f(2)* €15, resp.)
and consequently, by (6) and (1.8), in the case n #k,
2/ ()" + 2 (@) = s(f(@) - f@)™) for ey (€I, resp),
and, in thecase n =k,
2z f(z)" = sf(z)*"In(f(z)?) for. z € Iy (z € I, resp.).
| Since,‘ according to (16), ’
| f@)" + f@)* #£0  forevery z e 1\{0},

this implies that (18) holds also for every = € I (z € I, resp.).



75

To complete the proof it remains to study the case where f(I§)Uf(I57) C
(0, 4+00). Using Lemma 3, first with L = Ig" and next with L = I, we obtain
then that there are s, s € R\ {0} such that (18) holds for every z € I} and

so(f(@)™ - f()*) if n#k;

(19) ”‘={sof(m)"1n(f(z)) it n=k, o €k

Fix y € I; with f(y) # 1. Note that 0f(y)" + yf(0)* = 0 and

yfW)" +uf(y)k <.

Thus Lemma 1 yields
zf(y)" + yf(:v)k >0 forevery z€lf.

Hence, according to (6), (18) (with z € I;), and (19), for every z € I, in
the case n # k,

s(f(@)" = F(@)*) f ()" + s (f®)" - fF(¥)") f(z)*
=zf)" +y/(@)* = s(f(@)"f)" - f@)* )"
and, in the case n = k,

(sf(2)" In(f(2))) f(¥)" + (sof ()" In(f(¥))) f(=)"
=zf(y)" +yf(z)" = sf(z)" f(y)" In(f () f(v))-

Whence, for every z € I, in the case n # k,
(s0f(2)* — s£(2)*)(F ()" ~ F()*) =0
and, in the case n =k,

soIn(f(y)) = sIn(fw)),

which means that so = s, because f(I) # {1} and f(y) # 1. This implies
the statement. a

~ Now, we have all tools to prove the following

THEOREM 1. Let n,k € N, I be a non-trivial real fnterval, and [ be a
function mapping I into R. Then f is a non—constant continuous solution of
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(6), (7) iff there are s € R\ {0} and a real mterval K such that the function
t: K =R, deﬁned by:

s(y™ — v¥) if n#k;
(20) t(y)= ¢ sy"Inly| if n=k and y#0; for yeK,
0 if 06K and y=0

is one-to—-one and one of the following two conditions is valid:
(i) =zy€ K for every z,y € K, t(K) =1I,and f =t71;
i) 0eK, K clo,1), t(K) € {I,I5}, and

t™Wz)  if z€t(K);

for ev 1.
0 otherwise orevery &€

@y fle)= {

Furthermore, f is a constant solution of (6), (7) iff f(z) = 0 or, only in
the case where z +y € I for every z,y € I, f(z) = :

Proor. The case where  f is constant is trivial (see e.g. Lemma 4).
Therefore assume that f is not constant.

First we will show that if f has the form described in the statement, then
it is a continuous solution of (6), (7). Since the cases n # k and n = k are
analogous, we consider only the first one.

le z,y € I with f(z)f(y) # 0. Then according to the definition of

f(z) = t7(z) and f(y) = t~'(y). Next f(z), f(y) € K which im-
plies f(2)f(y) € K and t(f(2)f(y)) = t(F(2)) f(¥)" + (£ (v)) f(z)*. Thus
2f(y)" + yf(2)* € I and

f(=f()" +yf(=)*) = f2) f(v)-

To complete the first part of the proof it suffices to observe that f is contin-
uous, because t is continuous.

Now, assume that f is a continuous and non—constant solution of (6}, (7).
In view of Lemma 4, f|s(y) is one-to-one and there is s € R \ {0} such that
conditions 1°, 2° of that lemma are valid for every z € S(f). Hence, if card

-1({0}) < 1, fis one-to-one and it suffices to put i = f(I) and t = f~1.

So it remains to study the case card f~1({0}) > 1.

According to Lemma 2 we have then

F7H{oY) e {1, 17},

Consequently S(f) € {I§,15} and, by Lemma 3 (with L = I or L = Io_,
respectively), f(/ ) C [0 +oo)
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Let K = f(I) and

-1 if ( ;

Then (21) holds, 0 € IS,
t(K) = S(f)u{o} e {I~,I*},

and, since 0 ¢ S(f) and f|s(y) is one-to-one, ¢ is one-to—one. Consequently
K c [0,1). This ends the proof. 0O

Using Theorem 1 one can easily determine the continuous solutions f :
I — R of (6), (7) for any given k,n, and I. In particular we have the
following

COROLLARY 1. Let n,k € N. A function f : R — R is a continuous
solution of (6) iff f(z) =0 or f(z) = 1.

PROOF. Let f be a continuous solution of (6). Then, according to Theo-
rem 1, f is constant or there are s € R\ {0} and a real interval K such that
the function ¢ : K — R, defined by (20), is one-to—one and one of conditions
(i), (ii) of that theorem is valid. It is easily seen that, for every real interval.
K, t is not one-to—-one or t(K) # R and, for every interval K described by
(i), ¢(K) is a bounded set. Hence f is constant, which ends the proof. 0O

Finally we have the given below theorem.

THEOREM 2. Let I be a non—-trivial real interval and f,g : I = R. Assume
that f is continuous. Then f, g fulfil the system of functional equations (3),
(4) and condition (5) iff one of the following three conditions holds:

1° f(z) =0,

2 f(z) =1, x+y € I for every z,y € I, and there is an additive
function h: I — R such that g(z) = h(z) + 3a? for every z € I,

3° f has the form described in Theorem 1, by (i) or (ii), and there is
C € R such that

g(z) =Cf(z)® - 35°f(z) + (3s* - C)f(z) for z €l with f(z)#0.

PROOF. First assume that f is constant. Then f(z) =0or f(z)=1. In
the case f(z) = 0 we get 1°. So suppose that f(z) =1 and g satisfy (3)-(5).
Then, by (4) and (5), z + y € [ for every z,y € I and

glz+y) =g(z)+3zy + g(y) for every z,y € I.
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Thus the function & : I = R, defined by:

ha) = 9(a) - 2o

5 for every z,y €1,

satisfies
hz+y) =h(z)+h(y) forevery z,yel.

Consequently 2° holds. Since it is easy to check that functions f, g, described
by 2°, are solutions of (3)-(5), this ends the proof in the case where f is
constant. '

Now suppose that f is non—constant and continuous and f, g satisfy (3)-
(6). Then f has the form described in Theorem 1, which means that flsep
is one-to—one and :

(22) z=s(f(z)’ - f(z)) forevery ze€ S(f)

with some s € R\ {0}. Hence, in view of symmetry of the right hand side
of (3) with respect to z and y, for every z,y € R(f) we have

2f(y)* +yf(e) = yf(z)* + zf(y)

and consequently, by (4),

f(@)g(y) + 3zyf(y) + F(y)°a(2) = f(v)g(x) + 3yz f(z) + f(z)g(y).
From this and (22), for every z,y € S(f) with fy) ¢ {-1,1}, we get
9(2) =(f¥)° = F@)) " (9 (f(2)° - f(2)) + 32y (z) — 3zyf(y))

=(f(y)* - f(y))"l(g(if/) +35(F(y)? - f(v)) f(=z)® - 3s* f(z)?
+(F@)° - f) T B (F()® - f(¥)?) - 9(v)) f ().

Now, setting

C=(fu)° - FW) (o) +35*(f(4)* - f(¥))),

with some fixed y € S(f), f(y) ¢ {—1, 1}, we obtain

3s* = C = (f(u)° - fW)) ' B2 (W) ~ F®)®) - 9(y))

and

9(z) = Cf(2)® - 35’ f(z)* + (3s* - C) f(2) for every z € S(f).
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To complete the proof suppose that f and g are described by 3°. Then,
on account of Theorem 1, for every z,y € I with f(z)f(y) # 0, (3) and (5)
hold and consequently

9(2f(y)* + yf(2)) =Cf(2)°f(y)* = 38 F(2)* £ ()* + (35° = C) (=) f(v)
=f(z)(Cf(y)® - 35 f(y)* + (35> — C) f(y))
+382(f(¥)? - f(W)(f(2)* - f(=2)) f(v)
+(Cf(x)* - 38 f(z)? + (3s* - C) f(2)) f(y)®
=f(z)g(y) + 3zyf(y) + g(z) ().

This ends the proof. g

REMARK 3. Observe that, in point 3° of Theorem 2, by virtue of (22), g
can be written in the following equivalent forms:

g(z) = C(f(z)*-f(x))—-3sz = gf(a:)a:+(% - 38) z forzel, f(x)#0.

REMARK 4. We may consider equation (6) also for every n,k € Z or
even for n = nyny! and k = kik;! with some odd ng,k; € Z\ {0} and
ny, k1 € Z, n? + k% # 0. The statements and proofs of Lemmas 1, 3,
and 4 remain true then. This is also valid if f : ] — [0,400) and n,k €
R, n?+k? # 0. However, since it is not the case for Lemma 2 and a suitable
modification of it demands some additional long and complicated reasoning,
we have confined our consideration to n,k € N. Some results concerning the
mentioned situations will be published separately.
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