ON SOME CONDITIONAL FUNCTIONAL EQUATIONS OF GOLAB-SCHINZEL TYPE

Janusz Brzdȩk

Abstract

We consider equation (6) in the class of continuous functions $f: I \rightarrow \mathbb{R}$ satisfying (7), where I is a non-trivial real interval and n, k are fixed positive integers. The obtained results are applied to get the solutions of the system of functional equations (3)-(5) in the class of pairs of functions $f, g: I \rightarrow \mathbb{R}$ such that f is continuous. Some connections between solutions of the equations and a class of subsemigroups of some Lie groups are established as well.

Let $\mathbf{N}, \mathbf{Z}, \mathbb{Q}$, and \mathbf{R} stand for the sets of positive integers, integers, rationals, and reals, respectively. The system of functional equations

$$
\begin{equation*}
f\left(x f(y)^{2}+y f(x)\right)=f(x) f(y) \tag{1}
\end{equation*}
$$

$$
\begin{equation*}
g\left(x f(y)^{2}+y f(x)\right)=f(x) g(y)+3 x y f(y)+g(x) f(y)^{3}, \tag{2}
\end{equation*}
$$

where the unknown functions f and g map \mathbf{R} into \mathbb{R}, has been introduced by S. Midura (see [7]) in connection with the problem of finding subsemigroups of the Lie group L_{3}^{1}. It is solved in [7] under the assumption that f is continuous. Namely we have the following

Theorem M (see [7], p. 47-48). A pair of functions $f, g: \mathbf{R} \rightarrow \mathbf{R}$ such that f is continuous satisfies the system of functional equations (1), (2) iff either

$$
f(x) \equiv 0 \quad \text { and } \quad g(0)=0
$$

or

$$
f(x) \equiv 1 \quad \text { and } \quad g(x)=h(x)+\frac{3}{2} x^{2} \quad \text { for } \quad x \in \mathbb{R}
$$

AMS (1991) subject classification: 39B22, 39B62.
with some additive function $h: \mathbb{R} \rightarrow \mathbb{R}$.
In the paper we consider the following conditional generalization of the system (1), (2):

$$
\begin{equation*}
f\left(x f(y)^{2}+y f(x)\right)=f(x) f(y) \tag{3}
\end{equation*}
$$

whenever $f(x) f(y) \neq 0$,

$$
\begin{equation*}
g\left(x f(y)^{2}+y f(x)\right)=f(x) g(y)+3 x y f(y)+g(x) f(y)^{3} \tag{4}
\end{equation*}
$$

where the unknown functions f and g map a non-trivial real interval I into \mathbf{R} with the additional assumption that

$$
\begin{equation*}
x f(y)^{2}+y f(x) \in I \quad \text { for every } \quad x, y \in I \text { with } f(x) f(y) \neq 0 \tag{5}
\end{equation*}
$$

Let us note that every pair of functions $f, g: \mathbb{R} \rightarrow \mathbb{R}$ satisfying (1), (2) is also a solution of (3), (4). The converse is not true. For instance, a pair of functions $f_{0}, g_{0}: \mathbf{R} \rightarrow \mathbf{R}$, given by: $g_{0}(x) \equiv 0$ and

$$
f_{0}(x)=\left\{\begin{array}{lll}
1 & \text { if } & x=0 ; \\
0 & \text { if } & x \neq 0
\end{array} \quad \text { for } \quad x \in \mathbb{R}\right.
$$

is a solution of the system (3), (4) and does not satisfy (1), (2).
We as well will investigate the conditional equation

$$
\begin{equation*}
f\left(x f(y)^{k}+y f(x)^{n}\right)=f(x) f(y) \quad \text { whenever } \quad f(x) f(y) \neq 0 \tag{6}
\end{equation*}
$$

in the class of continuous functions $f: I \rightarrow \mathbb{R}$ satisfying

$$
\begin{equation*}
x f(y)^{k}+y f(x)^{n} \in I \quad \text { for every } \quad x, y \in I \text { with } f(x) f(y) \neq 0 \tag{7}
\end{equation*}
$$

where $k_{1} n \in N$ are fixed. Equation (6) is a conditional generalization of (1) and the functional equation

$$
\begin{equation*}
f\left(f(y)^{k} x+f(x)^{n} y\right)=f(x) f(y) \tag{8}
\end{equation*}
$$

studied in different cases e.g. in [2]-[4] and [7]-[9]. For example it is known that, for $\boldsymbol{n}, \boldsymbol{k} \in \mathbf{N}$, the only continuous solutions of (8) in the class of functions mapping a real topological linear space into \mathbb{R} are functions $f_{1}(x) \equiv 1$ and $f_{2}(x) \equiv 0$ (cf. [3] and [9]). In the class of functions $f:[0,+\infty) \rightarrow[0,+\infty)$ equation (8) has been considered in [8].

Now, we will give a justification for the study of (3)-(5) and (6)-(7). For this we need some definitions.

Put $D_{1}=(\mathbb{R} \backslash\{0\}) \times \mathbb{R}$ and $D_{2}=(\mathbb{R} \backslash\{0\}) \times \mathbb{R} \times \mathbb{R}$ and fix $n, k \in \mathbb{N}$. We define binary operations : $D_{1} \times D_{1} \rightarrow D_{1}$ and $\cdot: D_{2} \times D_{2} \rightarrow D_{2}$ by the formulas:

$$
\begin{aligned}
& \left(x_{1}, x_{2}\right) \cdot\left(y_{1}, y_{2}\right)=\left(x_{1} y_{1}, x_{1}^{n} y_{2}+y_{1}^{k} x_{2}\right) \text { for }\left(x_{1}, x_{2}\right),\left(y_{1}, y_{2}\right) \in D_{1}, \\
& \left(x_{1}, x_{2}, x_{3}\right) \cdot\left(y_{1}, y_{2}, y_{3}\right)=\left(x_{1} y_{1}, x_{1} y_{2}+y_{1}^{2} x_{2}, x_{1} y_{3}+3 x_{2} y_{2} y_{1}+x_{3} y_{1}^{3}\right) \\
& \quad \text { for }\left(x_{1}, x_{2}, x_{3}\right),\left(y_{1}, y_{2}, y_{3}\right) \in D_{2} .
\end{aligned}
$$

It is easy to check that ($\left.D_{1}, \cdot\right)$ (with any $k, n \in \mathrm{~N}$) and ($\left.D_{2}, \cdot\right)$ are groups. Furthermore (see e.g. [3], p. 261, [6], p. 6, and [4], p. 60):

- if $n=0$ and $k=1, D_{1}$ is isomorphic to the one-dimensional affine group,
- if $n=1$ and $k=2, D_{1}$ is isomorphic to the Lie group L_{2}^{1},
- if $n=1, D_{1}$ is isomorphic to a subgroup of the Lie group L_{k}^{1},
- if $n=k=1, D_{1}$ is isomorphic to the Clifford group of the field \mathbb{R},
$-D_{2}$ is isomorphic to the Lie group L_{3}^{1}.
Let us introduce the following.
Definition 1. Let $S \neq \emptyset$ be a set. We say a pair (D, F) is a parametrization. of S provided D is a non-empty set and F is a function mapping D onto S.

Of course every non-empty set S has a parametrization; it suffices to take $D=S$ and $F(a)=a$ for every $a \in D$.

Definition 2. A subset S of D_{1} (D_{2} respectively) is of type j, with $j \in\{1,2\}(j \in\{1,2,3\}$, resp.), provided there is a parametrization ($D, F)$ of S such that the function F_{j} is one-to-one, where $F=\left(F_{1}, F_{2}\right)(F=$ (F_{1}, F_{2}, F_{3}), resp.).

Now, we are in a position to formulate the subsequent
Proposition 1. Let $n, k \in \mathbf{N}$. The following two conditions are valid.
(i) S is a subsemigroup of type 2 of the group D_{1} iff there is a function $f: \mathbb{R} \rightarrow \mathbb{R}$ satisfying the conditional functional equation (6) such that $f(\mathbb{R}) \neq\{0\}$ and

$$
S=\{(f(x), x): x \in \mathbf{R}, f(x) \neq 0\}
$$

(ii) S is a subsemigroup of type 2 of the group D_{2} iff there is a pair of functions $f, g: \mathbb{R} \rightarrow \mathbb{R}$ satisfying the system (3), (4) such that $f(\mathbb{R}) \neq\{0\}$ and

$$
S=\{(f(x), x, g(x)): x \in \mathbf{R}, f(x) \neq 0\}
$$

Proof. We prove only (ii). The proof of (i) is analogous.
Let S be a subsemigroup of type 2 of D_{2} and $(D, F), F=\left(F_{1}, F_{2}, F_{3}\right)$, be a parametrization of S with F_{2} one-to-one. Put

$$
f_{0}=F_{1} \circ F_{2}^{-1} \quad \text { and } \quad g_{0}=F_{3} \circ F_{2}^{-1}
$$

Then

$$
S=\left\{\left(f_{0}(x), x, g_{0}(x)\right): \quad x \in F_{2}(D)\right\}
$$

Further, since for every $\left(x_{1}, x_{2}, x_{3}\right),\left(y_{1}, y_{2}, y_{3}\right) \in S$

$$
\left(x_{1} y_{1}, x_{1} y_{2}+y_{1}^{2} x_{2}, x_{1} y_{3}+3 x_{2} y_{2} y_{1}+x_{3} y_{1}^{3}\right)=\left(x_{1}, x_{2}, x_{3}\right) \cdot\left(y_{1}, y_{2}, y_{3}\right) \in S
$$

we have
(9) $\left(f_{0}(x) f_{0}(y), f_{0}(x) y+f_{0}(y)^{2} x, f_{0}(x) g_{0}(y)+3 x y f_{0}(y)+g_{0}(x) f_{0}(y)^{3}\right) \in S$ for every $x, y \in F_{2}(D)$. Thus, for every $x, y \in F_{2}(D)$,

$$
\begin{equation*}
f_{0}\left(f_{0}(x) y+f_{0}(y)^{2} x\right)=f_{0}(x) f_{0}(y) \tag{10}
\end{equation*}
$$

$$
\begin{equation*}
g_{0}\left(f_{0}(x) y+f_{0}(y)^{2} x\right)=f_{0}(x) g_{0}(y)+3 x y f_{0}(y)+g_{0}(x) f_{0}(y)^{3} . \tag{11}
\end{equation*}
$$

This implies that the functions $f, g: \mathbb{R} \rightarrow \mathbb{R}$, defined by:

$$
\begin{aligned}
& f(x)= \begin{cases}f_{0}(x) & \text { if } x \in F_{2}(D) \\
0 & \text { otherwise }\end{cases} \\
& g(x)= \begin{cases}g_{0}(x) & \text { if } x \in F_{2}(D) \\
0 & \text { otherwise }\end{cases}
\end{aligned}
$$

for every $x \in \mathbb{R}$, satisfy the system (3), (4).
Now, suppose that we are given functions $f, g: \mathbb{R} \rightarrow \mathbb{R}, f(\mathbb{R}) \neq\{0\}$, satisfying the system (3), (4). Put $S(f)=\mathbb{R} \backslash f^{-1}(\{0\}), f_{0}=\left.f\right|_{S(f)}$ and $g_{0}=\left.g\right|_{S(f)}$. It is easily seen that f_{0} and g_{0} are solutions of (10) and (11). Thus (9) holds for every $x, y \in S(f)$, because

$$
S=\left\{\left(f_{0}(x), x, g_{0}(x)\right): \quad x \in S(f)\right\}
$$

Hence S is a subsemigroup of D_{2}. Next $(S(f), F)$, where $F(x)=$ ($f_{0}(x), x, g_{0}(x)$) for $x \in S(f)$, is a parametrizaton of S. This completes the proof.

Consideration of subsemigroups of types 1 and 3 of D_{2} leads to some other systems of functional equations. Results concerning them will be published separately.

We must mention yet that similar methods, as those presented in Proposition 1 , of determining algebraic substructures were already used e.g. in [2], [3], [6], [7], and [4].

Remark 1. Observe that if a function $f: I \rightarrow \mathbb{R}$, where I is a real interval, satisfies (6) and (7), then the function $\bar{f}: \mathbb{R} \rightarrow \mathbb{R}$ given by:

$$
\bar{f}(x)=\left\{\begin{array}{ll}
f(x) & \text { if } x \in I ; \\
0 & \text { otherwise },
\end{array} \quad \text { for } \quad x \in \mathbb{R}\right.
$$

is a solution of equation (6). Thus, according to Proposition $1, f$ (if $f(I) \neq$ $\{0\}$) determines a subsemigroup of type 2 of D_{1}.

Remark 2. For every $k, n \in \mathbb{N} \cup\{0\}$ equation (6) can be written in the following equivalent form

$$
f(x) f(y)\left(f\left(x f(y)^{k}+y f(x)^{n}\right)-f(x) f(y)\right)=0
$$

(Of course, if we confine ourselves e.g. to a class of functions mapping a real interval I into \mathbb{R} and satisfying (7).)

Now, we will prove some lemmas useful in the sequel.
Lemma 1. Let I be a non-trivial real interval, $n, k \in \mathbb{N}$, and $f: I \rightarrow \mathbb{R}$ be a function satisfying (6) and (7). Then, for every $x \in S(f):=\{x \in I$: $f(x) \neq 0\}$, the functions

$$
\begin{aligned}
& S(f) \ni z \rightarrow x f(z)^{n}+z f(x)^{k} \in \mathbb{R}, \\
& S(f) \ni z \rightarrow z f(x)^{n}+x f(z)^{k} \in \mathbb{R}
\end{aligned}
$$

are one-to-one.
Proof. We prove only that the first function is one-to-one. The proof for the second function is analogous.

Fix $x \in S(f)$ and suppose that

$$
x f(z)^{n}+z f(x)^{k}=x f(w)^{n}+w f(x)^{k}
$$

for some $z, w \in S(f)$. Then, by (6), $f(x) f(z)=f(x) f(w)$ and consequently $f(z)=f(w)$. Thus

$$
0=\left(x f(z)^{n}+z f(x)^{k}\right)-\left(x f(w)^{n}+w f(x)^{k}\right)=(z-w) f(x)^{k}
$$

which means that $z=w$. This ends the proof.
Lemma 2. Let I, n, k, and f be the same as in Lemma 1. Assume that f is continuous and put $I^{+}=\{x \in I: x \geq 0\}$ and $I^{-}=\{x \in I: x \leq 0\}$. Then

$$
f^{-1}(\{0\}) \in\left\{\emptyset,\{0\}, I^{+}, I^{-}, I\right\}
$$

Proof. We will show that

$$
\text { either } f\left(I^{+}\right)=\{0\} \quad \text { or } 0 \notin f\left(I^{+} \backslash\{0\}\right)
$$

and

$$
\text { either } f\left(I^{-}\right)=\{0\} \quad \text { or } 0 \notin f\left(I^{-} \backslash\{0\}\right)
$$

It is easily seen that those conditions yield the statement.
Let $I_{0}^{+}=I^{+} \backslash\{0\}$ and $I_{0}^{-}=I^{-} \backslash\{0\}$. For the proof by contradiction suppose that there are $a, b \in I_{0}^{+}\left(a, b \in I_{0}^{-}\right.$, respectively) with

$$
f(b) \neq 0=f(a)
$$

Then, by (6) and (7), $f(b)^{2} \in f(I)$ and the continuity of f implies

$$
\begin{equation*}
\left[0, f(b)^{2}\right] \subset f(I) \tag{12}
\end{equation*}
$$

Since

$$
L_{1}:=f^{-1}(\{0\}) \cap I_{0}^{+} \neq \emptyset \quad\left(L_{1}:=f^{-1}(\{0\}) \cap I_{0}^{-} \neq \emptyset, \text { resp. }\right)
$$

and

$$
L_{2}:=I_{0}^{+} \backslash L_{1} \neq \emptyset \quad\left(L_{2}:=I_{0}^{-} \backslash L_{1} \neq \emptyset, \text { resp. }\right)
$$

is open in $I_{0}^{+}\left(I_{0}^{-}\right.$, resp. $)$, there are $e \in L_{1}$ and a sequence $\left\{y_{m}\right\}_{m \in N} \subset L_{2}$ with

$$
e=\lim _{m \rightarrow \infty} y_{m}
$$

Note that, in view of (7),

$$
z_{m}=y_{m} f\left(y_{m}\right)^{k}+y_{m} f\left(y_{m}\right)^{n} \in I \quad \text { for every } \quad m \in \mathbf{N}
$$

and consequently

$$
\begin{equation*}
0=\lim _{m \rightarrow \infty} z_{m}=\inf I^{+} \quad\left(0=\lim _{m \rightarrow \infty} z_{m}=\sup I^{-}, \quad \text { resp. }\right) \tag{13}
\end{equation*}
$$

Further, by (12), there is $d>0$ with $(0, d) \subset\left\{e f(y)^{k}: y \in I\right\}((-d, 0) \subset$ $\left\{e f(y)^{k}: y \in I\right\}$, resp.) and, for every $y \in I$ with $e f(y)^{k} \in I \backslash\{0\}$,

$$
\begin{aligned}
f\left(e f(y)^{k}\right) & =\lim _{m \rightarrow \infty} f\left(y_{m} f(y)^{k}+y f\left(y_{m}\right)^{n}\right) \\
& =\lim _{m \rightarrow \infty} f(y) f\left(y_{m}\right)=f(y) f(e)=0 .
\end{aligned}
$$

Thus, according to (13), there exists $c>0$ such that

$$
(0, c) \subset L_{1} \quad\left((-c, 0) \subset L_{1}, \text { resp. }\right)
$$

On account of (12), there is $b_{0} \in I$ with

$$
0<f\left(b_{0}\right)^{k}<c e^{-1} \quad\left(0<f\left(b_{0}\right)^{k}<-c e^{-1}, \text { resp. }\right) .
$$

Put

$$
w_{m}:=b_{0} f\left(y_{m}\right)^{n}+y_{m} f\left(b_{0}\right)^{k} \quad \text { for every } \quad m \in \mathbf{N}
$$

Then (6) gives

$$
\begin{equation*}
f\left(w_{m}\right)=f\left(b_{0}\right) f\left(y_{m}\right) \neq 0 \quad \text { for every } \quad m \in \mathbf{N} . \tag{14}
\end{equation*}
$$

We have as well

$$
0<\lim _{m \rightarrow \infty} w_{m}=e f\left(b_{0}\right)^{k}<c \quad\left(0>\lim _{m \rightarrow \infty} w_{m}=e f\left(b_{0}\right)^{k}>-c, \text { resp. }\right) .
$$

Whence there is $m \in \mathbf{N}$ such that

$$
0<w_{m}<c \quad\left(0>w_{m}>-c, \text { resp. }\right)
$$

which means that $f\left(w_{m}\right)=0$. This brings a contradiction to (14).
For the next lemma we need a theorem of J. Aczél [1] (see also [5]). Let us remind it.

Theorem A (see [5], p. 307). Let L be a real non-trivial interval and let . : $L \times L \rightarrow L$ be a continuous cancellative associative operation. Then there exists a continuous bijection $h: L \rightarrow J$ such that

$$
\begin{equation*}
x . y=h^{-1}(h(x)+h(y)) \quad \text { for every } \quad x, y \in L \tag{15}
\end{equation*}
$$

where J is a (necessarily unbounded) real interval.
Lemma 3. Let n, k, I, and f be just the same as in Lemma 2. Let $L \subset I$ be a non-trivial interval with

$$
x f(y)^{n}+y f(x)^{k} \in L \quad \text { for every } \quad x, y \in L
$$

and $0 \notin f(L)$. Then either $f(x)=1$ for every $x \in L$ or $\left.f\right|_{L}$ is one-to-one, $f(L) \subset(0,+\infty)$ and there is $s \in \mathbb{R} \backslash\{0\}$ such that,
1° in the case $n \neq k$,

$$
f\left(s\left(y^{n}-y^{k}\right)\right)=y \quad \text { for every } \quad y \in f(L)
$$

2^{o} in the case $n=k$,

$$
f\left(s y^{n} \ln (y)\right)=y \quad \text { for every } \quad y \in f(L)
$$

Proof. The case $\left.f\right|_{L}=$ const $=c$ is trivial, because, according to the hypothesis, for $x \in L$

$$
c=f\left(x f(x)^{n}+x f(x)^{k}\right)=f(x)^{2}=c^{2}
$$

So suppose that $\left.f\right|_{L}$ is not constant.
Setting $x=y \in L$ in (6) we get

$$
f(L) \cap(0,+\infty) \neq \emptyset
$$

Since $0 \notin f(L)$ and f is continuous, this implies $f(L) \subset(0,+\infty)$.
Define a binary operation . : $L \times L \rightarrow L$ by the formula:

$$
x . y=x f(y)^{n}+y f(x)^{k} \quad \text { for every } \quad x, y \in L .
$$

Then, according to (6), for every $x, y, z \in L$ we have

$$
\begin{aligned}
x .(y . z)= & x f(y . z)^{n}+(y . z) f(x)^{k}=x f(y)^{n} f(z)^{n}+y f(z)^{n} f(x)^{k} \\
& +z f(y)^{k} f(x)^{k}=(x . y) f(z)^{n}+z f(x . y)^{k}=(x . y) . z .
\end{aligned}
$$

Thus the operation is associative. Further, it is easy to see that it is continuous and, by Lemma 1, cancellative. Hence, on account of Theorem A, there exists a homeomorphism $h: L \rightarrow J$ (where J is an unbounded real interval) such that (15) holds and, whence,

$$
\begin{aligned}
f\left(h^{-1}(h(x))\right) f\left(h^{-1}(h(y))\right) & =f(x) f(y)=f(x . y) \\
& =f\left(h^{-1}(h(x)+h(y))\right) \text { for every } x, y \in L .
\end{aligned}
$$

Hence there is $d \in(0,+\infty) \backslash\{1\}$ such that

$$
f \circ h^{-1}(y)=d^{y} \quad \text { for every } \quad y \in J
$$

which means that $\left.f\right|_{L}$ is one-to-one.
First consider the case $k \neq n$. Then (15) yields

$$
x f(y)^{n}+y f(x)^{k}=x . y=y . x=y f(x)^{n}+x f(y)^{k} \quad \text { for every } \quad x, y \in L .
$$

Thus setting

$$
s=\left(f\left(y_{0}\right)^{n}-f\left(y_{0}\right)^{k}\right)^{-1} y_{0}
$$

for some fixed $y_{0} \in L \backslash\{0\}, f\left(y_{0}\right) \neq 1$, we obtain 1°.
Next, let $k=n$. Note that $g=\left(\left.f\right|_{L}\right)^{-1}$ satisfies

$$
g(x y)=g(x) y^{n}+g(y) x^{n} \quad \text { for every } \quad x, y \in f(L)
$$

Consequently the function $t: f(L) \rightarrow \mathbb{R}$, given by:

$$
t(z)=g(z) z^{-n} \quad \text { for every } \quad z \in f(L)
$$

is a solution of the Cauchy equation:

$$
t(x y)=t(x)+t(y) .
$$

Whence there exists $s \in \mathbb{R} \backslash\{0\}$ such that

$$
t(x)=s \ln (x) \quad \text { for every } \quad x \in f(L)
$$

This implies 2° and ends the proof.
Lemma 4. Let n, k, I, and f be just the same as in Lemma 2. Then $f(x) \equiv 0$ or 1 , or there exists $s \in \mathbb{R} \backslash\{0\}$ such for every $x \in S(f):=\{x \in$ $I: f(x) \neq 0\}$,
1° in the case $n \neq k, x=s\left(f(x)^{n}-f(x)^{k}\right)$;
2^{o} in the case $n=k, x=s f(x)^{n} \ln |f(x)|$.
Consequently $\left.f\right|_{S(f)}$ is one-to-one or f is constant.
Proof. It is easy to see that if $f=$ const, then $f(x) \equiv 1,0$. So, it remains to study the situation where f is not constant. Then, according to Lemma 2,

$$
f^{-1}(\{0\}) \in\left\{\emptyset,\{0\}, I^{+}, I^{-}\right\} .
$$

The case $f^{-1}(\{0\}) \neq\{0\}$ results from Lemma 3 (with $L \in\left\{I_{0}^{+}, I_{0}^{-}, I\right\}$). Therefore suppose that $f^{-1}(\{0\})=\{0\}$.

Observe that then, by (6), we get

$$
\begin{equation*}
x f(y)^{n}+y f(x)^{k} \neq 0 \quad \text { for every } \quad x, y \in I \backslash\{0\} \tag{16}
\end{equation*}
$$

Next, since in view of the right hand side of equation (6)

$$
f(I) \cap(0,+\infty) \neq \emptyset,
$$

we have

$$
f\left(I_{0}^{+}\right) \subset(0,+\infty) \text { or } f\left(I_{0}^{-}\right) \subset(0,+\infty)
$$

First suppose that $f\left(I_{0}^{+}\right) \subset(0,+\infty)$ and $f\left(I_{0}^{-}\right) \subset(-\infty, 0)\left(f\left(I_{0}^{+}\right) \subset\right.$ $(-\infty, 0)$ and $f\left(I_{0}^{-}\right) \subset(0,+\infty)$, respecively). Then, by (6), for every $x, y \in$ I_{0}^{+}and $x, y \in I_{0}^{-}$

$$
f\left(x f(y)^{n}+y f(x)^{k}\right)=f(x) f(y)>0,
$$

which means that

$$
\begin{align*}
& x f(y)^{n}+y f(x)^{k} \in I_{0}^{+} \quad\left(x f(y)^{n}+y f(x)^{k} \in I_{0}^{-}, \text {resp. }\right) \tag{17}\\
& \text { for every } x, y \in I_{0}^{+} \text {and } x, y \in I_{0}^{-} .
\end{align*}
$$

Thus, on account of Lemma 3 with $L=I_{0}^{+}$($L=I_{0}^{-}$, resp.), there is $s \in$ $\mathbb{R} \backslash\{0\}$ such that for every $x \in I_{0}^{+}\left(x \in I_{0}^{-}\right.$, resp.)

$$
x=\left\{\begin{array}{lll}
s\left(f(x)^{n}-f(x)^{k}\right) & \text { if } \quad n \neq k ; \tag{18}\\
s f(x)^{n} \ln |f(x)| & \text { if } \quad n=k .
\end{array}\right.
$$

Moreover, in view of (17), for every $x \in I_{0}^{-}\left(x \in I_{0}^{+}\right.$, resp.)

$$
x f(x)^{n}+x f(x)^{k} \in I_{0}^{+} \quad\left(x f(x)^{n}+x f(x)^{k} \in I_{0}^{-}, \text {resp. }\right)
$$

and consequently, by (6) and (18), in the case $n \neq k$,

$$
x f(x)^{n}+x f(x)^{k}=s\left(f(x)^{2 n}-f(x)^{2 k}\right) \quad \text { for } \quad x \in I_{0}^{-}\left(x \in I_{0}^{+}, \text {resp. }\right)
$$

and, in the case $n=k$,

$$
2 x f(x)^{n}=s f(x)^{2 n} \ln \left(f(x)^{2}\right) \quad \text { for } \quad x \in I_{0}^{-}\left(x \in I_{0}^{+}, \text {resp. }\right) .
$$

Since, according to (16),

$$
f(x)^{n}+f(x)^{k} \neq 0 \quad \text { for every } \quad x \in I \backslash\{0\}
$$

this implies that (18) holds also for every $x \in I_{0}^{-}$($x \in I_{0}^{+}$, resp.).

To complete the proof it remains to study the case where $f\left(I_{0}^{+}\right) \cup f\left(I_{0}^{-}\right) \subset$ $(0,+\infty)$. Using Lemma 3 , first with $L=I_{0}^{+}$and next with $L=I_{0}^{-}$, we obtain then that there are $s, s_{0} \in \mathbf{R} \backslash\{0\}$ such that (18) holds for every $x \in I_{0}^{+}$and

$$
x=\left\{\begin{array}{ll}
s_{0}\left(f(x)^{n}-f(x)^{k}\right) & \text { if } \quad n \neq k ; \tag{19}\\
s_{0} f(x)^{n} \ln (f(x)) & \text { if } \quad n=k,
\end{array} \quad \text { for } \quad x \in I_{0}^{-} .\right.
$$

Fix $y \in I_{0}^{-}$with $f(y) \neq 1$. Note that $0 f(y)^{n}+y f(0)^{k}=0$ and

$$
y f(y)^{n}+y f(y)^{k}<0
$$

Thus Lemma 1 yields

$$
x f(y)^{n}+y f(x)^{k}>0 \quad \text { for every } \quad x \in I_{0}^{+} .
$$

Hence, according to (6), (18) (with $x \in I_{0}^{+}$), and (19), for every $x \in I_{0}^{+}$, in the case $n \neq k$,

$$
\begin{aligned}
& s\left(f(x)^{n}-f(x)^{k}\right) f(y)^{n}+s_{0}\left(f(y)^{n}-f(y)^{k}\right) f(x)^{k} \\
& \quad=x f(y)^{n}+y f(x)^{k}=s\left(f(x)^{n} f(y)^{n}-f(x)^{k} f(y)^{k}\right)
\end{aligned}
$$

and, in the case $n=k$,

$$
\begin{aligned}
& \left(s f(x)^{n} \ln (f(x))\right) f(y)^{n}+\left(s_{0} f(y)^{n} \ln (f(y))\right) f(x)^{n} \\
& \quad=x f(y)^{n}+y f(x)^{n}=s f(x)^{n} f(y)^{n} \ln (f(x) f(y))
\end{aligned}
$$

Whence, for every $x \in I_{0}^{+}$, in the case $n \neq k$,

$$
\left(s_{0} f(x)^{k}-s f(x)^{k}\right)\left(f(y)^{n}-f(y)^{k}\right)=0
$$

and, in the case $n=k$,

$$
s_{0} \ln (f(y))=s \ln (f(y))
$$

which means that $s_{0}=s$, because $f\left(I_{0}^{+}\right) \neq\{1\}$ and $f(y) \neq 1$. This implies the statement.

Now, we have all tools to prove the following
Theorem 1. Let $n, k \in \mathbf{N}, I$ be a non-trivial real interval, and f be a function mapping I into R. Then f is a non-constant continuous solution of
(6), (7) iff there are $s \in \mathbb{R} \backslash\{0\}$ and a real interval K such that the function $t: K \rightarrow \mathbb{R}$, defined by:

$$
t(y)=\left\{\begin{array}{ll}
s\left(y^{n}-y^{k}\right) & \text { if } n \neq k ; \tag{20}\\
s y^{n} \ln |y| & \text { if } n=k \text { and } y \neq 0 ; \\
0 & \text { if } 0 \in K \text { and } y=0
\end{array} \quad \text { for } y \in K\right.
$$

is one-to-one and one of the following two conditions is valid:
(i) $x y \in K$ for every $x, y \in K, t(K)=I$, and $f=t^{-1}$;
(ii) $0 \in K, K \subset[0,1), t(K) \in\left\{I_{0}^{+}, I_{0}^{-}\right\}$, and

$$
f(x)=\left\{\begin{array}{ll}
t^{-1}(x) & \text { if } x \in t(K) ; \tag{21}\\
0 & \text { otherwise }
\end{array} \quad \text { for every } x \in I\right.
$$

Furthermore, f is a constant solution of (6), (7) iff $f(x) \equiv 0$ or, only in the case where $x+y \in I$ for every $x, y \in I, f(x) \equiv 1$.

Proof. The case where f is constant is trivial (see e.g. Lemma 4). Therefore assume that f is not constant.

First we will show that if f has the form described in the statement, then it is a continuons solution of (6), (7). Since the cases $n \neq k$ and $n=k$ are analogous, we consider only the first one.

Fix $x, y \in I$ with $f(x) f(y) \neq 0$. Then according to the definition of $f, f(x)=t^{-1}(x)$ and $f(y)=t^{-1}(y)$. Next $f(x), f(y) \in K$ which implies $f(x) f(y) \in K$ and $t(f(x) f(y))=t(f(x)) f(y)^{n}+t(f(y)) f(x)^{k}$. Thus $x f(y)^{n}+y f(x)^{k} \in I$ and

$$
f\left(x f(y)^{n}+y f(x)^{k}\right)=f(x) f(y)
$$

To complete the first part of the proof it suffices to observe that f is continuous, because t is continuous.

Now, assume that f is a continuous and non-constant solution of (6), (7). In view of Lemma $4,\left.f\right|_{S(f)}$ is one-to-one and there is $s \in \mathbb{R} \backslash\{0\}$ such that conditions $1^{\circ}, 2^{\circ}$ of that lemma are valid for every $x \in S(f)$. Hence, if card $f^{-1}(\{0\}) \leq 1, f$ is one-to-one and it suffices to put $K=f(I)$ and $t=f^{-1}$. So it remains to study the case card $f^{-1}(\{0\})>1$.

According to Lemma 2 we have then

$$
f^{-1}(\{0\}) \in\left\{I^{+}, I^{-}\right\} .
$$

Consequently $S(f) \in\left\{I_{0}^{+}, I_{0}^{-}\right\}$and, by Lemma 3 (with $L=I_{0}^{+}$or $L=I_{0}^{-}$, respectively), $f(I) \subset[0,+\infty)$.

Let $K=f(I)$ and

$$
t(y)= \begin{cases}f^{-1}(y) & \text { if } \quad y \in K \backslash\{0\} \\ 0 & \text { if } y=0\end{cases}
$$

Then (21) holds, $0 \in K$,

$$
t(K)=S(f) \cup\{0\} \in\left\{I^{-}, I^{+}\right\}
$$

and, since $0 \notin S(f)$ and $\left.f\right|_{S(f)}$ is one-to-one, t is one-to-one. Consequently $K \subset[0,1)$. This ends the proof.

Using Theorem 1 one can easily determine the continuous solutions f : $I \rightarrow \mathbb{R}$ of (6), (7) for any given k, n, and I. In particular we have the following

Corollary 1. Let $n, k \in \mathrm{~N}$. A function $f: \mathbb{R} \rightarrow \mathbb{R}$ is a continuous solution of (6) iff $f(x) \equiv 0$ or $f(x) \equiv 1$.

Proof. Let f be a continuous solution of (6). Then, according to Theorem $1, f$ is constant or there are $s \in \mathbb{R} \backslash\{0\}$ and a real interval K such that the function $t: K \rightarrow \mathbb{R}$, defined by (20), is one-to-one and one of conditions (i), (ii) of that theorem is valid. It is easily seen that, for every real interval K, t is not one-to-one or $t(K) \neq \mathbb{R}$ and, for every interval K described by (ii), $t(K)$ is a bounded set. Hence f is constant, which ends the proof.

Finally we have the given below theorem.
Theorem 2. Let I be a non-trivial real interval and $f, g: I \rightarrow \mathbb{R}$. Assume that f is continuous. Then f, g fulfil the system of functional equations (3), (4) and condition (5) iff one of the following three conditions holds:
$1^{\circ} \quad f(x) \equiv 0$,
$2^{o} f(x) \equiv 1, x+y \in I$ for every $x, y \in I$, and there is an additive function $h: I \rightarrow \mathbb{R}$ such that $g(x)=h(x)+\frac{3}{2} x^{2}$ for every $x \in I$,
$3^{o} f$ has the form described in Theorem 1, by (i) or (ii), and there is $C \in \mathbb{R}$ such that
$g(x)=C f(x)^{3}-3 s^{2} f(x)^{2}+\left(3 s^{2}-C\right) f(x) \quad$ for $x \in I$ with $f(x) \neq 0$.

Proof. First assume that f is constant. Then $f(x) \equiv 0$ or $f(x) \equiv 1$. In the case $f(x) \equiv 0$ we get 1^{0}. So suppose that $f(x) \equiv 1$ and g satisfy (3)-(5). Then, by (4) and (5), $x+y \in I$ for every $x, y \in I$ and

$$
g(x+y)=g(x)+3 x y+g(y) \quad \text { for every } \quad x, y \in I .
$$

Thus the function $h: I \rightarrow \mathbb{R}$, defined by:

$$
h(x)=g(x)-\frac{3}{2} x^{2} \quad \text { for every } \quad x, y \in I
$$

satisfies

$$
h(x+y)=h(x)+h(y) \quad \text { for every } \quad x, y \in I .
$$

Consequently 2° holds. Since it is easy to check that functions f, g, described by 2°, are solutions of (3)-(5), this ends the proof in the case where f is constant.

Now suppose that f is non-constant and continuous and f, g satisfy (3)(5). Then f has the form described in Theorem 1, which means that $\left.f\right|_{S(f)}$ is one-to-one and

$$
\begin{equation*}
x=s\left(f(x)^{2}-f(x)\right) \quad \text { for every } \quad x \in S(f) \tag{22}
\end{equation*}
$$

with some $s \in \mathbb{R} \backslash\{0\}$. Hence, in view of symmetry of the right hand side of (3) with respect to x and y, for every $x, y \in \mathbf{R}(f)$ we have

$$
x f(y)^{2}+y f(x)=y f(x)^{2}+x f(y)
$$

and consequently, by (4),

$$
f(x) g(y)+3 x y f(y)+f(y)^{3} g(x)=f(y) g(x)+3 y x f(x)+f(x)^{3} g(y) .
$$

From this and (22), for every $x, y \in S(f)$ with $f(y) \notin\{-1,1\}$, we get

$$
\begin{aligned}
g(x)= & \left(f(y)^{3}-f(y)\right)^{-1}\left(g(y)\left(f(x)^{3}-f(x)\right)+3 x y f(x)-3 x y f(y)\right) \\
= & \left(f(y)^{3}-f(y)\right)^{-1}\left(g(y)+3 s^{2}\left(f(y)^{2}-f(y)\right)\right) f(x)^{3}-3 s^{2} f(x)^{2} \\
& +\left(f(y)^{3}-f(y)\right)^{-1}\left(3 s^{2}\left(f(y)^{3}-f(y)^{2}\right)-g(y)\right) f(x) .
\end{aligned}
$$

Now, setting

$$
C=\left(f(y)^{3}-f(y)\right)^{-1}\left(g(y)+3 s^{2}\left(f(y)^{2}-f(y)\right)\right)
$$

with some fixed $y \in S(f), f(y) \notin\{-1,1\}$, we obtain

$$
3 s^{2}-C=\left(f(y)^{3}-f(y)\right)^{-1}\left(3 s^{2}\left(f(y)^{3}-f(y)^{2}\right)-g(y)\right)
$$

and

$$
g(x)=C f(x)^{3}-3 s^{2} f(x)^{2}+\left(3 s^{2}-C\right) f(x) \quad \text { for every } \quad x \in S(f)
$$

To complete the proof suppose that f and g are described by 3°. Then, on account of Theorem 1, for every $x, y \in I$ with $f(x) f(y) \neq 0$, (3) and (5) hold and consequently

$$
\begin{aligned}
g\left(x f(y)^{2}+y f(x)\right)= & C f(x)^{3} f(y)^{3}-3 s^{2} f(x)^{2} f(y)^{2}+\left(3 s^{2}-C\right) f(x) f(y) \\
= & f(x)\left(C f(y)^{3}-3 s^{2} f(y)^{2}+\left(3 s^{2}-C\right) f(y)\right) \\
& +3 s^{2}\left(f(y)^{2}-f(y)\right)\left(f(x)^{2}-f(x)\right) f(y) \\
& +\left(C f(x)^{3}-3 s^{2} f(x)^{2}+\left(3 s^{2}-C\right) f(x)\right) f(y)^{3} \\
= & f(x) g(y)+3 x y f(y)+g(x) f(y)^{3} .
\end{aligned}
$$

This ends the proof.
Remark 3. Observe that, in point 3° of Theorem 2, by virtue of (22), g can be written in the following equivalent forms:

$$
g(x)=C\left(f(x)^{3}-f(x)\right)-3 s x=\frac{C}{s} f(x) x+\left(\frac{C}{s}-3 s\right) x \quad \text { for } x \in I, f(x) \neq 0
$$

Remark 4. We may consider equation (6) also for every $n, k \in \mathbf{Z}$ or even for $n=n_{1} n_{2}^{-1}$ and $k=k_{1} k_{2}^{-1}$ with some odd $n_{2}, k_{2} \in \mathbf{Z} \backslash\{0\}$ and $n_{1}, k_{1} \in Z, n_{1}^{2}+k_{1}^{2} \neq 0$. The statements and proofs of Lemmas 1,3 , and 4 remain true then. This is also valid if $f: I \rightarrow[0,+\infty)$ and $n, k \in$ $\mathbb{R}, n^{2}+k^{2} \neq 0$. However, since it is not the case for Lemma 2 and a suitable modification of it demands some additional long and complicated reasoning, we have confined our consideration to $n, k \in N$. Some results concerning the mentioned situations will be published separately.

References

[1] J. Aczél, Sur les opération définies pour nombres réel, Bull. Soc. Math. France 76 (1949), 59-64.
[2] J. Aczél and S. Golạb, Remark on one-parameter subsemigroups of the affine group and their homo- and isomorphisms, Aequationes Math. 4 (1970), 1-10.
[3] N. Brillouët et J. Dhombres, Equation fonctionnelles et recherche de sous-groupes, Aequationes Math. 31 (1986), 253-293.
[4] J. Brzdęk, Subgroups of the group Z_{n} and a generalization of the Golgb-Schinzel functional equation, Aequationes Math. 43 (1992), 59-71.
[5] R. Craigen and Z. Páles, The associativity equation revisited, Aequationes Math. 37 (1989), 306-312.
[6] S. Midura, Sur la détermination de certains sous-groupes du groupe L! à l'aide d'équations functionnelles, Dissertationes Math. No. 105, IMPAN, Warsaw, 1973.
[7] S. Midura, Sur certains sous-demigroupes à un parametre des groupes L_{2}^{l} et L_{3}^{l} déterminés à l'aide d'équations fonctionnelles, Rocznik Nauk.-Dydakt. Wyż. Szkoly Ped. w Rzeszowie 7/62 (1985), 37-50.
[8] P. Urban, Równania funkcyjne typu Golgba-Schinzla. [Doctor thesis], Uniwersytet Ślgski, Instytut Matematyki, Katowice, 1987.
[9] P. Urban, Continuous solutions of the functional equation $f\left(x f(y)^{k}+y f(x)^{l}\right)=$ $f(x) f(y)$, Demonstratio Math. 16 (1983), 1019-1025.

Department of Mathematics
Pedagogical University
Rejtana 16 A
35-310 Rzeszów
Poland

