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E Q U A T I O N S O F G O Ł Ą B — S C H I N Z E L T Y P E 

JANUSZ BRZDĘK 

Abstract. We consider equation (6) in the class of continuous functions 
/:/—>• tt satisfying (7), where / is a non-trivial real interval and n, Jfc are 
fixed positive integers. The obtained results are applied to get the solutions 
of the system of functional equations (3)-(5) in the class of pairs of functions 
f,g:I—>M. such that / is continuous. Some connections between solutions of 
the equations and a class of subsemigroups of some Lie groups are established 
as well. 

Let N, Z , Q, and R stand for the sets of positive integers, integers, ratio-
nals, and reals, respectively. The system of functional equations 

where the unknown functions / and g map R into R , has been introduced by 
S. Midura (see [7]) in connection with the problem of finding subsemigroups 
of the Lie group L\. It is solved in [7] under the assumption that / is 
continuous. Namely we have the following 

T H E O R E M M (see [7], p. 47-48). A pair of functions f,g : R —• R such 
that f is continuous satisfies the system of functional equations (1), (2) iff 
either 

(1) f(xf(y)2 + yf(x)) = f(x)f(y), 

(2) g{xf{y? +•»/(*)) = f(x)g(y) + Zxyf(y) + g(x)f(y)3, 

f(x) = 0 and (̂0) = 0 

or 
f(x) = 1 and g(x) = h(x) + -x1 for z g R 

AMS (1991) subject classification: 39B22, 39B62. 

5 - A n n a l e s . 
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with some additive function h : R —> R. 

In the paper we consider the following conditional generalization of the 
system (1), (2): 

(3) /(*/(y) 2 + y/(*)) = /(*)/(y) 

whenever f(x)f(y) ^ 0, 

(4) 9(xf{y)2 + yf(x)) = f(x)g(y) + Zxyf{y) + g(x)f(y)3 

where the unknown functions / and g map a non-trivial real interval J into 
R with the additional assumption that 

(5) xf(y)2 + yf(x) <E / for every x, y e I with f{x)f(y) ^ 0. 

Let us note that every pair of functions f,g : R R satisfying (1), (2) is 
also a solution of (3), (4). The converse is not true. For instance, a pair of 
functions fo,go ' R —• R, given by: go(x) = 0 and 

f l if 
'»<*> = { o if 

1 if x = 0; 
, n for x € R, 

17^ 0 

is a solution of the system (3), (4) and does not satisfy (1), (2). 
We as well will investigate the conditional equation 

(6) f(xf{y)k + yf(x)n) = / (*) / (« / ) whenever f(x)f(y) ? 0 

in the class of continuous functions / : / —> R satisfying 

(7) xf{y)k + yf(x)nel for every x,yel with f{x)f(y)^0, 

where ktn € N are fixed. Equation (6) is a conditional generalization of (1) 
and the functional equation 

(8) f(Hy)kx + f(x)ny) = f(x)f(y) 

studied in different cases e.g. in [2]-[4] and [7]-[9]. For example it is known 
that, for n, k £ N, the only continuous solutions of (8) in the class of functions 
mapping a real topological linear space into R are functions /i(x) = 1 and 
f2(x) = 0 (cf. [3] and [9]). In the class of functions / : [0,+oo) [0,+oo) 
equation (8) has been considered in [8]. 

Now, we will give a justification for the study of (3)-(5) and (6)-(7). For 
this we need some definitions. 
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Put Di = (R\{0}) xRand D2 = (R\{0}) x R x R a n d fix n,ke N. We 
define binary operations • : D\ X D\ -¥ D\ and • : D2 X D 2 -4 D2 by the 
formulas: 

{xi,x2) • {yi,y2) = {xm,x^y2 + 2/*x2) for (xi,x2),(j/i,y2) G Du 

{xx,x2,xz) • {y\,y2,yz) = (xiyi,xiy2 +yiZ2,xiy3 + 3x 2y 2yi +x 3 yi) 

for {xux2,x3),{yuy2,y3) € D2. 

It is easy to check that (D\, •) (with any k,n € N) and (D2,-) are groups. 
Furthermore (see e.g. [3], p. 261, [6], p. 6, and [4], p. 60): 

- if n = 0 and k — 1, D\ is isomorphic to the one-dimensional affine 
group, 

- if n — 1 and fc = 2, Di is isomorphic to the Lie group L\, 
- if n = 1, D\ is isomorphic to a subgroup of the Lie group L\, 
- if n = k = 1, Di is isomorphic to the Clifford group of the field R, 
- D2 is isomorphic to the Lie group L 3 . 
Let us introduce the following. 

DEFINITION 1. Let S ̂  0 be a set. We say a pair ( D , F) is a parametriza-
tion. of S provided D is a non-empty set and F is a function mapping D 
onto 5. 

Of course every non-empty set S has a paranietrization; it suffices to take 
D = S and F(a) = a for every a € D. 

DEFINITION 2. A subset 5 of Di (D2 respectively) is of type j, with 
j € {1,2} (J € {1,2,3}, resp.), provided there is a parametrization (D,F) 
of S such that the function Fj is one-to-one, where F = (Fi,F2) (F = 
(Fx ,F 2 ,F 3 ) , resp.). 

Now, we are in a position to formulate the subsequent 

PROPOSITION 1. Let n, k € N. The following two conditions are vaJid. 
(i) S is a subsemigroup of type 2 of tAe group D\ iff there is a function 

f : R —ł R satisfying the conditional functional equation (6) such that 
/(R) ^ {0} and 

5 = {(/(*),*): x e R , / ( ^ 0 } . 

(ii) S is a subsemigroup of type 2 of the group D2 iff there is a pair of 
functions f,g : R - f R satisfying the system (3), (4) such that /(R) ^ {0} 
and 

S = {(f{x),x,g(x)):x£R,f{x)^0}. 

5 * 
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P R O O F . We prove only (ii). The proof of (i) is analogous. 
Let S be a subsemigroup of type 2 of Z)2 and (D, F), F = (Fj, F 2 , F 3 ) , be 

a parametrization of S with F2 one-to-one. Put 

/o = F 1 o F 2 - 1 and 5o = F 3 o F 2 - 1 . 

Then 

S = {{f0{x),x,g0{x)): x G F 2 (£>)}. 

Further, since for every (xi, x 2, x3), (yx, y2, y3) G 5 

(xiyi,x!y 2 +y 2 x 2 , x iy 3 + 3x2t/2yi + x 3y 3) = (xi,x 2 ,x 3) • (yi,y 2,y 3) G S, 

we have 

(9) (/o(x)/o(y))/o(x)y + /o(y)2x,/o(x)5o(y) + 3xy/o(y)+ffo(x)/o(y)3) G S 

for every x,y G F 2(D). Thus, for every x,y G F 2(£>), 

(10) /o(/o(x)y+ /0(y)2x) = /0(x)/0(y) 

(11) <7o(/o(x)y + / 0(y) 2x) = /o(x)fifo(y) + 3xy/ 0(y)+ 5 o(x)/o(y) 3. 

This implies that the functions / , g : R -» R, defined by: 

\ 0 otherwise, 

r<?o(x) if x G F 2 ( £ > ) ; 
nix) = < , 

^ 0 otherwise, 

for every x G R, satisfy the system (3), (4). 
Now, suppose that we are given functions f,g : R —¥ R, /(R) ̂  {0}, 

satisfying the system (3), (4). Put S{f) = R\/" 1({0}), / 0 = /| S(/) and 
gQ = g\s{j)- It Is easily seen that f0 and g0 are solutions of (10) and (11). 
Thus (9) holds for every x, y G S(f), because 

S = {(fo(x),x,g0(x)): x G S(/)}. 

Hence 5 is a subsemigroup of D2. Next (S(f),F), where F(x) = 
(/b(x),x,<7o(a0) f ° r x € £ ( / ) ) is a parametrizaton of 5. This completes 
the proof. • 
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Consideration of subsemigroups of types 1 and 3 of Di leads to some other 
systems of functional equations. Results concerning them will be published 
separately. 

We must mention yet that similar methods, as those presented in Propo­
sition 1, of determining algebraic substructures were already used e.g. in [2], 

R E M A R K 1. Observe that if a function / -4 R , where / is a real 
interval, satisfies (6) and (7), then the function / : R -4 R given by: 

is a solution of equation (6)-Thus, according to Proposition 1, / (if /(/) ^ 
{0}) determines a subsemigroup of type 2 of D\. 

R E M A R K 2. For every A;, n G N u {0} equation (6) can be written in the 
following equivalent form 

(Of course, if we confine ourselves e.g. to a class of functions mapping a real 
interval / into R and satisfying (7).) 

Now, we will prove some lemmas useful in the sequel. 

L E M M A 1. Let I be a non-trivial real interval, n, k € N, and / : J - » R 
be a function satisfying (6) and (7). Then, for every x £ S(f) := {x £ I : 
f(x) ^ 0}r the functions 

are one-to-one. 

P R O O F . We prove only that the first function is one-to-one. The proof 
for the second function is analogous. 

Fix x G S(f) and suppose that 

for some z, w G 5(/). Then, by (6), f{x)f(z) = f(x)f(w) and consequently 
f(z) = f{w). Thus 

0 = (xf(z)n + zf{x)k) - (xf(w)n + wf(x)k) = (z- w)f(x)k, 

[3], [6], [7], and [4]. 

for x G R 

S(f) 3 * - » xf{z)n + zf(x)k G R , 

S{f)B z-+zf(x)n + xf(z)k ZR 

xf{z)n + zf{x)k = xf(w)n + wf{x)k 
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which means that z = w. This ends the proof. • 

L E M M A 2. Let I,n,k, and f be the same as in Lemma 1. Assume that 
f is continuous and put 7 + = {x € / : x > 0} and I~ = {x 6 / : x < 0}. 
Then 

r , ( {O»G{0,{O}, /+/-, /}. 

P R O O F . We will show that 

either /(/+) = {0} or 0 g /(/+ \ {0}) 

and 
either /(/") = {0} or 0 g / ( /" \ {0}) 

It is easily seen that those conditions yield the statement. 
Let IQ = I+ \ {0} and IQ = l~ \ {0}. For the proof by contradiction 

suppose that there are a, 6 € IQ (a, b € IQ , respectively) with 

/(6)#0 = /(o). 

Then, by (6) and (7), /(6)2 € /(/) and the continuity of / implies 

(12) [0,/(6) 2]C/(/). 

Since 

Lx := r1 ({0}) (1 70

+ # 0 (Li := Z" 1 ({0}) n / 0" # 0, resp.) 

and 
L2 := / 0

+ U i # 0 (̂ 2 := / 0" \ U + 0, resp.) 

is open in IQ (IQ, resp.), there are e € L\ and a sequence {ym}meN C Li 
with 

e= lim y m . 
m-+oo 

Note that, in view of (7), 

zm = ymf{ym)k + ymf{ym)n € / for every m € N 

and consequently 

(13) 0= lim z m = inf / + (0= lim zm = sup I ~ , resp.). 
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Further, by (12), there is d > 0 with (0,d) C {ef{y)k : y € /} ((-d,Q) C 
{e/(y)fc : y € /}, resp.) and, for every y € I with e/(y)* € / \ {0}, 

/(e/(y) f c)= Hm f(ymf(y)k + yf(ym)n) 
m—too 

= Hm /(y)/(ym) = /(y)/(e) = 0. 
m—•<» 

Thus, according to (13), there exists c > 0 such that 

( 0 , c ) C i i ( ( - c , 0 ) C l i , resp.). 

On account of (12), there is bo € / with 

0 < f{bQ)k < ce"1 (0 < f(b0)k < -ce-1, resp.). 

Put 

wm := b0f{ym)n + ymf{b0)k for every m € N. 

Then (6) gives 

(14) f{wm) = f{b0)f{ym) # 0 for every m € N. 

We have as well 

0 < lim wm = ef(b0)k <c (0 > lim tum = ef(b0)k > -c , resp.). 

Whence there is m € N such that 

0 < wm < c (0 > wm > -c , resp.), 

which means that f(wm) = 0. This brings a contradiction to (14). • 

For the next lemma we need a theorem of J. Aczćl [1] (see also [5]). Let 
us remind it. 

T H E O R E M A (see [5], p. 307). Let L be a reai non-trivial interval and 
let . : L x L —> L be a continuous cancellative associative operation. Then 
there exists a continuous bijection h : L —> J such that 

(15) x.y = h'1 (h(x) + h(y)) for every x,y £ L, 

where J is a (necessarily unbounded) real interval. 

L E M M A 3. Let n, k, I, and f be just the same as in Lemma 2. Let L C I 
be a non-trivial interval with 

xf{y)n + yf(^)k € L for every x,y e L 
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and O £ f{L). Then either f(x) = 1 for every x € L or / \ L is one-to-one, 
f{L) C (0, +oo) and there is s 6 R \ {0} such that, 

1° in the case n ̂  k, 

f{s(yn-yk)) = y for every y € /(L); 

2° in the case n = k, 

f(syn ln(y)) = y for every y 6 f{L). 

PROOF. The case f\i = const = c is trivial, because, according to the 
hypothesis, for x € L 

c = f(xf(x)n + xf(x)k) = f(x)2 = c2. 

So suppose that f\t is not constant. 
Setting x = y 6 L in (6) we get 

/(L)n(O,+oo)^0. 

Since 0 ̂  f(L) and / is continuous, this implies f(L) C (0, +oo). 
Define a binary operation . : L x L —t L by the formula: 

x.y = xf(y)n + yf{x)k for every x,y € L. 

Then, according to (6), for every x,y, z £ L vie have 

x.(y.z) =xf(y.z)n + (y.z)f(x)k = xf(y)nf(z)n + yf(z)nf(x)k 

+ zf{y)kf{x)k = (x.y)f(z)n + zf{x.y)k = (x.y).z. 

Thus the operation is associative. Further, it is easy to see that it is con­
tinuous and, by Lemma 1, cancellative. Hence, on account of Theorem A, 
there exists a homeomorphism h : L -¥ J (where J is an unbounded real 
interval) such that (15) holds and, whence, 

f{h-x{h{x)))f{h-\h(y))) =/(x)/(y) = /(x.y) 

=f(h~l{h(x) + h(y))) for every x , y € £ . 

Hence there is d € (0, +oo) \ {1} such that 

f oh'1 (y) = dy for every y 6 J, 
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which means that f\i is one-to-one. 
First consider the case k ̂  n. Then (15) yields 

xf(y)n + yfix)k = x-y = V-x = yf(x)n + xf{y)k for every x, y G L. 

Thus setting 
•=(/(!*)"-/(Ito)*) - 1!*. 

for some fixed y0 € L \ {0}, /(j/o) i1 1> we obtain 1°. 
Next, let k — n. Note that g = (/ |r,) - 1 satisfies 

= g{x)yn + g{y)xn for every x,y€f(L). 

Consequently the function t : f(L) -4 R, given by: 

t{z) = g(z)z~n for every z G f(L), 

is a solution of the Cauchy equation: 

t{xy) = t(x)+t(y). 

Whence there exists s g R \ {0} such that 

t(x) = sln(x) for every x G f(L). 

This implies 2° and ends the proof. • 

L E M M A 4. Let n, k, I, and f be just the same as in Lemma 2. Then 
f(x) = 0 or I-, or there exists s 6 R \ {0} such for every x € S(f) := {x € 
/ : / (x )#0} , 

1° in tne case n ̂  fc, x = s(f(x)n - f(x)k); 
2° in the case n = k, x = s/(x) nln |/(x)|. 

Consequently f\s(f) i S one-to-one or f is constant. 

P R O O F . It is easy to see that if / = const, then /(x) = 1,0. So, it 
remains to study the situation where / is not constant. Then, according to 
Lemma 2, 

/-X({O})G{0,{O},/+,/"}. 

The case /_ 1({0}) # {0} results from Lemma 3 (with L G U o V o V } ) -
Therefore suppose that /_ 1({0}) = {0}. 

Observe that then, by (6), we get 

(16) xf(y)n + yf(x)k^0 for every x ,y€/ \{0} . 
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Next, since in view of the right hand side of equation (6) 

/(/)n(o,+oo)^0, 

we have 
/(tf)c(0,+cx>) or /(/ 0-)C(0,+oo). 

First suppose that / (#) C (0,+oo) and /(70

-) C (-oo,0) (/(7<f) C 
(-oo,0) and /{IQ) C (0,+OO), respecively). Then, by (6), for every x,y G 
1$ and x,y e IQ 

f(*f(y)n + yf(x)k) = f(x)f(y)>0, 

which means that 

( 1 7 ) */(!/)"+ y/(x) f ee/ 0+ (xf(y)n + yf(x)kelQ, resp.) 
for every x,y G IQ and x,y G IQ. 

Thus, on account of Lemma 3 with L = l£ (L = IQ, resp.), there is s G 
R \ {0} such that for every x G IQ {X G IQ, resp.) 

(18) x = I S { f { x ) n ' f { x ) h ) l f H * k ; 

1 ^ X \ s / (s ) n ln | / (x) | if n = k. 

Moreover, in view of (17), for every x G IQ (I £ / 0

+ , resp.) 

x/(x)" + xf(x)k G 70+ (x/(x)" + xf(x)k G IQ~, resp.) 

and consequently, by (6) and (18), in the case n^k, 

xf(x)n + xf(x)k = s(f(x)2n - /(x)2 f c) for x G 70" (x G 70+, resp.), 

and, in the case n = k, 

2xf(x)n = sf(x)2n ln(/(x)2) for , x G 70" (x G 70+, resp.). 

Since, according to (16), 

f(x)n + f{x)k # 0 for every xG7\{0}, 

this implies that (18) holds also for every x £ IQ (X G IQ, resp.). 
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To complete the proof it remains to study the case where /(/o~)U/(/(T) C 
(0, +00). Using Lemma 3, first with L = l£ and next with L = /<J", we obtain 
then that there are s, s0 G R \ {0} such that (18) holds for every x € IQ and 

x U < / ( . ) " - / ( . ) * ) if f o r x £ 

[ ' \s0f(x)n\n(f(x)) if n = k, 0 

Fix y <= IQ with f{y) ^ 1. Note that 0/(y)n + y/(0)fe = 0 and 

y/(y)n + y/(y)*<o. 

Thus Lemma 1 yields 

*/(y)n + yf{x)k > 0 for every x € . 
Hence, according to (6), (18) (with x € 7̂ "), and (19), for every x € To", in 
the case 71 ^ k, 

s(f(x)n - f(x)k)f(y)n + s0(f(y)n - f(y)k)f(x)k 

= xf(y)n + yf(x)k = s(f(x)nf(y)n-f(x)kf(y)k) 

and, in the case n = A;, 

(S/(x)"ln(/(a;)))/(y)" + (So/(y)Tlln(/(y)))/(x)" 

= */(y)n + y/(*)n = sf(x)nf(y)n ln(/(x)/(y)). 

Whence, for every x 6 Z "̂, in the case k, 

(sof(x)k - sf(x)k)(f(y)n - f(y)k) = 0 

and, in the case n — k, 

s0ln(/(y)) = sln(/(y)), 

which means that s0 = s, because /(/Q") ^ {1} and f(y) ^ 1. This implies 
the statement. • 

Now, we have all tools to prove the following 

T H E O R E M 1. Let n, k G N, I be a, non-trivial real interval, and f be a 
function mapping I into R. Then f is a non-constant continuous solution of 
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(6), (7) iff there are s G R \ {0} and a real interval K such that the function 
t : K -> R, defined by: 

(s(yn-yk) if n^k; 

(20) t(y)={ syn In |y| if n = k and y ̂  0; for y £ K, 
0 if 0 G X and y = 0 

is one-to-one and one of the following two conditions is valid: 
(i) xy G K for every x, y G /ć, t(/ć) = / , and / = i - 1 ; 
(ii) 0 G X , A' C [0,1), t(K) G {/0

+, /o"}, and 

' „ , J * _ 1 ( * ) ^ , C , 
(21) /(x) = < , for every i 6 i . 

10 otherwise 

Furthermore, f is a constant solution of (6), (7) iff f(x) = 0 or, only in 
the case where x + y G / for every x,y G / , f(x) = 1. 

P R O O F . The case where / is constant is trivial (see e.g. Lemma 4). 
Therefore assume that / is not constant. 

First we will show that if / has the form described in the statement, then 
it is a continuous solution of (6), (7). Since the cases n ̂  k and n = k are 
analogous, we consider only the first one. 

Fix x,y G / with f(x)f(y) ^ 0. Then according to the definition of 
/, f(x) = t-^x) and f(y) = t _ 1(y). Next f{x)J(y) G K which im­
plies f(x)f(y) G K and t(f(x)f(y)) = t(f(x))f(y)n + t(f{y))f(x)k. Thus 
xf{y)n + yf{x)k G / and 

f(xf(y)n + yf(x)k) = f(x)f(y). 

To complete the first part of the proof it suffices to observe that / is contin­
uous, because t is continuous. 

Now, assume that / is a continuous and non-constant solution of (6), (7). 
In view of Lemma 4, /|s(/) is one-to-one and there is s G R \ {0} such that 
conditions 1°, 2° of that lemma are valid for every x G S(f). Hence, if card 
f1 ({0}) < 1> / i s one-to-one and it suffices to put K = /(/) and t = 
So it remains to study the case card / - 1({0}) > 1. 

According to Lemma 2 we have then 

/ ^ ( { O } ) € { / + / - } . 

Consequently S(f) G {Io^o) a n < ^' b v Lemma 3 (with L = l£ or L = IQ, 
respectively), /(/) C [0,+oo). 
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if yei<\{0}; 
if y = 0. 

Then (21) holds, 0 6 A', 

t(K) = S(f) U {0} 6 {/-,/+}. 

and, since 0 ̂  S(f) and /|s(/) l s one-to-one, t is one-to-one. Consequently 
K C [0,1). This ends the proof. • 

Using Theorem 1 one can easily determine the continuous solutions / : 
I —> R of (6), (7) for any given k, n, and / . In particular we have the 
following 

COROLLARY 1. Let n,k € N. A function / : R —¥ R is a continuous 
solution of (6) iff /(x) = 0 or f(x) = 1. 

P R O O F . Let / be a continuous solution of (6). Then, according to Theo­
rem 1, / is constant or there are s € R\ {0} and a real interval K such that 
the function t :/<"—> R , defined by (20), is one-to-one and one of conditions 
(i) , (ii) of that theorem is valid. It is easily seen that, for every real interval 
K, t is not one-to-one or t(K) / R and, for every interval K described by 
(ii) , t(K) is a bounded set. Hence / is constant, which ends the proof. • 

Finally we have the given below theorem. 

T H E O R E M 2. Let I be a non-trivial real interval and f, g : I -> R. Assume 
that f is continuous. Then f,g fulfil the system of functional equations (3), 
(4) and condition (5) iff one of the following three conditions holds: 

1° /(*) = 0, 
2° f(x) = 1, x + y G I for every x,y £ I, and there is an additive 

function h : I —> R such that g(x) = h(x) + | x 2 for every x € I, 
3° f has the form described in Theorem 1, by (i) or (ii), and there is 

C 6 R such that 

g(x) = Cf{x)3 -3s2f{x)2 + (3s2 -C)f{x) for x£l with f(x)^0. 

P R O O F . First assume that / is constant. Then ./(x) = 0 or /(x) = 1. In 
the case /(x) = 0 we get 1°. So suppose that /(x) = 1 and g satisfy (3)-(5). 
Then, by (4) and (5), x + y € / for every x,y£ I and 

g{x + y) = g(x) + 3xy + g{y) for every x,y£l. 
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Thus the function h : / —• R, defined by: 

3 
/t(x) = g(x) - -x2 for every x, y G / , 

satisfies 
h(x + y) = h(x) + h(y) for every x , y G / . 

Consequently 2° holds. Since it is easy to check that functions f,g, described 
by 2°, are solutions of (3)-(5), this ends the proof in the case where / is 
constant. 

Now suppose that / is non-constant and continuous and f,g satisfy (3)-
(5). Then / has the form described in Theorem 1, which means that f\s{/) 
is one-to-one and 

(22) x = s{f(x)2 - f(x)) for every x G 5(/) 

with some s G R \ {0}. Hence, in view of symmetry of the right hand side 
of (3) with respect to x and y, for every x, y 6 R(/) we have 

xf(y)2 + yf{x) = yf(x)2 + xf(y) 

and consequently, by (4), 

f{x)g(y) + 3xy/(y) + /(y)3ff(x) = /(y)y(x) + 3yx/(x) + f(x)3g(y). 

From this and (22), for every x, y G S(f) with /(y) ̂  {-1,1}, we get 

9(x) =(/(y)3 - /(y))~1(y(y)(/(x)3 - /(x)) + 3xy/(x) - 3xy/(y)) 

=(/(y) 3 - /(y))-x(y(y) + 3* 2(/( y) 2 - /(y)))/(x)3 - 3*2/(x)2 

+ (/(y)3 - /(y))-1(3^2(/(y)3 - /(y)2) - y(y))/(x). 

Now, setting 

C = (/(y)3 - f(y))-l(g(y) + Ss2(f(y)2 - f(y))), 

with some fixed y G 5(/), /(y) ^ {-1,1}, we obtain 

352 - C = (/(y)3 - /(y))- 1 (3s2(/(y)3 - /(y)2) - y(y)) 

and 

g(x) = C/(x) 3 - 3s 2/(x) 2 + (3s2 - C)/(x) for every x G 5(/). 
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To complete the proof suppose that / and g are described by 3°. Then, 
on account of Theorem 1, for every x,y £ I with f{x)f(y) ^ 0, (3) and (5) 
hold and consequently 

9(xf(y)2 + yf(x)) =Cf(xff(yf - Zs2f(x)2f(y)2 + (3s2 - C)f(x)f(y) 

=f(x)(Cf(yf - 3s2f(y)2 + (3s2 - C)f(y)) 

+ 3s2(/(y)2 - /(y))(/(x)2 - /(*))/(y) 

+ (Cf(x)3 - 3s2f(x)2 + (3s2 - C)f(x))f(yf 

=f(x)g(y) + Sxyf{y) + g{x)f(yf. 

This ends the proof. • 

R E M A R K 3. Observe that, in point 3° of Theorem 2, by virtue of (22), g 
can be written in the following equivalent forms: 

g(x) = C(f(xf-f(x))-3sx = -f(x)x+(- - 3s) x for x £ / , /(*) # 0. 

R E M A R K 4. We may consider equation (6) also for every n, k £ Z or 
even for n = n^i^1 and k = kik^1 with some odd n2,k2 £ Z \ {0} and 
ni,fci £ Z, n\ + k\ T£ 0. The statements and proofs of Lemmas 1, 3, 
and 4 remain true then. This is also valid if / : I -4 [0, +oo) and n, k £ 
R, n2 + k2 ^ 0. However, since it is not the case for Lemma 2 and a suitable 
modification of it demands some additional long and complicated reasoning, 
we have confined our consideration to n, k £ N . Some results concerning the 
mentioned situations will be published separately. 
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