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Prace Naukowe Uniwersytetu slqskiego nr 1523

ON THE SYSTEM OF THE ABEL
EQUATIONS ON THE PLANE

ZBIGNIEW LESNIAK

Abstract. We ﬁnd all of continuous, homeomorphic and C* solutions of the
system of the Abel equations

{ ¢(f(2)) = ¢(z) +a

e(9(z)) = () +b - for z € R?,

where a, b are linearly independent vectors and f, g are commutable orien-
tation preserving homeomorphisms: of the plane onto itself sat.xsfylng some
condition which is equivalent to the fact that there exists a homeomorphic
solution of the system above.

In the -present paper we shall be concerned with the system of the Abel
equations

for z e R?

) { ¢(f(z)) = ¢(z) +a

#lg(z)) = () + b
where a, b are 'linearly/indep‘endent vectors. The Abel equation
- @(f(@)=pl)+a for zeR?,

where a # (0, 0), has been considered in [5] ,

By a line we mean a homeomorphic image of a stra.lght line which is a
closed set. We assume that f, g are free mappings (i.e. orientation preserving
homeomorphisms of the plane onto itself which have no fixed points - for the
definition of an orientation preserving homeomorphism see e.g. [6], p. 198
or [2], p. 395) such that

AMS (1991) subject. classification: Primary 39B62; Secondary 54H20, 26A18.
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fog=gof

and satisfy the following condition:

(D) there exist lines K° and Ko such that

)

() KON flK°) =0,
(3) ~ Kong[Kel=0,
(4) Ul n flU°] = @,

(5) | Uo 1 g[Us] = 8,
(6)  Upez U =R,
(7)  Uniez"Us) = R?,
(8) ‘ fli(y] = Ko,

(9) 9[K°) = K°,
(1) - . card(K° N Ko) = 1,

where U° := M® U f[K°], Uy := Mo U g[Ko], M® and My are the strips
bounded by K° and f[K°] and by K, and g[Ko] (Fig. 1).

IR K =g(K°) ST K

f“[WN M°

g°[Ko)
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Let us note that if f and g are orientation preserving homeomorphisms of
‘the plane onto itself such that f o g = g o f and satisfy condition (D), then
they have no fixed points, and so they are free mappings.

1. First note the following -

PROPOSITION 1. Let a = (a1,a;) € R? and b = (b1, b;) € R? be linearly
independent vectors (i.e. ajby — azby # 0). Put To(z) := 2+ a and T(z) :=
z + b for z € R?. Then there exists a homeomorphism v of the plane onto
itself such that

=9 "loT,o0
(1) {;: =Z'l_°Tb°:f,
where
(12) Ti(z1,22) = (zl,zé)'+ (1,0) for (z1,22) € R?,
and
(13) Ty (21, 22) := (21, 22) + (0,1) for (z1,2,) € R

Proovr. It suffices to put
(14) (21, T2) = (@121 + by 29, 271 + byzs)  for (z1,22) € R2.
Then

¥~ (21, 72)

bz bl, az ay 5
= : T — , =Ty~ z1+ . z9 |
a1hby —azby " arbp—agby 7 arhy — azby ayby —azby )

for (z1,z2) € R ST o

" -From now on we may assume that a = (1,0) and b= ‘(0‘,.1), since we have

PROPOSITION 2. Let a = (a),a;) € R? and:b = (by,b3) € R? be linearly
independent vectors. Then ¢ is a solution- of:(1) if and only if it has the
form _ : '

@ =1 oy, v
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where (g is a solution of the system

| o(f(2) = (@) + (1,0)
(12) { o(9(2)) = 9(z) + (0, 1)

and v is given by (14).
PROOF. If g is a solution of (15), then by (11)

eo(f(z)) = (¥~  oTao¥)(po(z)) for z€R?,

for z e R?,

and .
po(9(2)) = (¥ o Tyo¥)(po(z)) for z €R?,

where 1 is given by (14). Hence 10 g is a solution of (1).
Conversely, if ¢ is a solution of (1), then g := ¥~! 0 ¢, where 9 is given
by (14), satisfies (15). This completes the proof. ' O

‘Let us introduce the following condition:
(A) there exists a homeomorphism of the plane onto itself which satisfies
system (15).
Now we shall show

“PROPOSITION 3. If f and g satisfy (A), then they are orientation pre-

serving homeomorphisms of the plane onto itself such that fog=go f and
satisfy condition (D).

PROOF. Let ¢ be a homeomorphism of the plane onto itself which is a
solution of (15). Then
f=¢TloTiop
and
g=¢toTop,

where T; and T, are given by (12) and (13), resp. It is clear that f, g are
homeomorphisms of the plane onto itself which preserve orientation. Since
TyoT; =T, 0Ty, wehave fog=go f.

Let L° := {0} x R and Lo := R x {0}. Putting K° := ¢~ 1[L7] and
Ko:=¢ ~1{Ly), we get condition (D). , a

2. In this section we study continuous and homeomorphic solutions of
system (15). By an arc we mean any continuous and one-to-one function v
defined on a compact segment of R taking its values from the plane. The
set of values of the function is denoted by ¥*. Similarly, by a Jordan curve
we mean any continuous and one-to-one function J of the unit circle into R2?
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and denote the set of its values by J*. Let C be a homeomorphic image of
a straight line. For all a,b € C denote by [a, b] the set of values of an arc
with endpoints a and b contained in C. Let (a,b] := [a, ]\ {a}.

L. E. J. Brouwer has proved the following

LEMMA 1. ([1]) Let f be a free mapping. Let C be a homeomorphic
image of a straight line such that f[C] = C. Then if 4§ U3 is the set of
values of a Jordan curve and for an zg € C the set [zq, f(zo)] C C is a
proper subset of v3, then v{ N fly1] # 0. '

Usmg the lemma a.bove we shall prove

LEMMA 2. Let Fpo,Goo : [0,1] = R? be arcs such that Foo(O) Goo(0),
Foo(1) = Foo(0) + (0,1) and Goo(1) = Goo(0) + (1,0). Assume that Fjy U
Ggo U (Fgo + (1,0)) U (Go + (0,1)) is the set of values of a Jordan curve
J and Fgy N (Fgo + (0,1)) = {Foo(0) + (0,1)} (or Ggo N (Gio + (1,0)) =
{Fo0(0) + (1,0)}). Then

(a) L° := Uyez(Fgo + (0,K)) is a line and L1 (L° + (1,0)) = 0;

(b) Lo := Urez(Goo + (k,0)) is a line and Lo N (Lo + (0,1)) = 0;

() (W2 + (n,m) : n,m € Z} is a family of pairwise disjoint sets such

that
U W(? + (n,m) = R?,
n,meZ .
where W§ := B} \ (F3,UG$,) and B) is the sum of J* and the inside
of J*.

PROOF. Put pgo := Fyo(0). Let Dkl *= Poo + (k, 1), Fy := Fop + (k,1),
G = Goo + (&, l) for all k,I € Z. Since Fgp N (Fgo + (0,1)) = {po1} and
T; is a free mapping, the set L% = Ukesz: is a homeomorphic image of a
straight line (see [1]). It is easy to see that L? is a closed set. Thus L° is a
line, and consequently so is L' := L% + (1,0).

First we shall prove that G§, N L! = {pyo}. Let

sy := min {s € [0,1]: Goo(s) € L'}

(by the Wenerstrass theorem the minimum exists). Put 7 := Gooljo,s,)-
Suppose, on the contrary, that s; < 1. Then 71(s1) ¢ F}, (since G N
Fjo = {p10}) and 7i(s1) ¢ FY _, (since (Gdo + (0,1)) N Fjy = {pu1}, and so
G N Fl -1 = {p10}). Thus either 1,(s;) € Ll"‘ or 11(s1) € L™, where
LY =S Fyy and L = U2, B
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In case 71(s1) € L' we put s; := max{s € [s1,1] : Goo(s) € L1*},
s3 := min {s € [s3,1] : Goo(s) € L'~ U {p10}} and 72 := Gool(s;,s5)- Then
the sum of v3 and [y2(s2),72(s3)] C L' is the set of values of a Jordan
curve. Since 7;(s2) # p11, the set F}y = [pio, p11] C L! is a proper subset of
[v2(s2),72(s3)] C L. From Lemma 1 (for T; in place of f) we get

1Nz +0,1)#0,

which contradicts the facts that Ggo N (Ggo + (0,1)) = 0 and v§ C G- The
same arguments apply to the case where v1(s1) € L-. Thus s; = 1, whence
- G NL! = {p1o}. _
Now we shall show that G§, N L® = {pgo}. Since J*.is the set of values
of a Jordan curve, we have Goo ((F§ -1 U Fgp) \ {poo}) = . Suppose
Ggo N (Lo U L) # @, where L% := I2(Fg, and L0~ = U2, Fy.
Let 54 := min {s € [0,1] : Goo(s) € Lot U L%~} (the minimum exists, since
L% U L9 is a closed set) Put 73 := Goolfo,s,j- Then by Lemma 1

1003 +(0,1)#0,

contrary to the fact that G3y N (G + (0 1)) = 0. Thus G§, N L°® = {pgo}.
Since L? 4 (0,1) = L° and L! + (0, 1) = Ll we have G§; N L® = {po;} and
GoNL' = {pn}. .

Next we shall prove that L° N L! = 0. Suppose, on the contrary, that -
L°nrL! #0 Then FoonLl #0. Let

t; == min {t € [0,1]: Foo(t) eL‘}

(on account of the Weierstrass theorem the minimum exists). Since Ggo N
L' = {p10}, we have pyo ¢ L', whence t; > 0. Put v, := Fpolfp,¢,}- ‘Ob-
viously v4(t1) € Fip- Thus one of the following three cases holds: v4(t;) €
L'* \ {pu}, 1(t1) € L'~ \ {p1,-1}, 1(t1) € F7._1 \ {P10}-

First suppose v4(t1) € L't \ {p11}. Then the sum of 7}, Goo and
[v4(t1),p10] C L* is the set of values of a Jordan curve such that Ff =
[p11, P10) is a proper subset of [y4(t;), p1o) C L'. Hence by Lemma 1

(74 UGoo) N (75 U Goo) + (0, 1)) # 0.

From the fact that (G + (0,1)) N L! = {p11} we get poy ¢ L, whence
74(t1) # por. Hence 95N (7§ +(0,1)) = 8, since Fgo N (Fgp + (0, 1)) = {po1}-
Moreover v N (Ggg + (0,1)) = @ (since Fg N (G + (0,1)) = {po1} and
por € 7:i) and by assumptions G§, N (G + (0,1)) = 0. Consequently
Goo N (7% + (0,1)) # 0 (Fig. 2). Let s5 := min{s € [0,1] : Goo(s) €
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7+ (0,1)} and s := Gooljo,s5- Then the sum of v} and [poo, 7s(ss)] C L°
is the set of values of a Jordan curve. Since 7s5(s5) € Fgj \ {po1}, the set
F3o = [Poo, poa) C L is a proper subset of [poo, ¥s(s5)]. Hence by Lemma 1

75 N (78 +(0,1)) 75 0,

which is impossible, since Gaon(Gao+(b, 1)) = 0. Thus v4(t1) € L'\ {pn1}.
In the similar manner we can show that 4(t1) € L'~ \ {p1,-1}-

-Consider the case where 74(t1) € Ff_; \ {p1o}. We shall show that
Foo(tz) € L'~ U Fy_,, where t; := max{t € [0,1] : Foo(t) € L'}. Let
t3 := max {t € [0,1] : Foo(t) € L'~ U F}'_,}. Suppose, on the contrary, that
t3 <ty. Put ty :=min{t € [t3, 1] : Foo(t) € L1+} and g := FOO'[tg,h]-

Then by Lemma 1 v N (7§ + (0,1)) # 9, Whlch contradicts the fact that
(Fso'\ {poo}) 1 ((Fo \ {z}) + (0,1)) = 8, since 2§ C Fi \ {pvo). Thus
t3 = i5.

Put 17 := Fool[z,1)- Then the sum of 7§, Ggo+(0,1) and [y7(t3), p11] C L
is the set of values of a Jordan curve (Fig. 3) On account of Lemma. 1 we
have

(% U (Goo + (0, 1)) N (¥ - (0, 1)U Gg) #90.

In the same manner as before we can show that this is. 1mp0831ble Conse-: ‘
quently none of the above three cases can hold. Thus LN = ﬂ
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~ Denote by N the strip bounded by L° and L. Let WO := N° U L. Put
W* := W° +(k,0) for k € Z. Then, by the definition of L%, W° N W* = ¢
for k € Z\ {0} and U, W* = R2. Because G§, N L® = {pgo}, G N (L° +
(1,0)) = {p1o} and WO W1 = §, we have Gy N (Gl + (1,0)) = {p10}.
Hence Lo = ¢z G}y is a line (the arguments are the same as that for L°).

Let Ly := Lo + (0,1). Note that Ly N L; = §. Indeed, from the fact
that Ggo N (Go + (0, 1)) = B, we get (Gg + (£,0)) 0 (G + (k,1)) = 0 for
k € Z. Moreover (G + (k,0)) N (G + (1,1)) =0 for k,l € Z, k # I, since
WEAW! =0, pro # pi—1,1 and pe10 # pur.

G;O "'(01 1 )

Denote by Ny the strip bounded by Lo and L;. Let W, := Ny U L, and
Wi = Wo + (0,k) for k ¢ Z. Then Wo "W, = 0 for k € Z\ {0} and
Uikez Wi = R2. Let W2 1= W™ 1 W, for a,m € Z. Then ‘

wh=JWr  for neg,

meCL
and
W= |JWE  for meZ
. neZ -’
.'_I‘hus

U wn=w"=Rr2.

n,mei ncZ
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Take any k € Z. Then W) N W = @ for | # n, since W, c W!, Wp c Wn
and W' N W" = (. Hence by the fact that W, N W,, = @ for k # m we get
Winwpe =@ for (I,k) # (n,m). This completes the proof. ()

From now on, let U := MU F} UGY, M := M°n My, F§ :=
(zB,9(zB)) C K°, F} = (f(zB), (g0 f)(zB)] C f[K®], G} := (ws,f(zB)] c
Ko, G := (9(zB), (90 f)(zB)] C 9[Ko] and zp € K° ﬂKo in the case where
f and g are orientation preserving homeomorphisms of the plane onto itself
such that f o g = go f and satisfy (D).

All of continuous and homeomorphlc solutions of system (15) we get from

THEOREM 1. Let f and g be orientation preserving homeomorplusms of
the plane onto itself such that f o g = go f and satisfying (D). Let @ be &
continuous mapping defined on U§ U F§ UG} U {zg} such that

(16) vo(f(z)) = <po(a:) +(1,0) for z E o U{zB},
(17) eo(9(z)) = o(z) + (0,1)  for z € GoU {zg}.
Then

(a) there exists exactly one function ¢ satisfying system (15) such that

(18) ¢() = po(z)  for UgUFUGQU {z5}.

This ¢ is continuous.
Moreover

(b) if g is one-to-one and
eol{zs} U F31N (wol{z} U F3]+(0,1)) = {¢o(z5) +(0,1)}

or

wol{zB} U GOl N (ol{zs} U GOl + (1,0)) = {vo(zp) + (1,0)},
then ¢ is a homeomorphism of the plane onto itself (Fig. 4).

8 - Annales...
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plK%)-a o
o[£ oo
NO

N°-a ’ N°+a ’

e [ K0} +2b

No+b
ol Ko]+b

» NO

Ny —b
e P K] —b

—

Fig. 4
PROOF. From (2) and (3) it follows that

KN K =0 for ned,

and , ' '
g Ko N g™t K] =0 for m € Z.

Put K™ := f*[K°], K, := g"[K,]. Denote by M™ and M, the strips
bounded by K™ and K™*!, and by X, and Kpy1, resp. Let U™ := M™ U
K™ and U, := MaU Ky for n € Z. Then U™ = f*[U°] and U, = g"[Uy)
for n € Z, since f and g are homeomorphisms of the plane onto itself. From
(4) and (5) we get U"NU™ =9 and Up N Uy, = @ for n,m € Z, n # m.
Since f and g are homeomorphisms of the plane onto itself, we have by (8)
and (9)

(19) glU" =U"  for n€z,

and
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(20) flU)=U, for nel.

Let

FP = (¢'(f*(=B)), 6™ (f"(zB)] C K* for ne€Z,ick,
and

G = (f(g"(B)), f+(¢"(=B))] C Kn  for n€Z, i€l
Then '
FP = f"F), F!=g'(F]

and
| Gi =g"Gil, Gi=FIGa..
Moreover
K" = U F'_n
t€Z
and
K.=|JGi
icZ
for n € Z.
Let
M} :=M"NM, for n,meZ.
Put
Ut :=MRrUFMUGE,, for n,meZ.
Then

(f**og™)(zp) € UL for nymeZ.

It is easy to see that

vt = LJU,’,‘l for n.GZ

meZ
and
U,,.=UU,',“ for melZ.
‘nEZ
Hence
U ur = R?
nmel

and the sets UQ, for n,m € Z, are pairwise disjoint.

8*
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Define the function ¢ by the formula
(21)  o(z)=po((fTog™™)2)) +(n,m), z€Up, n,mEeL

It is clear that ¢ is a unique solution of system (15) satisfying (18) and that
¢ is continuous in |J,, ..z Mn.

Now we shall show that ¢ is continuous in G \ {f(zg)}. Take any
zo € G3\ {f(zB)}. Let R be an open disc with centre at zo such that

R C (G3\{f(zB)})U Mg U M2,.
Put ‘ ' -
Ri:=RnM, Ry;:=RnM%, Ry:=RnNGj}.
Then
vo(z) for z € Ry,
e(z) =
wo(g(z))—(0,1) for =z € Ry U R,y.

Hence by (21) ¢(z) = po(z) for 2 € Ro.
Let zx — zo as k — 400, where z; € R. If zx € R1 U Ry, then

Jimger) = lm_po(zk) = po(ao) = ¢(zo),

since (g is continuous in R; U Ro C GJU M{. If zx € Ry, then g(zx) € M§
and g(zx) — g(z0) € GY as k — +0o. Then

Jm e(ee) = Im (eo(g(zk)) = (0,1)) = po(g(z0)) = (0,1) = ¢(0),

since ¢ is continuous and zo € GJ. Consequently ¢ is continuous at zo €
G3 \ {f(zB)}. In the similar way we can show that ¢ is continuous in

R \{9(zB)}. .
Next we shall prove that ¢ is continuous at zp. Let R be an open disc
with centre at 2 such that " : ‘

RCMJUM® uMgtUMZ{U
G\ {f(zB)D U (Fy \{9(zB)}) UG5 U F2,.

Put By := RN M, Ry := RN M%,, R3 := RN My, Ry := Rn M7},
Rs:=RNGY, Re:=RNFY, Ry := RNGG', Ry := RN F2;. Then

4p0(:1;) ' for z € R4,
3 wo(g(z)) —(0,1) . for z€ RyURs,
(=) =9 Go(f(2)) - (1,0) for z € Rs3U Rs,

po((fog)(=))—(1,1) for z€ RyURrURs, -
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since Ry C U, RaURs C U2, RsURg C Uo'l, RyUR7URg C U_'ll. Hence
by (21) ¢(z) = ¢o(z) for € Rs U Re.

Let z, — zp as k — +o00, where z, € R. Cons1der1ng the four cases:
zr € Ry URs U Rg, z € R3, zr € Ry, T € R4 U R7 U Rg, we see that in
each of these cases

: im o(zx) = ¢(zB).
k—+00

Thus ¢ is continuous at zp. ‘

Fix an arbitrary 29 € R? \ U, nez M. Then there exist n,m € Z such
that 2o € U® \ M. Hence, by the definition of U, one of the following
three cases halds: zo € F2+1\ {(f"+! 0 g™+1)(z )}, zo € Gha \{(f"tlo

g™)(z)}, 70 = (f**1 0 g™H)(z5).

Let zo € F*+1\ {(f**! 0 g™*+1)(z5)} and let P be an open disc with
centre at g such tha,t :

Pc (F;:*‘ \{(f/™ 0 g™)(zB)}) U M7, U MEH,

Then
(fT"og™™)P|C (F3 \ {9(zB)})U Mg* U Mg

and (f*log m)[P] is a neighbourhood of the point (f -n-1 og‘"‘)(mo) €

F9 \ {g(zB)}. Since ¢ is continuous in F§ \ {g(zg)}, it is continuous at z,.

Simjlar arguments apply to the cases zg € G, \ {(f**! o g™*!)(zp)} and

zo = (f™*! 0 g™+1)(z ). Consequently ¢ is continuous on the whole plane.
“Assume, in addition, tghat_ o is one-to-one and

vol{zp} U FY]N (wol{zp} U FL1+(0,1)) = {po(zz) + (0, 1)’}

Then ¢p is a homeomorphlsm, since Uo UFRUG3U {zp}is compa,ct .Thus
J* 1= po[FQUGJUFl UG U {zp}] is the set of values of a Jordan curve.

From assertions (a) a,nd (b) ‘of Lemma 2 we obtain that L° :=
Ukez(pol{zB} U Fg] + (0,K)), Lo := U,z #ol{zB} U G§] + (£, 0)) are lines
and; L°n(L°+(1 0))—0 Loﬂ(Lo-l-(O 1)) m

Denote by N° the strip bounded by L° and L° + (1,0). Then <po[U°] n
(¢olU®] + (k,0)) = @ for every k € Z \ {0}, since po[U°] c WO, where
WO := NOU(L°+(1,0)) (see [5], the proof of Theorem 2, part (c)). ,leeW1se,
we get that ¢o[Up] N (wollUo] + (0,k)) = @ for every k €. Z \ {0}, since
wo[Uo] C Wy, where Wy := No U (Lo + (0 1)) and No denotes the stnp
bounded by Lo and Lo + (0,1). -

We shall show that ¢ is one-to-one. Let z, y € R? and <p(a:) = <p(y) Then
there exist k,/,m,n € Z such that z € U}, y € U%. Hence z € U', y € U™.
From the fact that @o[U% 0 (¢o[U% + (I,0)) = 0 for every | € Z \ {0} it
follows that [ = n (see [5], the proof of Theorem 2, part (b)). On the other
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hand z € Ui, y € Uy, Applying the same method as above we get k = m
(now we use the fact that @o[Us] N (wo[Us]+(0,k)) = @ for every k € Z\ {0}).
Therefore z = y, since g is one-to-one. Note that ¢, being a continuous
one-to-one mapping of the plane into itself, is a homeomorphism (see e.g.
(3], p. 186).

It remains to prove that ¢[R?] = R2. Let

A:= I+ (n,0)u |J Lo + (0,n).
nez neZ

Then A C [R?]. Take any zo € R?\ A. Put N§ := NN No and W@ :=
Wo 0 Wo. Then W = N§ U (polFg] + (1,0)) U (9o[GY] + (0,1)). Let
N2 := N§ +(n,m) and W2 := W§ +(n,m) for n,m € Z. Then by assertion
(c) of Lemma 2

WinWe =0 for (n,m)# (I,k),
and

U wz=r.
n,mez

Therefore there exist n,m € Z such that zo € N2, since 7o ¢ A. Note that
(J*+(n, m))is the set of values of a Jordan curve and N = ins (J*+(n,m)).
Hence zo € ¢[R?), since J* +(n,m) C ¢[R?] and ¢[R?} is a simply connected
region (i.e. for every.Jordan curve v such that v* C ¢[R?] we have insy* C
¢[R?]). This completes the proof. - O

From Theorem 1 (b) - by the Schénflies theorem (see e.g. [2], p. 370) -
we obtain

COROLLARY 1. If f and g are orientation ptes'etving homeomorphisms of
the plane onto itself such that f o g = g o f, then (D) implies (A).

As a consequence of Proposition 3 and Corollary 1 we get

COROLLARY 2. Let f and g be orientation preserving homeomorphisms

of the plane onto itself such that fog = go f. Then conditions (A) and (D)
are equivalent.

3. Now we proceed to the construction of solutions of system (15) which
are of class C? (p > 0). First we quote the following

LEMMA 3. ([4]) If the functions h and 1 are of class C? (p>0)in a
region V C R? such that h[V) C V, then forz € V

T g 2 o | \
et LOED DD DI TOT (O}

k=1 g1, 0k =1
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g=1,...,p, where

k
(22) : i) = ——-f——————-

..0z;,

1/)(&1), :

bf: f" (z) may be expressed by means of sums and products of a’(z), ,

afl tq-k+1( ),al o (@) = Wh (z), k=1,...,pand h = (hl,hz)

J1. ]k
11 Iq

Consequently b; are of class CP~9%¥=1_ In particular,

b "'(x) = af(2) ... a}'(2).

1.0

Let f and g be orientation preserving homeomorphisms of the plane onto
itself such that fo g = g o f and satisfying (D). Let 4 be a continuous
function defined on U U F§ UG U {zp}, p times continuously differentiable
in MQ. We write

. ot

(23) 1/}11 u(zo) "—_a"'/}(x)’ k=1,...,p

’ d"'-"’o oz ..
- x€ M° e

for zo € FY U'GS'UF(} UG‘I’ U,{:z: B} (provgided this limit exists), and for.z € MJ
the function 9;, .. ;, is given by (22). The function % is said to be of class C?
in YU FR UG} u {:z: B}, if all the functions ¥, %, ... ,%i,...;, are continuous
in this set. 1

We have the followi’ng ‘

THEOREM 2. Let f and g be orientation preserving C? diffeomorphisms
mapping R2 onto itself such that fc og = gof and sat:sfymg (D) Assume that
for every 71 € F§ \ {f(zB)}, for every 3 € GJ\ {9(zB)} and for the pomt
zp € KN K, there exist three pairs of Imearly independent vectors ul , and
u? ,ul andu? ,ul_ andu? and there exwt constants 19 ,t0 12, > 0 such
that each of the sets Il1 ﬂ(FOU{a:B}), N(FU{zp}), I} ﬂ(GOU{zB}),
12,0(G§ U {as}), 1%, N(FR UGS U{ez)), I2, N(FS UGS U ep)) is at most
denumerable, where I} := {z +tul : |t| <12}, I2 := {z + tul : |t| < t°}. Let
9 be a CP function from U§ U FQ UG} U {zg} into R? which satisfies

Plf@)] = $(@) + (1,0)  for =€ FQU{zs},

Plg(a)} = ¥(z)+(0,1) - for =€ GoU {28},



120
and forq=1,...,p,41,...,1,=1,2

q

2
Yo N bR e alf(@) = $i,(x)  for ze FQU{zp),

k=1 j1...5x=1

q 2 . .
oY WP @) le@)] = ii,(z)  for zeGIU{zs),

k=1 j1..0k=1

where the functions bj} {*, bl}"}* are those occuring in Lemma 3 for h = f,

h = g, resp. Then there exists a unique solution ¢ of system (15) such that
o(z)=y(z) for ze€UjuUFy UG)U {zB}.

- This solution is of class C? in the plane.

Proor. Define ¢ by setting

p(z) == P((f" 0 g™")(2)) + (n,m) for z€Up, n,méeL.

From Theorem 1 we get that ¢ is continuous in R2. The fact that ¢ is of
class C? in the plane can be obtained in the same way as that of Theorem 3.1
in [4], part 2 (with the partial derivatives replaced by directional derivatives
in the directions of the linearly independent vectors which occurs in our
assumptions). This completes the proof. O

In particular, from Theorem 2 we obtain the existence of a C? solution of
system (15) provided the desired pairs of vectors exist (the main theorem of
[7] yields the existence of 1 satisfying the assumptions of Theorem 2).

4. The last section deals with families of homeomorphic images of a
straight line which fill the plane. Let us introduce. the following conditions:

(E) there exist lines K°, Ko and families of homeomorphic images of a
straight line {C, : @ € L1}, {C* : a € I} satisfying (8), (9), (10)
and

(24) fiCal=Ca for a€h,
(25) CanCp=0 for a,B€l,a#p,

(26) card(K°NCy)=1 for a€l,
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(27) U Coa= Rz;

(XEI]
(28) glC°)=C* for a€ly,
(29) c*nCP=0 for e,f€l,a#p,
(30) card (KonC%*)=1 for ac€ly,
(31) U ¢ =R

a€ly

(E') there exist families of lines {Cx:a € 1}, {C*: a € I} satisfying
(24), (25), (27), (28), (29), (31) and ‘

(32) | card(Coa NCP)=1 for a€l,f€l.

K°=g[K

-g[C ] c? _.‘I[Cﬂ] C"= g[C’]

\ r ) / Cy=1C4]
ﬂ . T — Cp=f[Cs]

f— — Ces ]

/—-———ﬂ"\{\’ ,  Ko=J[Ko]

JEnl

Fig. 5
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The situation described in (E) is presented in Fig. 5.
PROPOSITION 4. If f and g satisfy (A), then they satisfy (E')

PRroOOF. Let ¢ be a homeomorphism of the plane onto itself such that
pof=Topand <pog Ty 0 . Put Dy := {(z1,22) € R2 : z3= a} and
D* := {(z1,22) € R? : 71 = o} for every a € R. Let C, := ¢~![Dq] and
C:=¢ D). It is easy to see that condition (E') is satlsﬁed O

We also have thé following

PRroPOSITION 5. Let f and g be homeomorphisms of the plane onto itself
without fixed points such thatf o g = g o f. Then (E) implies (D).

ProOF. Let KO Kj be lines and let {Cy : @ € I1}, {C®: a € I3} 'be
families of homeomorphic images of a straight line such that condition (E)
holds. Then K° satisfies (2), (4) and (6) (see [5], Theorem 3 and Corollary
3). In the same manner we can see that Ko satisfies (3), (5) and (7). This
completes the proof. O

From Propositions 4 and 5, and Corollary 2 we get

PROPOSITION 6. Let f and.g.be freé‘ mappings such that fog = go f.
Then conditions (A), (D), (E) and (E') are equivalent.
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