ON THE SYSTEM OF THE ABEL EQUATIONS ON THE PLANE

Zbigniew Leśniak

Abstract. We find all of continuous, homeomorphic and $\boldsymbol{C}^{\boldsymbol{k}}$ solutions of the system of the Abel equations

$$
\left\{\begin{array}{l}
\varphi(f(x))=\varphi(x)+a \\
\varphi(g(x))=\varphi(x)+b
\end{array} \quad \text { for } \quad x \in \mathbb{R}^{2}\right.
$$

where a, b are linearly independent vectors and f, g are commutable orientation preserving homeomorphisms of the plane onto itself satisfying some condition which is equivalent to the fact that there exists a homeomorphic solution of the system above.

In the present paper we shall be concerned with the system of the Abel equations

$$
\left\{\begin{array}{l}
\varphi(f(x))=\varphi(x)+a \tag{1}\\
\varphi(g(x))=\varphi(x)+b
\end{array} \quad \text { for } \quad x \in \mathbb{R}^{2}\right.
$$

where a, b are linearly independent vectors. The Abel equation

$$
\varphi(f(x))=\varphi(x)+a \quad \text { for } \quad x \in \mathbb{R}^{2}
$$

where $a \neq(0,0)$, has been considered in [5].
By a line we mean a homeomorphic image of a straight line which is a closed set. We assume that f, g are free mappings (i.e. orientation preserving homeomorphisms of the plane onto itself which have no fixed points - for the definition of an orientation preserving homeomorphism see e.g. [6], p. 198 or [2], p. 395) such that

[^0]$$
f \circ g=g \circ f
$$
and satisfy the following condition:
(D) there exist lines K^{0} and K_{0} such that
\[

$$
\begin{equation*}
K^{0} \cap f\left[K^{0}\right]=\emptyset \tag{2}
\end{equation*}
$$

\]

$$
\begin{equation*}
K_{0} \cap g\left[K_{0}\right]=\emptyset \tag{3}
\end{equation*}
$$

$$
U^{0} \cap f\left[U^{0}\right]=0
$$

$$
\begin{equation*}
U_{0} \cap g\left[U_{0}\right]=\emptyset \tag{5}
\end{equation*}
$$

$$
\begin{equation*}
\bigcup_{n \in Z} f^{n}\left[U^{0}\right]=\mathbb{R}^{2} \tag{6}
\end{equation*}
$$

$$
\begin{equation*}
\bigcup_{m \in \mathbb{Z}} g^{m}\left[U_{0}\right]=\mathbb{R}^{2} \tag{7}
\end{equation*}
$$

(8)

$$
f\left[K_{0}\right]=K_{0}
$$

$$
\begin{equation*}
g\left[K^{0}\right]=K^{0} \tag{9}
\end{equation*}
$$

$$
\begin{equation*}
\operatorname{card}\left(K^{0} \cap K_{0}\right)=1 \tag{10}
\end{equation*}
$$

where $U^{0}:=M^{0} \cup f\left[K^{0}\right], U_{0}:=M_{0} \cup g\left[K_{0}\right], M^{0}$ and M_{0} are the strips bounded by K^{0} and $f\left[K^{0}\right]$ and by K_{0} and $g\left[K_{0}\right]$ (Fig. 1).

Let us note that if f and g are orientation preserving homeomorphisms of the plane onto itself such that $f \circ g=g \circ f$ and satisfy condition (D), then they have no fixed points, and so they are free mappings.

1. First note the following

Proposition 1. Let $a=\left(a_{1}, a_{2}\right) \in \mathbf{R}^{2}$ and $b=\left(b_{1}, b_{2}\right) \in \mathbf{R}^{2}$ be linearly independent vectors (i.e. $a_{1} b_{2}-a_{2} b_{1} \neq 0$). Put $T_{a}(x):=x+a$ and $T_{b}(x):=$ $x+b$ for $x \in \mathbb{R}^{2}$. Then there exists a homeomorphism ψ of the plane onto itself such that

$$
\left\{\begin{array}{l}
T_{1}=\psi^{-1} \circ T_{a} \circ \psi \tag{11}\\
T_{2}=\psi^{-1} \circ T_{b} \circ \psi
\end{array}\right.
$$

where

$$
\begin{equation*}
T_{1}\left(x_{1}, x_{2}\right):=\left(x_{1}, x_{2}\right)+(1,0) \quad \text { for } \quad\left(x_{1}, x_{2}\right) \in \mathbb{R}^{2} \tag{12}
\end{equation*}
$$

and

$$
\begin{equation*}
T_{2}\left(x_{1}, x_{2}\right):=\left(x_{1}, x_{2}\right)+(0,1) \quad \text { for } \quad\left(x_{1}, x_{2}\right) \in \mathbf{R}^{2} \tag{13}
\end{equation*}
$$

Proof. It suffices to put

$$
\begin{equation*}
\psi\left(x_{1}, x_{2}\right):=\left(a_{1} x_{1}+b_{1} x_{2}, a_{2} x_{1}+b_{2} x_{2}\right) \quad \text { for } \quad\left(x_{1}, x_{2}\right) \in \mathbf{R}^{2} . \tag{14}
\end{equation*}
$$

Then

$$
\begin{aligned}
& \psi^{-1}\left(x_{1}, x_{2}\right) \\
& \quad=\left(\frac{b_{2}}{a_{1} b_{2}-a_{2} b_{1}} x_{1}-\frac{b_{1}}{a_{1} b_{2}-a_{2} b_{1}} x_{2},-\frac{a_{2}}{a_{1} b_{2}-a_{2} b_{1}} x_{1}+\frac{a_{1}}{a_{1} b_{2}-a_{2} b_{1}} x_{2}\right)
\end{aligned}
$$

for $\left(x_{1}, x_{2}\right) \in \mathbf{R}^{2}$.
From now on we may assume that $a=(1,0)$ and $b=(0,1)$, since we have
Proposition 2. Let $a=\left(a_{1}, a_{2}\right) \in \mathbf{R}^{2}$ and $b=\left(b_{1}, b_{2}\right) \in \mathbf{R}^{2}$ be linearly independent vectors. Then φ is a solution of (1) if and only if it has the form

$$
\varphi=\psi \circ \varphi_{0},
$$

where φ_{0} is a solution of the system

$$
\left\{\begin{array}{l}
\varphi(f(x))=\varphi(x)+(1,0) \tag{15}\\
\varphi(g(x))=\varphi(x)+(0,1)
\end{array} \quad \text { for } \quad x \in \mathbb{R}^{2}\right.
$$

and ψ is given by (14).
Proof. If φ_{0} is a solution of (15), then by (11)

$$
\varphi_{0}(f(x))=\left(\psi^{-1} \circ T_{a} \circ \psi\right)\left(\varphi_{0}(x)\right) \quad \text { for } \quad x \in \mathbb{R}^{2}
$$

and

$$
\varphi_{0}(g(x))=\left(\psi^{-1} \circ T_{b} \circ \psi\right)\left(\varphi_{0}(x)\right) \quad \text { for } \quad x \in \mathbb{R}^{2}
$$

where ψ is given by (14). Hence $\psi \circ \varphi_{0}$ is a solution of (1).
Conversely, if φ is a solution of (1), then $\varphi_{0}:=\psi^{-1} \circ \varphi$, where ψ is given by (14), satisfies (15). This completes the proof.

Let us introduce the following condition:
(A) there exists a homeomorphism of the plane onto itself which satisfies system (15).
Now we shall show
Proposition 3. If f and g satisfy (A), then they are orientation preserving homeomorphisms of the plane onto itself such that $f \circ g=g \circ f$ and satisfy condition (D).

Proof. Let φ be a homeomorphism of the plane onto itself which is a solution of (15). Then

$$
f=\varphi^{-1} \circ T_{1} \circ \varphi
$$

and

$$
g=\varphi^{-1} \circ T_{2} \circ \varphi
$$

where T_{1} and T_{2} are given by (12) and (13), resp. It is clear that f, g are homeomorphisms of the plane onto itself which preserve orientation. Since $T_{1} \circ T_{2}=T_{2} \circ T_{1}$, we have $f \circ g=g \circ f$.

Let $L^{0}:=\{0\} \times \mathbb{R}$ and $L_{0}:=\mathbb{R} \times\{0\}$. Putting $K^{0}:=\varphi^{-1}\left[L^{0}\right]$ and $K_{0}:=\varphi^{-1}\left[L_{0}\right]$, we get condition (D).
2. In this section we study continuous and homeomorphic solutions of system (15). By an arc we mean any continuous and one-to-one function γ defined on a compact segment of \mathbf{R} taking its values from the plane. The set of values of the function is denoted by γ^{*}. Similarly, by a Jordan curve we mean any continuous and one-to-one function J of the unit circle into \mathbb{R}^{2}
and denote the set of its values by J^{*}. Let C be a homeomorphic image of a straight line. For all $a, b \in C$ denote by $[a, b]$ the set of values of an arc with endpoints a and b contained in C. Let $(a, b]:=[a, b] \backslash\{a\}$.
L. E. J. Brouwer has proved the following

Lemma 1. ([1]) Let f be a free mapping. Let C be a homeomorphic image of a straight line such that $f[C]=C$. Then if $\gamma_{1}^{*} \cup \gamma_{2}^{*}$ is the set of values of a Jordan curve and for an $x_{0} \in C$ the set $\left[x_{0}, f\left(x_{0}\right)\right] \subset C$ is a proper subset of γ_{2}^{*}, then $\gamma_{1}^{*} \cap f\left[\gamma_{1}^{*}\right] \neq \emptyset$.

Using the lemma above we shall prove
Lemma 2. Let $F_{00}, G_{00}:[0,1] \rightarrow \mathbf{R}^{2}$ be arcs such that $F_{00}(0)=G_{00}(0)$, $F_{00}(1)=F_{00}(0)+(0,1)$ and $G_{00}(1)=G_{00}(0)+(1,0)$. Assume that $F_{00}^{*} \cup$ $G_{00}^{*} \cup\left(F_{00}^{*}+(1,0)\right) \cup\left(G_{00}^{*}+(0,1)\right)$ is the set of values of a Jordan curve J and $F_{00}^{*} \cap\left(F_{00}^{*}+(0,1)\right)=\left\{F_{00}(0)+(0,1)\right\}\left(o r G_{00}^{*} \cap\left(G_{00}^{*}+(1,0)\right)=\right.$ $\left.\left\{F_{00}(0)+(1,0)\right\}\right)$. Then
(a) $L^{0}:=\bigcup_{k \in \mathbb{Z}}\left(F_{00}^{*}+(0, k)\right)$ is a line and $L^{0} \cap\left(L^{0}+(1,0)\right)=0$;
(b) $L_{0}:=\bigcup_{k \in \mathbf{Z}}\left(G_{00}^{*}+(k, 0)\right)$ is a line and $L_{0} \cap\left(L_{0}+(0,1)\right)=\emptyset$;
(c) $\left\{W_{0}^{0}+(n, m): n, m \in \mathbf{Z}\right\}$ is a family of pairwise disjoint sets such that

$$
\bigcup_{n, m \in \mathbb{Z}} W_{0}^{0}+(n, m)=\mathbf{R}^{2}
$$

where $W_{0}^{0}:=B_{0}^{0} \backslash\left(F_{00}^{*} \cup G_{00}^{*}\right)$ and B_{0}^{0} is the sum of J^{*} and the inside of J^{*}.

Proof. Put $p_{00}:=F_{00}(0)$. Let $p_{k l}:=p_{00}+(k, l), F_{k l}:=F_{00}+(k, l)$, $G_{k l}:=G_{00}+(k, l)$ for all $k, l \in \mathbf{Z}$. Since $F_{00}^{*} \cap\left(F_{00}^{*}+(0,1)\right)=\left\{p_{01}\right\}$ and T_{2} is a free mapping, the set $L^{0}=\bigcup_{k \in Z} F_{0 k}^{*}$ is a homeomorphic image of a straight line (see [1]). It is easy to see that L^{0} is a closed set. Thus L^{0} is a line, and consequently so is $L^{1}:=L^{0}+(1,0)$.

First we shall prove that $G_{00}^{*} \cap L^{1}=\left\{p_{10}\right\}$. Let

$$
s_{1}:=\min \left\{s \in[0,1]: G_{00}(s) \in L^{1}\right\}
$$

(by the Weierstrass theorem the minimum exists). Put $\gamma_{1}:=G_{00}\left[0, s_{1}\right]$. Suppose, on the contrary, that $s_{1}<1$. Then $\gamma_{1}\left(s_{1}\right) \notin F_{10}^{*}$ (since $G_{00}^{*} \cap$ $F_{10}^{*}=\left\{p_{10}\right\}$) and $\gamma_{1}\left(s_{1}\right) \notin F_{1,-1}^{*}$ (since $\left(G_{00}^{*}+(0,1)\right) \cap F_{10}^{*}=\left\{p_{11}\right\}$, and so $\left.G_{00}^{*} \cap F_{1,-1}^{*}=\left\{p_{10}\right\}\right)$. Thus either $\gamma_{1}\left(s_{1}\right) \in L^{1+}$, or $\gamma_{1}\left(s_{1}\right) \in L^{1-}$, where $L^{1+}:=\bigcup_{k=1}^{+\infty} F_{1 k}^{*}$ and $L^{1-}:=\bigcup_{k=-2}^{-\infty} F_{1 k}^{*}$.

In case $\gamma_{1}\left(s_{1}\right) \in L^{1+}$ we put $s_{2}:=\max \left\{s \in\left[s_{1}, 1\right]: G_{00}(s) \in L^{1+}\right\}$, $s_{3}:=\min \left\{s \in\left[s_{2}, 1\right]: G_{00}(s) \in L^{1-} \cup\left\{p_{10}\right\}\right\}$ and $\gamma_{2}:=\left.G_{00}\right|_{\left[s_{2}, s_{3}\right]}$. Then the sum of γ_{2}^{*} and $\left[\gamma_{2}\left(s_{2}\right), \gamma_{2}\left(s_{3}\right)\right] \subset L^{1}$ is the set of values of a Jordan curve. Since $\gamma_{2}\left(s_{2}\right) \neq p_{11}$, the set $F_{10}^{*}=\left[p_{10}, p_{11}\right] \subset L^{1}$ is a proper subset of $\left[\gamma_{2}\left(s_{2}\right), \gamma_{2}\left(s_{3}\right)\right] \subset L^{1}$. From Lemma 1 (for T_{2} in place of f) we get

$$
\gamma_{2}^{*} \cap\left(\gamma_{2}^{*}+(0,1)\right) \neq \emptyset
$$

which contradicts the facts that $G_{00}^{*} \cap\left(G_{00}^{*}+(0,1)\right)=\emptyset$ and $\gamma_{2}^{*} \subset G_{00}^{*}$. The same arguments apply to the case where $\gamma_{1}\left(s_{1}\right) \in L^{1-}$. Thus $s_{1}=1$, whence $G_{00}^{*} \cap L^{1}=\left\{p_{10}\right\}$.

Now we shall show that $G_{00}^{*} \cap L^{0}=\left\{p_{00}\right\}$. Since J^{*}. is the set of values of a Jordan curve, we have $G_{00}^{*} \cap\left(\left(F_{0,-1}^{*} \cup F_{00}^{*}\right) \backslash\left\{p_{00}\right\}\right)=\emptyset$. Suppose $G_{00}^{*} \cap\left(L^{0+} \cup L^{0-}\right) \neq \emptyset$, where $L^{0+}:=\bigcup_{k=1}^{+\infty} F_{0 k}^{*}$ and $L^{0-}:=\bigcup_{k=-2}^{-\infty} F_{0 k}^{*}$. Let $s_{4}:=\min \left\{s \in[0,1]: G_{00}(s) \in L^{0+} \cup L^{0-}\right\}$ (the minimum exists, since $L^{0+} \cup L^{0-}$ is a closed set). Put $\gamma_{3}:=\left.G_{00}\right|_{\left.0, \varepsilon_{4}\right]}$. Then by Lemma 1

$$
\gamma_{3}^{*} \cap\left(\gamma_{3}^{*}+(0,1)\right) \neq \emptyset,
$$

contrary to the fact that $G_{00}^{*} \cap\left(G_{00}^{*}+(0,1)\right)=\emptyset$. Thus $G_{00}^{*} \cap L^{0}=\left\{p_{00}\right\}$. Since $L^{0}+(0,1)=L^{0}$ and $L^{1}+(0,1)=L^{1}$, we have $G_{01}^{*} \cap L^{0}=\left\{p_{01}\right\}$ and $G_{01}^{*} \cap L^{1}=\left\{p_{11}\right\}$.

Next we shall prove that $L^{0} \cap L^{1}=\emptyset$. Suppose, on the contrary, that $L^{0} \cap L^{1} \neq \emptyset$. Then $F_{00}^{*} \cap L^{1} \neq \emptyset$. Let

$$
t_{1}:=\min \left\{t \in[0,1]: F_{00}(t) \in L^{1}\right\}
$$

(on account of the Weierstrass theorem the minimum exists). Since $G_{00}^{*} \cap$ $L^{1}=\left\{p_{10}\right\}$, we have $p_{00} \notin L^{1}$, whence $t_{1}>0$. Put $\gamma_{4}:=F_{00} \mid\left[0, t_{1}\right]$. Obviously $\dot{\gamma}_{4}\left(t_{1}\right) \notin F_{10}^{*}$. Thus one of the following three cases holds: $\gamma_{4}\left(t_{1}\right) \in$ $L^{1+} \backslash\left\{p_{11}\right\}, \gamma_{4}\left(t_{1}\right) \in L^{1-} \backslash\left\{p_{1,-1}\right\}, \gamma_{4}\left(t_{1}\right) \in F_{1,-1}^{*} \backslash\left\{p_{10}\right\}$.

First suppose $\gamma_{4}\left(t_{1}\right) \in L^{1+} \backslash\left\{p_{11}\right\}$. Then the sum of $\gamma_{4}^{*}, G_{00}^{*}$ and $\left[\gamma_{4}\left(t_{1}\right), p_{10}\right] \subset L^{1}$ is the set of values of a Jordan curve such that $F_{10}^{*}=$ [p_{11}, p_{10}] is a proper subset of $\left[\gamma_{4}\left(t_{1}\right), p_{10}\right] \subset L^{1}$. Hence by Lemma 1

$$
\left(\gamma_{4}^{*} \cup G_{00}^{*}\right) \cap\left(\left(\gamma_{4}^{*} \cup G_{00}^{*}\right)+(0,1)\right) \neq \emptyset
$$

From the fact that $\left(G_{00}^{*}+(0,1)\right) \cap L^{1}=\left\{p_{11}\right\}$ we get $p_{01} \notin L^{1}$, whence $\gamma_{4}\left(t_{1}\right) \neq p_{01}$. Hence $\gamma_{4}^{*} \cap\left(\gamma_{4}^{*}+(0,1)\right)=\emptyset$, since $F_{00}^{*} \cap\left(F_{00}^{*}+(0,1)\right)=\left\{p_{01}\right\}$. Moreover $\boldsymbol{\gamma}_{4}^{*} \cap\left(G_{00}^{*}+(0,1)\right)=\emptyset$ (since $F_{00}^{*} \cap\left(G_{00}^{*}+(0,1)\right)=\left\{p_{01}\right\}$ and $\left.p_{01} \notin \gamma_{4}^{*}\right)$ and by assumptions $G_{00}^{*} \cap\left(G_{00}^{*}+(0,1)\right)=\emptyset$. Consequently $G_{00}^{*} \cap\left(\gamma_{4}^{*}+(0,1)\right) \neq \emptyset$ (Fig. 2). Let $s_{5}:=\min \left\{s \in[0,1]: G_{00}(s) \in\right.$
$\left.\gamma_{4}^{*}+(0,1)\right\}$ and $\gamma_{5}:=\left.G_{00}\right|_{\left[0, s_{5}\right\}}$. Then the sum of γ_{5}^{*} and $\left[p_{00}, \gamma_{5}\left(s_{5}\right)\right] \subset L^{0}$ is the set of values of a Jordan curve. Since $\gamma_{5}\left(s_{5}\right) \in F_{01}^{*} \backslash\left\{p_{01}\right\}$, the set $F_{00}^{*}=\left[p_{00}, p_{01}\right] \subset L^{0}$ is a proper subset of $\left[p_{00}, \gamma_{5}\left(s_{5}\right)\right]$. Hence by Lemma 1

$$
\gamma_{5}^{*} \cap\left(\gamma_{5}^{*}+(0,1)\right) \neq \emptyset
$$

which is impossible, since $G_{00}^{*} \cap\left(G_{00}^{*}+(0,1)\right)=\emptyset$. Thus $\gamma_{4}\left(t_{1}\right) \notin L^{1+} \backslash\left\{p_{11}\right\}$. In the similar manner we can show that $\gamma_{4}\left(t_{1}\right) \notin L^{1-} \backslash\left\{p_{1,-1}\right\}$.

Consider the case where $\gamma_{4}\left(t_{1}\right) \in F_{1,-1}^{*} \backslash\left\{p_{10}\right\}$. We shall show that $F_{00}\left(t_{2}\right) \in L^{1-} \cup F_{1,-1}^{*}$, where $t_{2}:=\max \left\{t \in[0,1]: F_{00}(t) \in L^{1}\right\}$. Let $t_{3}:=\max \left\{t \in[0,1]: F_{00}(t) \in L^{1-} \cup F_{1,-1}^{*}\right\}$. Suppose, on the contrary, that $t_{3}<t_{2}$. Put $t_{4}:=\min \left\{t \in\left[t_{3}, 1\right]: F_{00}(t) \in L^{1+}\right\}$ and $\gamma_{6}:=\left.F_{00}\right|_{\left[t_{3}, t_{4}\right]}$.

Fig. 2

Then by Lemma $1 \gamma_{6}^{*} \cap\left(\gamma_{6}^{*}+(0,1)\right) \neq \emptyset$, which contradicts the fact that $\left(F_{00}^{*} \backslash\left\{p_{00}\right\}\right) \cap\left(\left(F_{00}^{*} \backslash\left\{p_{00}\right\}\right)+(0,1)\right)=\emptyset$, since $\gamma_{6}^{*} \subset F_{00}^{*} \backslash\left\{p_{00}\right\}$. Thus $t_{3}=t_{2}$.

Put $\gamma_{7}:=\left.F_{00}\right|_{\left[t_{2}, 1\right]}$. Then the sum of $\gamma_{7}^{*}, G_{00}^{*}+(0,1)$ and $\left[\gamma_{7}\left(t_{2}\right), p_{11}\right] \subset L^{1}$ is the set of values of a Jordan curve (Fig. 3). On account of Lemma 1 we have

$$
\left(\gamma_{7}^{*} \cup\left(\dot{G}_{00}^{*}+(0,1)\right)\right) \cap\left(\left(\gamma_{7}^{*}-(0,1)\right) \cup G_{00}^{*}\right) \neq \emptyset .
$$

In the same manner as before we can show that this is impossible. Consequently none of the above three cases can hold. Thus $L^{0} \cap L^{1}=\emptyset$.

Denote by N^{0} the strip bounded by L^{0} and L^{1}. Let $W^{0}:=N^{0} \cup L^{1}$. Put $W^{k}:=W^{0}+(k, 0)$ for $k \in \mathbb{Z}$. Then, by the definition of $L^{0}, W^{0} \cap W^{k}=\emptyset$ for $k \in \mathbf{Z} \backslash\{0\}$ and $\bigcup_{k \in \mathbf{Z}} W^{k}=\mathbb{R}^{2}$. Because $G_{00}^{*} \cap L^{0}=\left\{p_{00}\right\}, G_{00}^{*} \cap\left(L^{0}+\right.$ $(1,0))=\left\{p_{10}\right\}$ and $W^{0} \cap W^{1}=\emptyset$, we have $G_{00}^{*} \cap\left(G_{00}^{*}+(1,0)\right)=\left\{p_{10}\right\}$. Hence $L_{0}=\bigcup_{k \in \mathcal{Z}} G_{k 0}^{*}$ is a line (the arguments are the same as that for L^{0}).

Let $L_{1}:=L_{0}+(0,1)$. Note that $L_{0} \cap L_{1}=\emptyset$. Indeed, from the fact that $G_{00}^{*} \cap\left(G_{00}^{*}+(0,1)\right)=\emptyset$, we get $\left(G_{00}^{*}+(k, 0)\right) \cap\left(G_{00}^{*}+(k, 1)\right)=\emptyset$ for $k \in \mathbb{Z}$. Moreover $\left(G_{00}^{*}+(k, 0)\right) \cap\left(G_{00}^{*}+(l, 1)\right)=\emptyset$ for $k, l \in \mathbf{Z}, k \neq l$, since $W^{k} \cap W^{l}=\emptyset, p_{k 0} \neq p_{l-1,1}$ and $p_{k-1,0} \neq p_{l 1}$.

Tig. 3

Denote by N_{0} the strip bounded by L_{0} and L_{1}. Let $W_{0}:=N_{0} \cup L_{1}$ and $W_{k}:=W_{0}+(0, k)$ for $k \in \mathbb{Z}$. Then $W_{0} \cap W_{k}=\emptyset$ for $k \in \mathbb{Z} \backslash\{0\}$ and $\bigcup_{k \in \mathbb{Z}} W_{k}=\mathbb{R}^{2}$. Let $W_{m}^{n}:=W^{n} \cap W_{m}$ for $n, m \in \mathbb{Z}$. Then

$$
W^{n}=\bigcup_{m \in \mathbb{Z}} W_{m}^{n} \quad \text { for } \quad n \in \mathbf{Z}
$$

and

$$
W_{m}=\bigcup_{n \in \mathbb{Z}} W_{m}^{n} \quad \text { for } \quad m \in \mathbb{Z}
$$

Thus

$$
\bigcup_{n, m \in \mathbb{Z}} W_{m}^{n}=\bigcup_{n \in \mathbb{Z}} W^{n}=\mathbb{R}^{2}
$$

Take any $k \in \mathbf{Z}$. Then $W_{k}^{l} \cap W_{k}^{n}=\emptyset$ for $l \neq n$, since $W_{k}^{l} \subset W^{l}, W_{k}^{n} \subset W^{n}$ and $W^{l} \cap W^{n}=\emptyset$. Hence by the fact that $W_{k} \cap W_{m}=\emptyset$ for $k \neq m$ we get $W_{k}^{l} \cap W_{m}^{n}=\emptyset$ for $(l, k) \neq(n, m)$. This completes the proof.

From now on, let $U_{0}^{0}:=M_{0}^{0} \cup F_{0}^{1} \cup G_{1}^{0}, M_{0}^{0}:=M^{0} \cap M_{0}, F_{0}^{0}:=$ $\left(x_{B}, g\left(x_{B}\right)\right] \subset K^{0}, F_{0}^{1}:=\left(f\left(x_{B}\right),(g \circ f)\left(x_{B}\right)\right] \subset f\left[K^{0}\right], G_{0}^{0}:=\left(x_{B}, f\left(x_{B}\right)\right] \subset$ $K_{0}, G_{1}^{0}:=\left(g\left(x_{B}\right),(g \circ f)\left(x_{B}\right)\right] \subset g\left[K_{0}\right]$ and $x_{B} \in K^{0} \cap K_{0}$ in the case where f and g are orientation preserving homeomorphisms of the plane onto itself such that $f \circ g=g \circ f$ and satisfy (D).

All of continuous and homeomorphic solutions of system (15) we get from
Theorem 1. Let f and g be orientation preserving homeomorphisms of the plane onto itself such that $f \circ g=g \circ f$ and satisfying (D). Let φ_{0} be à continuous mapping defined on $U_{0}^{0} \cup F_{0}^{0} \cup G_{0}^{0} \cup\left\{x_{B}\right\}$ such that

$$
\begin{equation*}
\varphi_{0}(f(x))=\varphi_{0}(x)+(1,0) \quad \text { for } \quad x \in F_{0}^{0} \cup\left\{x_{B}\right\}, \tag{16}
\end{equation*}
$$

$$
\begin{equation*}
\varphi_{0}(g(x))=\varphi_{0}(x)+(0,1) \quad \text { for } \quad x \in G_{0}^{0} \cup\left\{x_{B}\right\} . \tag{17}
\end{equation*}
$$

Then
(a) there exists exactly one function φ satisfying system (15) such that

$$
\begin{equation*}
\varphi(x)=\varphi_{0}(x) \quad \text { for } \quad U_{0}^{0} \cup F_{0}^{0} \cup G_{0}^{0} \cup\left\{x_{B}\right\} \tag{18}
\end{equation*}
$$

This φ is continuous.
Moreover
(b) if φ_{0} is one-to-one and

$$
\varphi_{0}\left[\left\{x_{B}\right\} \cup F_{0}^{0}\right] \cap\left(\varphi_{0}\left[\left\{x_{B}\right\} \cup F_{0}^{0}\right]+(0,1)\right)=\left\{\varphi_{0}\left(x_{B}\right)+(0,1)\right\}
$$

or

$$
\varphi_{0}\left[\left\{x_{B}\right\} \cup G_{0}^{0}\right] \cap\left(\varphi_{0}\left[\left\{x_{B}\right\} \cup G_{0}^{0}\right]+(1,0)\right)=\left\{\varphi_{0}\left(x_{B}\right)+(1,0)\right\},
$$

then φ is a homeomorphism of the plane onto itself (Fig. 4).

Fig. 4
Proof. From (2) and (3) it follows that

$$
f^{n}\left[K^{0}\right] \cap f^{n+1}\left[K^{0}\right]=\emptyset \quad \text { for } \quad n \in \mathbb{Z}
$$

and

$$
g^{m}\left[K_{0}\right] \cap g^{m+1}\left[K_{0}\right]=0 \quad \text { for } \quad m \in \mathbb{Z}
$$

Put $\left.K^{n}:=f^{n}\left[K^{0}\right], K_{n}:=g^{n}!K_{0}\right]$. Denote by M^{n} and M_{n} the strips bounded by K^{n} and K^{n+1}, and by K_{n} and K_{n+1}, resp. Let $U^{n}:=M^{n} \cup$ K^{n+1} and $U_{n}:=M_{n} \cup K_{n+1}$ for $n \in \mathbb{Z}$. Then $U^{n}=f^{n}\left[U^{0}\right]$ and $U_{n}=g^{n}\left[U_{0}\right]$ for $n \in \mathbf{Z}$, since f and g are homeomorphisms of the plane onto itself. From (4) and (5) we get $U^{n} \cap U^{m}=0$ and $U_{n} \cap U_{m}=\emptyset$ for $n, m \in \mathbb{Z}, n \neq m$. Since f and g are homeomorphisms of the plane onto itself, we have by (8) and (9)

$$
\begin{equation*}
g\left[U^{n}\right]=U^{n} \quad \text { for } \quad n \in \mathbb{Z} \tag{19}
\end{equation*}
$$

and

$$
\begin{equation*}
f\left[U_{n}\right]=U_{n} \quad \text { for } \quad n \in \mathbf{Z} \tag{20}
\end{equation*}
$$

Let

$$
F_{i}^{n}:=\left(g^{i}\left(f^{n}\left(x_{B}\right)\right), g^{i+1}\left(f^{n}\left(x_{B}\right)\right)\right] \subset K^{n} \quad \text { for } \quad n \in \mathbb{Z}, i \in \mathbb{Z}
$$

and

$$
G_{n}^{i}:=\left(f^{i}\left(g^{n}\left(x_{B}\right)\right), f^{i+1}\left(g^{n}\left(x_{B}\right)\right)\right] \subset K_{n} \quad \text { for } \quad n \in \mathbf{Z}, i \in \mathbf{Z}
$$

Then

$$
F_{i}^{n}=f^{n}\left[F_{i}^{0}\right], \quad F_{i}^{n}=g^{i}\left[F_{0}^{n}\right]
$$

and

$$
G_{n}^{i}=g^{n}\left[G_{0}^{i}\right], \quad G_{n}^{i}=f^{i}\left[G_{n}^{0}\right]
$$

Moreover

$$
K^{n}=\bigcup_{i \in \mathbb{Z}} F_{i}^{n}
$$

and

$$
K_{n}=\bigcup_{i \in \mathbb{Z}} G_{n}^{i}
$$

for $n \in \mathbf{Z}$.
Let

$$
M_{m}^{n}:=M^{n} \cap M_{m} \quad \text { for } \quad n, m \in \mathbf{Z}
$$

Put

$$
U_{m}^{n}:=M_{m}^{n} \cup F_{m}^{n+1} \cup G_{m+1}^{n} \quad \text { for } \quad n, m \in \mathbb{Z}
$$

Then

$$
\left(f^{n+1} \circ g^{m+1}\right)\left(x_{B}\right) \in U_{m}^{n} \quad \text { for } \quad n, m \in \mathbf{Z}
$$

It is easy to see that

$$
U^{n}=\bigcup_{m \in \mathbb{Z}} U_{m}^{n} \quad \text { for } \quad n \in \mathbf{Z}
$$

and

$$
U_{m}=\bigcup_{n \in \mathbb{Z}} U_{m}^{\boldsymbol{n}} \quad \text { for } \quad m \in \mathbb{Z}
$$

Hence

$$
\bigcup_{n, m \in Z} U_{m}^{n}=\mathbf{R}^{2}
$$

and the sets U_{m}^{n}, for $n, m \in \mathbb{Z}$, are pairwise disjoint.

Define the function φ by the formula

$$
\begin{equation*}
\varphi(x):=\varphi_{0}\left(\left(f^{-n} \circ g^{-m}\right)(x)\right)+(n, m), \quad x \in U_{m}^{n}, n, m \in \mathbf{Z} . \tag{21}
\end{equation*}
$$

It is clear that φ is a unique solution of system (15) satisfying (18) and that φ is continuous in $\bigcup_{n, m \in \mathbb{Z}} M_{m}^{n}$.

Now we shall show that φ is continuous in $G_{0}^{0} \backslash\left\{f\left(x_{B}\right)\right\}$. Take any $x_{0} \in G_{0}^{0} \backslash\left\{f\left(x_{B}\right)\right\}$. Let R be an open disc with centre at x_{0} such that

$$
R \subset\left(G_{0}^{0} \backslash\left\{f\left(x_{B}\right)\right\}\right) \cup M_{0}^{0} \cup M_{-1}^{0} .
$$

Put

$$
R_{1}:=R \cap M_{0}^{0}, \quad R_{2}:=R \cap M_{-1}^{0}, \quad R_{0}:=R \cap G_{0}^{0} .
$$

Then

$$
\varphi(x)= \begin{cases}\varphi_{0}(x) & \text { for } \quad x \in R_{1} \\ \varphi_{0}(g(x))-(0,1) & \text { for } \quad x \in R_{2} \cup R_{0}\end{cases}
$$

Hence by (21) $\varphi(x)=\varphi_{0}(x)$ for $x \in R_{0}$.
Let $x_{k} \rightarrow x_{0}$ as $k \rightarrow+\infty$, where $x_{k} \in R$. If $x_{k} \in R_{1} \cup R_{0}$, then

$$
\lim _{k \rightarrow+\infty} \varphi\left(x_{k}\right)=\lim _{k \rightarrow+\infty} \varphi_{0}\left(x_{k}\right)=\varphi_{0}\left(x_{0}\right)=\varphi\left(x_{0}\right),
$$

since φ_{0} is continuous in $R_{1} \cup R_{0} \subset G_{0}^{0} \cup M_{0}^{0}$. If $x_{k} \in R_{2}$, then $g\left(x_{k}\right) \in M_{0}^{0}$ and $g\left(x_{k}\right) \rightarrow g\left(x_{0}\right) \in G_{1}^{0}$ as $k \rightarrow+\infty$. Then

$$
\lim _{k \rightarrow+\infty} \varphi\left(x_{k}\right)=\lim _{k \rightarrow+\infty}\left(\varphi_{0}\left(g\left(x_{k}\right)\right)-(0,1)\right)=\varphi_{0}\left(g\left(x_{0}\right)\right)-(0,1)=\varphi\left(x_{0}\right),
$$

since φ_{0} is continuous and $x_{0} \in G_{0}^{0}$. Consequently φ is continuous at $x_{0} \in$ $G_{0}^{0} \backslash\left\{f\left(x_{B}\right)\right\}$. In the similar way we can show that φ is continuous in $F_{0}^{0} \backslash\left\{g\left(x_{B}\right)\right\}$.

Next we shall prove that φ is continuous at x_{B}. Let R be an open disc with centre at x_{B} such that

$$
\begin{aligned}
& R \subset M_{0}^{0} \cup M_{-1}^{0} \cup M_{0}^{-1} \cup M_{-1}^{-1} \cup \\
& \quad\left(G_{0}^{0} \backslash\left\{f\left(x_{B}\right)\right\}\right) \cup\left(F_{0}^{0} \backslash\left\{g\left(x_{B}\right)\right\}\right) \cup G_{0}^{-1} \cup F_{-1}^{0} .
\end{aligned}
$$

Put $R_{1}:=R \cap M_{0}^{0}, R_{2}:=R \cap M_{-1}^{0}, R_{3}:=R \cap M_{0}^{-1}, R_{4}:=R \cap M_{-1}^{-1}$, $R_{5}:=R \cap G_{0}^{0}, R_{6}:=R \cap F_{0}^{0}, R_{7}:=R \cap G_{0}^{-1}, R_{8}:=R \cap F_{-1}^{0}$. Then

$$
\varphi(x)= \begin{cases}\varphi_{0}(x) & \text { for } \quad x \in R_{1}, \\ \varphi_{0}(g(x))-(0,1) & \text { for } \quad x \in R_{2} \cup R_{5}, \\ \varphi_{0}(f(x))-(1,0) & \text { for } \quad x \in R_{3} \cup R_{6}, \\ \varphi_{0}((f \circ g)(x))-(1,1) & \text { for } \quad x \in R_{4} \cup R_{7} \cup R_{8},\end{cases}
$$

since $R_{1} \subset U_{0}^{0}, R_{2} \cup R_{5} \subset U_{-1}^{0}, R_{3} \cup R_{6} \subset U_{0}^{-1}, R_{4} \cup R_{7} \cup R_{8} \subset U_{-1}^{-1}$. Hence by (21) $\varphi(x)=\varphi_{0}(x)$ for $x \in R_{5} \cup R_{6}$.

Let $x_{k} \rightarrow x_{B}$ as $k \rightarrow+\infty$, where $x_{k} \in R$. Considering the four cases: $x_{k} \in R_{1} \cup R_{5} \cup R_{6}, x_{k} \in R_{3}, x_{k} \in R_{2}, x_{k} \in R_{4} \cup R_{7} \cup R_{8}$, we see that in each of these cases

$$
\lim _{k \rightarrow+\infty} \varphi\left(x_{k}\right)=\varphi\left(x_{B}\right)
$$

Thus φ is continuous at x_{B}.
Fix an arbitrary $x_{0} \in \mathbb{R}^{2} \backslash \bigcup_{n, m \in \mathbb{Z}} M_{m}^{n}$. Then there exist $n, m \in \mathbf{Z}$ such that $x_{0} \in U_{m}^{n} \backslash M_{m}^{n}$. Hence, by the definition of U_{m}^{n}, one of the following three cases holds: $x_{0} \in F_{m}^{n+1} \backslash\left\{\left(f^{n+1} \circ g^{m+1}\right)\left(x_{B}\right)\right\}, x_{0} \in G_{m+1}^{n} \backslash\left\{\left(f^{n+1} \circ\right.\right.$ $\left.\left.g^{m+1}\right)\left(x_{B}\right)\right\}, x_{0}=\left(f^{n+1} \circ g^{m+1}\right)\left(x_{B}\right)$.

Let $x_{0} \in F_{m}^{n+1} \backslash\left\{\left(f^{n+1} \circ g^{m+1}\right)\left(x_{B}\right)\right\}$ and let P be an open disc with centre at x_{0} such that

$$
P \subset\left(F_{m}^{n+1} \backslash\left\{\left(f^{n+1} \circ g^{m+1}\right)\left(x_{B}\right)\right\}\right) \cup M_{m}^{n} \cup M_{m}^{n+1}
$$

Then

$$
\left(f^{-n-1} \circ g^{-m}\right)[P] \subset\left(F_{0}^{0} \backslash\left\{g\left(x_{B}\right)\right\}\right) \cup M_{0}^{-1} \cup M_{0}^{0}
$$

and $\left(f^{-n-1} \circ g^{-m}\right)[P]$ is a neighbourhood of the point $\left(f^{-n-1} \circ g^{-m}\right)\left(x_{0}\right) \in$ $F_{0}^{0} \backslash\left\{g\left(x_{B}\right)\right\}$. Since φ is continuous in $F_{0}^{0} \backslash\left\{g\left(x_{B}\right)\right\}$, it is continuous at x_{0}. Similar arguments apply to the cases $x_{0} \in G_{m+1}^{n} \backslash\left\{\left(f^{n+1} \circ g^{m+1}\right)\left(x_{B}\right)\right\}$ and $x_{0}=\left(f^{n+1} \circ g^{m+1}\right)\left(x_{B}\right)$. Consequently φ is continuous on the whole plane.

Assume, in addition, that φ_{0} is one-to-one and

$$
\varphi_{0}\left[\left\{x_{B}\right\} \cup F_{0}^{0}\right] \cap\left(\varphi_{0}\left[\left\{x_{B}\right\} \cup F_{0}^{0}\right]+(0,1)\right)=\left\{\varphi_{0}\left(x_{B}\right)+(0,1)\right\} .
$$

Then φ_{0} is a homeomorphism, since $U_{0}^{0} \cup F_{0}^{0} \cup G_{0}^{0} \cup\left\{x_{B}\right\}$ is compact. Thus $J^{*}:=\varphi_{0}\left[F_{0}^{0} \cup G_{0}^{0} \cup F_{0}^{1} \cup G_{1}^{0} \cup\left\{x_{B}\right\}\right]$ is the set of values of a Jordan curve.

From assertions (a) and (b) of Lemma 2 we obtain that $L^{0}:=$ $\bigcup_{k \in \mathbb{Z}}\left(\varphi_{0}\left[\left\{x_{B}\right\} \cup F_{0}^{0}\right]+(0, k)\right), L_{0}:=\bigcup_{k \in \mathbb{Z}}\left(\varphi_{0}\left[\left\{x_{B}\right\} \cup G_{0}^{0}\right]+(k, 0)\right)$ are lines and $L^{0} \cap\left(L^{0}+(1,0)\right)=\emptyset, L_{0} \cap\left(L_{0}+(0,1)\right)=\emptyset$.

Denote by N^{0} the strip bounded by L^{0} and $L^{0}+(1,0)$. Then $\varphi_{0}\left[U^{0}\right] \cap$ $\left(\varphi_{0}\left[U^{0}\right]+(k, 0)\right)=\emptyset$ for every $k \in \mathbb{Z} \backslash\{0\}$, since $\varphi_{0}\left[U^{0}\right] \subset W^{0}$, where $W^{0}:=N^{0} \cup\left(L^{0}+(1,0)\right)$ (see [5], the proof of Theorem 2, part (c)). Likewise, we get that $\varphi_{0}\left[U_{0}\right] \cap\left(\varphi_{0}\left[U_{0}\right]+(0, k)\right)=\emptyset$ for every $k \in \mathbb{Z} \backslash\{0\}$, since $\varphi_{0}\left[U_{0}\right] \subset W_{0}$, where $W_{0}:=N_{0} \cup\left(L_{0}+(0,1)\right)$ and N_{0} denotes the strip bounded by L_{0} and $L_{0}+(0,1)$.

We shall show that φ is one-to-one. Let $x, y \in \mathbb{R}^{2}$ and $\varphi(x)=\varphi(y)$. Then there exist $k, l, m, n \in \mathbb{Z}$ such that $x \in U_{k}^{l}, y \in U_{m}^{n}$. Hence $x \in U^{l}, y \in U^{n}$. From the fact that $\varphi_{0}\left[U^{0}\right] \cap\left(\varphi_{0}\left[U^{0}\right]+(l, 0)\right)=\emptyset$ for every $l \in \mathbf{Z} \backslash\{0\}$ it follows that $l=n$ (see [5], the proof of Theorem 2, part (b)). On the other
hand $x \in U_{k}, y \in U_{m}$. Applying the same method as above we get $k=m$ (now we use the fact that $\varphi_{0}\left[U_{0}\right] \cap\left(\varphi_{0}\left[U_{0}\right]+(0, k)\right)=\emptyset$ for every $k \in \mathbf{Z} \backslash\{0\}$). Therefore $x=y$, since φ_{0} is one-to-one. Note that φ, being a continuous one-to-one mapping of the plane into itself, is a homeomorphism (see e.g. [3], p. 186).

It remains to prove that $\varphi\left[\mathbb{R}^{2}\right]=\mathbb{R}^{2}$. Let

$$
A:=\bigcup_{n \in \mathbb{Z}} L^{0}+(n, 0) \cup \bigcup_{n \in \mathbb{Z}} L_{0}+(0, n)
$$

Then $A \subset \varphi\left[\mathbb{R}^{2}\right]$. Take any $x_{0} \in \mathbb{R}^{2} \backslash A$. Put $N_{0}^{0}:=N^{0} \cap N_{0}$ and $W_{0}^{0}:=$ $W^{0} \cap W_{0}$. Then $W_{0}^{0}=N_{0}^{0} \cup\left(\varphi_{0}\left[F_{0}^{0}\right]+(1,0)\right) \cup\left(\varphi_{0}\left[G_{0}^{0}\right]+(0,1)\right)$. Let $N_{m}^{n}:=N_{0}^{0}+(n, m)$ and $W_{m}^{n}:=W_{0}^{0}+(n, m)$ for $n, m \in \mathbf{Z}$. Then by assertion (c) of Lemma 2

$$
W_{k}^{l} \cap W_{m}^{n}=\emptyset \quad \text { for } \quad(n, m) \neq(l, k)
$$

and

$$
\bigcup_{n, m \in \mathbf{Z}} W_{m}^{n}=\mathbb{R}^{2}
$$

Therefore there exist $n, m \in \mathbf{Z}$ such that $x_{0} \in N_{m}^{n}$, since $x_{0} \notin A$. Note that ($J^{*}+(n, m)$) is the set of values of a Jordan curve and $N_{m}^{n}=\operatorname{ins}\left(J^{*}+(n, m)\right)$. Hence $x_{0} \in \varphi\left[\mathbf{R}^{2}\right]$, since $J^{*}+(n, m) \subset \varphi\left[\mathbf{R}^{2}\right]$ and $\varphi\left[\mathbf{R}^{2}\right]$ is a simply connected region (i.e. for every Jordan curve γ such that $\gamma^{*} \subset \varphi\left[\mathbb{R}^{2}\right]$ we have ins $\gamma^{*} \subset$ $\varphi\left[\mathbf{R}^{2}\right]$). This completes the proof.

From Theorem 1 (b) - by the Schönflies theorem (see e.g. [2], p. 370) we obtain

Corollary 1. If f and g are orientation preserving homeomorphisms of the plane onto itself such that $f \circ g=g \circ f$, then (D) implies (A).

As a consequence of Proposition 3 and Corollary 1 we get
Corollary 2. Let f and g be orientation preserving homeomorphisms of the plane onto itself such that $f \circ g=g \circ f$. Then conditions (A) and (D) are equivalent.
3. Now we proceed to the construction of solutions of system (15) which are of class $\mathcal{C}^{p}(p>0)$. First we quote the following

Lemma 3. ([4]) If the functions h and ψ are of class $C^{p}(p>0)$ in a region $V \subset \mathbf{R}^{2}$ such that $h[V] \subset V$, then for $x \in V$

$$
\frac{\partial^{q}}{\partial x_{i_{1}} \ldots \partial x_{i_{q}}} \psi[h(x)]=\sum_{k=1}^{q} \sum_{j_{1}, \ldots, j_{k}=1}^{2} b_{i_{1} \ldots i_{q}}^{j_{1} \ldots j_{k}}(x) \psi_{j_{1} \ldots j_{k}}[h(x)],
$$

$q=1, \ldots, p$, where

$$
\begin{equation*}
\psi_{i_{1} \ldots i_{k}}(x)=\frac{\partial^{k}}{\partial x_{i_{1}} \ldots \partial x_{i_{k}}} \psi(x), \tag{22}
\end{equation*}
$$

$b_{i_{1} \ldots i_{q}}^{j_{1} \ldots j_{k}}(x)$ may be expressed by means of sums and products of $a_{i}^{j}(x), \ldots$, $a_{i_{1} \ldots i_{q-k+1}}^{j}(x), a_{i_{1} \ldots i_{k}}^{j}(x)=\frac{\partial^{k}}{\partial x_{i_{1}} \ldots \partial x_{i_{k}}} h_{j}(x), k=1, \ldots, p$ and $h=\left(h_{1}, h_{2}\right)$. Consequently $b_{i_{1} \ldots i_{q}}^{j_{1} \ldots j_{k}}$ are of class $C^{p-q+k-1}$. In particular,

$$
b_{i_{1} \ldots i_{q}}^{j_{1} \ldots j_{q}}(x)=a_{i_{1}}^{j_{1}}(x) \cdot \ldots \cdot a_{i_{q}}^{j_{q}}(x)
$$

Let f and g be orientation preserving homeomorphisms of the plane onto itself such that $f \circ g=g \circ f$ and satisfying (D). Let ψ be a continuous function defined on $U_{0}^{0} \cup F_{0}^{0} \cup G_{0}^{0} \cup\left\{x_{B}\right\}, p$ times continuously differentiable in M_{0}^{0}. We write

$$
\begin{equation*}
\psi_{i_{1} \ldots i_{k}}\left(x_{0}\right):=\lim _{\substack{x \rightarrow x_{0} \\ x \in M_{0}^{0}}} \frac{\partial^{k}}{\partial x_{i_{1}} \ldots \partial x_{i_{k}}} \psi(x), \quad k=1, \ldots, p \tag{23}
\end{equation*}
$$

for $x_{0} \in F_{0}^{0} \cup G_{0}^{0} \cup F_{0}^{1} \cup G_{1}^{0} \cup\left\{x_{B}\right\}$ (provided this limit exists), and for $x \in M_{0}^{0}$ the function $\psi_{i_{1} \ldots i_{k}}$ is given by (22). The function ψ is said to be of class C^{p} in $U_{0}^{0} \cup F_{0}^{0} \cup G_{0}^{0} \cup\left\{x_{B}\right\}$, if all the functions $\psi, \psi_{i}, \ldots, \psi_{i_{1} \ldots i_{p}}$ are continuous in this set.

We have the following
Theorem 2. Let f and g be orientation preserving \mathcal{C}^{p} diffeomorphisms mapping \mathbb{R}^{2} onto itself such that $f \circ g=g \circ f$ and satisfying (D). Assume that for every $x_{1} \in F_{0}^{0} \backslash\left\{f\left(x_{B}\right)\right\}$, for every $x_{2} \in G_{0}^{0} \backslash\left\{g\left(x_{B}\right)\right\}$ and for the point $x_{B} \in K^{0} \cap K_{0}$ there exist three pairs of linearly independent vectors $u_{x_{1}}^{1}$ and $u_{x_{1}}^{2}, u_{x_{2}}^{1}$ and $u_{x_{2}}^{2}, u_{x_{B}}^{1}$ and $u_{x_{B}}^{2}$ and there exist constants $t_{x_{1}}^{0}, t_{x_{2}}^{0}, t_{x_{B}}^{0}>0$ such that each of the sets $I_{x_{1}}^{1} \cap\left(F_{0}^{0} \cup\left\{x_{B}\right\}\right), I_{x_{1}}^{2} \cap\left(F_{0}^{0} \cup\left\{x_{B}\right\}\right), I_{x_{2}}^{1} \cap\left(G_{0}^{0} \cup\left\{x_{B}\right\}\right)$, $I_{x_{2}}^{2} \cap\left(G_{0}^{0} \cup\left\{x_{B}\right\}\right), I_{x_{B}}^{1} \cap\left(F_{0}^{0} \cup G_{0}^{0} \cup\left\{x_{B}\right\}\right), I_{x_{B}}^{2} \cap\left(F_{0}^{0} \cup G_{0}^{0} \cup\left\{x_{B}\right\}\right)$ is at most denumerable, where $I_{x}^{1}:=\left\{x+t u_{x}^{1}:|t| \leq t_{x}^{0}\right\}, I_{x}^{2}:=\left\{x+t u_{x}^{2}:|t| \leq t_{x}^{0}\right\}$. Let ψ be a C^{p} function from $U_{0}^{0} \cup F_{0}^{0} \cup G_{0}^{0} \cup\left\{x_{B}\right\}$ into \mathbb{R}^{2} which satisfies

$$
\begin{array}{ll}
\psi[f(x)]=\psi(x)+(1,0) & \text { for } \quad x \in F_{0}^{0} \cup\left\{x_{B}\right\} \\
\psi[g(x)]=\psi(x)+(0,1) & \text { for } \quad x \in G_{0}^{0} \cup\left\{x_{B}\right\},
\end{array}
$$

and for $q=1, \ldots, p, i_{1}, \ldots, i_{q}=1,2$

$$
\begin{aligned}
& \sum_{k=1}^{q} \sum_{j_{1} \ldots j_{k}=1}^{2} b_{i_{1} \ldots i_{q}}^{j_{1} \ldots j_{k}}(x) \psi_{j_{1} \ldots j_{k}}[f(x)]=\psi_{i_{1} \ldots i_{q}}(x) \quad \text { for } \quad x \in F_{0}^{0} \cup\left\{x_{B}\right\}, \\
& \sum_{k=1}^{q} \sum_{j_{1} \ldots j_{k}=1}^{2} \bar{b}_{i_{1} \ldots i_{q}}^{j_{1} \ldots j_{k}}(x) \psi_{j_{1} \ldots j_{k}}[g(x)]=\psi_{i_{1} \ldots i_{q}}(x) \quad \text { for } \quad x \in G_{0}^{0} \cup\left\{x_{B}\right\},
\end{aligned}
$$

where the functions $b_{i_{1} \ldots i_{q}}^{j_{1} \ldots j_{k}}, \bar{b}_{i_{1} \ldots i_{q}}^{j_{1} \ldots j_{k}}$ are those occuring in Lemma 3 for $h=f$, $h=g$, resp. Then there exists a unique solution φ of system (15) such that

$$
\varphi(x)=\psi(x) \quad \text { for } \quad x \in U_{0}^{0} \cup F_{0}^{0} \cup G_{0}^{0} \cup\left\{x_{B}\right\}
$$

This solution is of class C^{p} in the plane.
Proof. Define φ by setting

$$
\varphi(x):=\psi\left(\left(f^{-n} \circ g^{-m}\right)(x)\right)+(n, m) \quad \text { for } \quad x \in U_{m}^{n}, n, m \in \mathbf{Z} .
$$

From Theorem 1 we get that φ is continuous in \mathbf{R}^{2}. The fact that φ is of class \mathcal{C}^{p} in the plane can be obtained in the same way as that of Theorem 3.1 in [4], part 2 (with the partial derivatives replaced by directional derivatives in the directions of the linearly independent vectors which occurs in our assumptions). This completes the proof.

In particular, from Theorem 2 we obtain the existence of a \mathcal{C}^{p} solution of system (15) provided the desired pairs of vectors exist (the main theorem of [7] yields the existence of ψ satisfying the assumptions of Theorem 2).
4. The last section deals with families of homeomorphic images of a straight line which fill the plane. Let us introduce the following conditions:
(E) there exist lines K^{0}, K_{0} and families of homeomorphic images of a straight line $\left\{C_{\alpha}: \alpha \in I_{1}\right\},\left\{C^{\alpha}: \alpha \in I_{2}\right\}$ satisfying (8), (9), (10) and

$$
\begin{equation*}
C_{\alpha} \cap C_{\beta}=\emptyset \quad \text { for } \quad \alpha, \beta \in I_{1}, \alpha \neq \beta \tag{25}
\end{equation*}
$$

$$
\begin{equation*}
\operatorname{card}\left(K^{0} \cap C_{\alpha}\right)=1 \quad \text { for } \quad \alpha \in I_{1} \tag{26}
\end{equation*}
$$

$$
\begin{equation*}
\bigcup_{\alpha \in I_{1}} C_{\alpha}=\mathbb{R}^{2} ; \tag{27}
\end{equation*}
$$

$$
\begin{equation*}
g\left[C^{\alpha}\right]=C^{\alpha} \quad \text { for } \quad \alpha \in I_{2} \tag{28}
\end{equation*}
$$

$$
\begin{equation*}
C^{\alpha} \cap C^{\beta}=\emptyset \quad \text { for } \quad \alpha, \beta \in I_{2}, \alpha \neq \beta \tag{29}
\end{equation*}
$$

$$
\begin{equation*}
\operatorname{card}\left(K_{0} \cap C^{\alpha}\right)=1 \quad \text { for } \quad \alpha \in I_{2} \tag{30}
\end{equation*}
$$

$$
\begin{equation*}
\bigcup_{a \in I_{2}} C^{\alpha}=\mathbb{R}^{2} \tag{31}
\end{equation*}
$$

$\left(E^{\prime}\right)$ there exist families of lines $\left\{C_{\alpha}: \alpha \in I_{1}\right\},\left\{C^{\alpha}: \alpha \in I_{2}\right\}$ satisfying $(24),(25),(27),(28),(29),(31)$ and

$$
\begin{equation*}
\operatorname{card}\left(C_{\alpha} \cap C^{\beta}\right)=1 \quad \text { for } \quad \alpha \in I_{1}, \beta \in I_{2} \tag{32}
\end{equation*}
$$

Fig. 5

The situation described in (E) is presented in Fig. 5.
Proposition 4. If f and g satisfy (A), then they satisfy (E^{\prime}).
Proof. Let φ be a homeomorphism of the plane onto itself such that $\varphi \circ f=T_{1} \circ \varphi$ and $\varphi \circ g=T_{2} \circ \varphi$. Put $D_{\alpha}:=\left\{\left(x_{1}, x_{2}\right) \in \mathbb{R}^{2}: x_{2}=\alpha\right\}$ and $D^{\alpha}:=\left\{\left(x_{1}, x_{2}\right) \in \mathbb{R}^{2}: x_{1}=\alpha\right\}$ for every $\alpha \in \mathbb{R}$. Let $C_{\alpha}:=\varphi^{-1}\left[D_{\alpha}\right]$ and $C^{\alpha}:=\varphi^{-1}\left[D^{\alpha}\right]$. It is easy to see that condition (E^{\prime}) is satisfied.

We also have the following
Proposition 5. Let f and g be homeomorphisms of the plane onto itself without fixed points such that $f \circ g=g \circ f$. Then (E) implies (D).

Proof. Let K^{0}, K_{0} be lines and let $\left\{C_{\alpha}: \alpha \in I_{1}\right\},\left\{C^{\alpha}: \alpha \in I_{2}\right\}$ be families of homeomorphic images of a straight line such that condition (E) holds. Then K^{0} satisfies (2), (4) and (6) (see [5], Theorem 3 and Corollary 3). In the same manner we can see that K_{0} satisfies (3), (5) and (7). This completes the proof.

From Propositions 4 and 5, and Corollary 2 we get
Proposition 6. Let f and g be free mappings such that $f \circ g=g \circ f$. Then conditions $(A),(D),(E)$ and $\left(E^{\prime}\right)$ are equivalent.

References

[1] L. E. J. Brouwer, Beweis des ebenen:Translationssatzes, Math. Ann. 72 (1912), 37-54.
[2] R. Duda, Wprowadzenie do topologii, cz. I. Topologia ogólna, Biblioteka Mat. 61, PWN, Warszawa, 1986.
[3] R. Engelking and K. Sieklucki, Topology. A Geometric Approach, Sigma Ser. Pure Math. 4, Heldermann, Berlin 1992.
[4] M. Kuczma, On the Schröder equation, Rozprawy Mat. 34 (1963).
[5] Z. Leśniak, On homeomorphic and diffeomorphic solutions of the Abel equation on the plane, Ann. Polon. Math. 58 (1993), 7-18.
[6] M. H. A. Newman, Elements of the Topology of Plane Sets of Points, Cambridge University Press, London 1951.
[7] H. Whitney, Analytic extension of differentiable functions defined in closed sets; Trans. Amer. Math. Soc. 36 (1934), 63-89.

Instytut Matematyki

Wyższa Szkola Pedagogiczna
ul. Podchorsżych 2
30-084 Kraków

[^0]: AMS (1991) subject classification: Primary 39B62; Secondary 54H20, 26A18.

