
Annales Mathematicae Silesianae 9. Katowice 1995, 105-122 

Prace Naukowe Uniwersytetu Śląskiego nr 1523 

ON THE SYSTEM OF THE ABEL 
EQUATIONS ON THE PLANE 

ZBIGNIEW LEŚNIAK 

Abstract. We find all of continuous, homeomorphic and Ck solutions of the 
system of the Abel equations 

f */(.))-**>+- for s € R , 
[ ¥>(s(*)) = + b 

where a, b are linearly independent vectors and / , g are commutable orien
tation preserving homeomorphisms of the plane onto itself satisfying some 
condition which is equivalent to the fact that there exists a homeomorphic 
solution of the system above.' 

In the present paper we shall be concerned with the system of the Abel 
equations 

(1) { . , , , , , , for a; € R , 

where a, b are linearly independent vectors. The Abel equation 

(p(f(x)) = <p(x) + a for x 6 R 2 , 

where a ̂  (0,0), has been considered in [5]. 
By a line we mean a homeomorphic image of a straight line which is a 

closed set. We assume that / , g are free mappings (i.e. orientation preserving 
homeomorphisms of the plane onto itself which have no fixed points - for the 
definition of an orientation preserving homeomorphism see e.g. [6], p. 198 
or [2], p. 395) such that 

AMS (1991) subject classification: Primary 39B62; Secondary 54H20, 26A18. 
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fog = gof 

and satisfy the following condition: 

(D) there exist lines K° and KQ such that 

(2) ' K° n f[K°] = 0, 

(3) K0ng[K0) = 9, 

(4) £/° n /[[/°] = 0, 

(5) f/ on 5[f/ o] = 0, 

(6) U > e z / n [ t f ° ] = a 2 , 

(7) " U n i e Z 5 m [ ^ o ] = R 2
! 

(8) /[/Voj - Ko, 

(9) Ó[/C0] = /C°, 

(10) card(/C° n K0) = 1, 

where l/° := M° U f[K°], U0 := Af0 U g[K0], M° and M 0 are the strips 
bounded by K° and f[K°] and by tf0 and g[K0] (Fig. 1). 

r ' [ ^ ° ] K°=g[K°] f[K°\ f[Ka] 
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Let us note that if / and g are orientation preserving homeomorphisms of 
the plane onto itself such that / o g = g o / and satisfy condition (D), then 
they have no fixed points, and so they are free mappings. 

1. First note the following 

PROPOSITION 1. Let a = (01,02) € R 2 and 6 = (61,62) e R 2 be linearly 
independent vectors (i.e. 0162 — 0261 ̂  0). Put Ta(x) := x + a and T(,(x) := 
x + b for x € R 2 . Then there exists a homeomorphism if) of the plane onto 
itself such that 

(11) \T2 = 4>-loTha1>, 

where 

(12) Ti(*i,a>a)::=(xi,*2>+(1,Q) for (x t , x 2 ) € R 2 , 

and 

(13) T 2 (x i ,x 2 ) := (x L ,x 2 ) + (0,l) for ( x ^ G R 2 . 

PROOF . It suffices to put 

(14) i/)(xi,X2) := (01X1 + 61X2,02X1 + 62*2) for (XI,.XJJ),€ R 2 . 

Then 

V> - 1(xi,X2) 
/ 62 61 a2 , 01 Y 

= I — E ~~~T~xi E F " * 2 ' T u~Xl + — T T~X2 I 
\OlW2 — O2&1 O1O2 — O2O1 O1O2 G2O1 O1O2 — O2O1 / 

for (xi, x 2 ) G R 2 . • 

From now on we may assume that a = (1,0) and 6 = (0,1), since we have 

PROPOSITION 2. Let a = (01, o2) € R 2 and 6 — (61,63) € R 2 be linearly 
independent vectors. Then (fi is a solution of (1) if and only if it has the 
form 

9 = V>oy>o, 

file:///OlW2
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where <po is a solution of the system 

r ? ( / («) ) = ( M ) 
(15) < , . , . ,„ for a?.G K ' , 
v ; \ ¥>(*(*)) = ¥>(*) +(0,1) 

and V is given by ('I4). 

PROOF . If </?o IS a solution of (15), then by (11) 

<p0(f(x)) = (V>-1 oT„ o'^)(yo(s)) for x <= R 2 , 

and 
M9(x)) = W~loTbOtl>)(<po(z)) for x G R 2 , 

where ^ is given by (14). Hence V* ° Vo is a solution of (1). 
Conversely, if <p is a solution of (1), then <po := o <p, where ^ is given 

by (14), satisfies (15). This completes the proof. • 

Let us introduce the following condition: 
(A) there exists a homeomorphism of the plane onto itself which satisfies 

system (15). 
Now we shall show 

• PROPOSITION 3. If / and g satisfy (A), then they are orientation pre
serving homeomorphisms of the plane onto itself such that fog = gof and 
satisfy condition (D). 

PROOF . Let (p be a homeomorphism of the plane onto itself which is a 
solution of (15). Then 

/ = v?-1 o Ti o <p 

and 
g = (p~l oT2oip, 

where T\ and T 2 are given by (12) and (13), resp. It is clear that / , g are 
homeomorphisms of the plane onto itself which preserve orientation. Since 
Ti o T 2 = T 2 o T i , we have / og = g o f. 

Let L° := {0} x R and L 0 := R x {0}. Putting K° := ^[L°] and 
KQ := </>_1[Lo], we get condition (D). • 

2. In this section we study continuous and homeomorphic solutions of 
system (15). By an arc we mean any continuous and one-to-one function 7 
defined on a compact segment of R taking its values from the plane. The 
set of values of the function is denoted by 7*. Similarly, by a Jordan curve 
we mean any continuous and one-to-one function J of the unit circle into R 2 
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and denote the set of its values by J*. Let C be a homeomorphic image of 
a straight line. For all a,b € C denote by [a, b] the set of values of an arc 
with endpoints a and b contained in C. Let (a, 6] := [a, 6] \ {a}. 

L. E. J . Brouwer has proved the following 

LEMMA 1. ([1]) Let f be a free mapping. Let C be a homeomorphic 
image of a straight line such that f[C] = C. Then if 7f U 7 2 ' s * f l e ^ O I % 

values of a Jordan curve and for an Xo € C the set [XQ, /(XQ)] C C is a 
proper subset of 7 2 , then f{ n /frf] ^ 0 . 

Using the lemma above we shall prove 

LEMMA 2. Let Foo.Goo : [0,1] -» R 2 be arcs such that Foo(0) = Goo(0), 
Foo(l) = Foo(0) + (0,1) and G 0 0 ( l ) = Goo(0) + (1,0). Assume that F ^ U 
Gjfo U (FQQ + (1,0)) U (GQO + (0.1)) i s t ł i e ^ o f values of a Jordan curve 
J and F0*0 n (F0*0 + (0,1)) = {F o o(0) + (0,1)} (or n (GJQ + (1,0)) = 
{Foo(0) + (1,0)};. Then 

(a) L° := U e z ( * o o + (0, *)) * a ii™ aiid L° n (L° + (1,0)) = 0; 

(b) L 0 := Ufcgz(Goo + (*» 0)) is a line and L0 n (L 0 + (0,1)) = 0; 

(c) {WQ + (nim) : n,m £ Z} is a family of pairwise disjoint sets such 
that 

U W0° + (»,m) = R 2 , 
n,m£Z 

w/iere := B§ \ (F0*0 UG5 0) and is the sum of J* and the inside 
of J*. 

PROOF . Put poo := F o o (0). Let pu := Poo + ( M ) , F u := *bo + ( M ) , 
G w := Goo + (*,/) for all k,l e Z . Since F& n (F& + (0,1)) = {poi} and 
T 2 is a free mapping, the set L° = Ukgz^ok ^ a homeomorphic image of a 
straight line (see [1]). It is easy to see that L° is a closed set. Thus L° is a 
line, and consequently so is L1 := L° + (1,0). 

First we shall prove that GQO n L1 = {pio}. Let 

si := min {s € [0,1]: Goo(s) € L1} 

(by the Weierstrass theorem the minimum exists). Put 71 := Goo|[o,*i]-
Suppose, on the contrary, that si < ' l . Then 71 («i) £ Ff 0 (since GQO f~l 
*io = {Pio}) and 71 (51) ^ F * ^ (since (GJo + (0 , l ) )nf? 0 = {pn}, and so 
Goo 'n F j* . ! = {pio}). Thus either 7 i ( S l ) € Z,"", or 7^51) € L 1 - , where 
L l + Ut=i Fik a n d L*~ '•= Uk=-iFik-
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In case 71(«i) € L 1 + we put s2 := max{s € [*i,l] : Goo(s) € L1+}, 
s3 := min {s e [s2,1] : Goo(s) € L 1 " U {pio}} and 72 := G0o|[s2,s3]- Then 
the sum of y2 and [72 fa),72(^3)] C L1 is the set of values of a Jordan 
curve. Since 72(52) # Pi i i the set FT*Q = [pio>Pii] C L1 is a proper subset of 
[72(*2)»72(«3)] C L 1 . From Lemma 1 (for T2 in place of /) we get 

72* n (72* + (0, i)) # 0, 

which contradicts the facts that Gfo n (G*,0 + (0,1)) = 0 and 7J C G*. 0 . The 
same arguments apply to the case where 71 («i) 6 L L ~ . Thus s\ = 1, whence 
G^f\LL = {pw}. 

Now we shall show that GQQ n L° = {poo}- Since J* is the set of values 
of a Jordan curve, we have Goo n ((^0,-1 u ^00) \ {Poo}) = 0- Suppose 
GJo n (L°+ u L°~) #0,.where L°+ := U£Ti*o* U ^ ^ o V 
Let S4 := min {5 € [0,1] : Goo(s) G £ 0 + U L°~} (the minimum exists, since 
L 0 + U L 0 - is a closed set). Put 73 := Goo|[o,»4]- Then by Lemma 1 

73* n (73* + (o,i)) 7*0, 

contrary to the fact that Goo 0 (G* 0 + (0,1)) = 0. Thus G 5 0 n L° = {poo}-
Since X° + (0,1) = L° and L1 + (0,1) = L 1 , we have GJ X Cl L° = {poi} and 
G 5 1 n l 1 = {p 1 1}. 

Next we shall prove that L° f~l L1 = 0. Suppose, on the contrary, that 
L° n L 1 ^ 0. Then F0*0 n L 1 ^ 0. Let 

tx := min {t 6 [0,1]: Foo(t) 6 L1} 

(on account of the Weierstrass theorem the minimum exists)/ Since GjJo n 
L 1 = {pio}, we have ppo g L 1 , whence t i > 0. Put 74 := Foolio.tj]- Ob
viously 74(*i) £ Fi" 0 . Thus one of the following three cases holds: 74 (*i) € 
L 1 + \ {Pli}, T4(«i) € I 1 " \ {pi,-i},.74(ti) € f ? , . ! \ {Pio}-

First suppose 74(^1) € L 1 + \ {pn}. Then the sum of 74, GQO and 
[74(̂ 1)1 Pio] C L1 is the set of values of a Jordan curve such that F{0 = 
[PiiiPio] is a proper subset of [74(*i),pio] C L L . Hence by Lemma 1 

(74* u GSo) n ((74* u GSo) + (o, i)) * 0. 

From the fact that ( G ^ + ( 0 , 1 ) ) n l 1 = {pn} we get poi £ L 1 , whence 
74(*i) ^ Poi- Hence 7J n (T<* + (0,1)) = 0, since F ^ n ( F ^ + (0,1)) = {poi}. 
Moreover 7J n (GJo + (0,1)) = 0 (since F& n (G^ + (0,1)) = {poi} and 
Poi £ 74) and by assumptions GjJo n (GJo + (0,1)) = 0. Consequently 
G5o n (74* + (0,1)) £ 0 (Fig. 2). Let s 5 := min{s e [0,1] : Goo(fi) e 
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-ii + (0,1)} and 75 := Goo|fo,ss]- Then the sum of ̂  and [poo,7s(5s)] G L° 
is the set of values of a Jordan curve. Since 75(55) 6 FQX \ {poi}, the set 
^00 = booiPoi] C L° is a proper subset of [poo,7s(ss)]- Hence by Lemma 1 

75* n (75* + (0,1)) 7^0, 

which is impossible, since Goon(Goo+(0,1)) = 0. Thus 74(̂ 1) £ L1+\{pu}. 
In the similar manner we can show that 74(̂ 1) £ Lx~ \ {pi.-i}. 

Consider the case where 74(̂ 1) € 1 \ {pio}- We shall show that 
^bo(*2) G L1- U Ff t_!, where t2 := max{t € [0,1] : F00(<) € I 1 } . Let 
*3 := max{/ € [0,1]: Foo(t) € L 1 " U j}. Suppose, on the contrary, that 
* 3 < *2- Put U := min {* 6 [*3, 1]: *bo(Ó € £ 1 + } and 7 6 := Foo|[ t„t 4]. 

Fig. 2 

Then by Lemma 1 j^-n (76 + (0,1)) ^ 0, which contradicts the fact that 
(*ob'\ (Poo}) n ((F0*0 \ {poo}) + (0,1)) = 0, since 7 e* 'c F0*0 \ {poo}. Thus 
h =t2. 

Put 77 := F 0 0 | [ t 2 , i j . Then the sum of 7?, GS0+(0,1) and frK^Pn] C L1 

is the set of values of a Jordan curve (Fig. 3). On account of Lemma 1 we 
have 

(77* u (<% + (o, i))) n ((77* - (0, i)) u G&) * 0. 
In the same manner as before we can show that this is impossible. Conse
quently none of the above three cases can hold. Thus L° n Ll — 0. 
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Denote by N° the strip bounded by L° and L1. Let W° := N° U Ll. Put 
Wk + (fc,o) for fc 6 Z . Then, by the definition of L°, W° n W f e = 0 
for fc G Z \ {0} and U fc(=z W f c = Because G&n L° = {p 0 0}, Goo n (L° + 
(1,0)) = {pio} and W° n W 1 = 0, we have G%0 n (G5 0 + (1,0)) = {pio}-
Hence L0 = Ufcgz Gfco l s a 1 1 1 1 6 ( t n e arguments are the same as that for L°). 

Let Li := X 0 + (0,1). Note that L0 n L i = 0. Indeed, from the fact 
that GSo n (G$ 0 + (0,1)) = 0, we get ((% + ( M ) ) n (G* 0 + (*, 1)) = 0 for 
fc € Z. Moreover (Gfo + (fc, 0)) 0 (GJo + (f, 1)) = 0 for fc, I G Z, fc # I, since 
W f c n W = 0, Pfco Ć P / - i , i and pfc_i,o ^ Pn-

Fig. 3 

Denote by iV*o the strip bounded by Lo and L\. Let Wo := U L\ and 
Wk := Wo + (0,fc) for fc G Z. Then Wo fl W* = 0 for fc G Z \ {0} and 
Ufcez Wk = R 2 - L e t Wm := n Wm for a , m e Z . Then 

Wn=(JW» for n G Z, 

^ m = U ^ for ™ £ Z -

( J = ( J Wn = R 2 . 
n,m6Z nGZ 

and 

Thus 
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Take any k £ Z. Then Wl

k D Wg = 0 for / ^ n, since Wl

kcW',Wg C Wn 

and W' n Wn = 0. Hence by the fact that Wk f~l W m = 0 for fc ̂  m we get 
n W£ = 0 for (/, k) ± (n, m). This completes the proof. • 

From now on, let U§ := M0° U F0

l U G?, M§ := M° n M 0 , := 
(*B,S(*B)] G K \ := ( / ( X B ) , ( 5 O / ) ( X B ) ] C f[K% G° := ( X B , / ( * B ) ] C 
K0, G? := (fif(xB), (fif o /)(SB)] C pfifo] and xB € K°C\ K0 in the case where 
/ and g are orientation preserving homeomorphisms of the plane onto itself 
such that / o g — g o / and satisfy (D). 

All of continuous and homeomorphic solutions of system (15) we get from 

THEOREM 1. Let f and g be orientation preserving homeomorphisms of 
the plane onto itself such that f o g = g o / and satisfying (D). Let <po be a 
continuous mapping defined on UQ U F§ U GQ U {X B} such that 

(16) Mf(*)) = M*) + '(hO) for x € F° U { x B } , 

(17) = VoOO + (0,1) for x 6 G § U { x B } . 

Then 
(a) there exists exactly one function ip satisfying system (15) such that 

(18) ¥>(x) = <po(x) for tf0° U F° U Gg U {x B } . 

This (/? is continuous. 
Moreover 

(b) i f <po is one-to-one and 
¥>O[{*B} U F°] n (¥>O[{*B} U ^o] + (0,1)) = {<PO(*B) + (0,1)} 

or 
VO[{*B) U G»] n (V>O[{*B} U Gg] + (1,0)) = {V>O(*B) + (1,0)}, 

then y> is a homeomorphism of the plane onto itself (Fig. 4). 

ft - Annate*... 
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Fig. 4 

PROOF . From (2) and (3) it follows that 

/ " [ / C o ] n / n + 1 [ / i ' ° ] = 0 for n e Z , 

and 
S r a [ ^ j n S

m + 1 [ / i c ] = 0 for m € Z . 

Put Kn := fn[K°), Kn := gn[K0]. Denote by M " and M n the strips 
bounded by Kn and A " * + 1 , and by Kn and Kn+i, resp. Let Un := M n U 
Kn+i and {/„ := M n U A ' n + 1 for n G Z. Then Un = fn[U°] and Un = g n[£/ 0] 
for n 6 Z, since / and # are homeomorphisms of the plane onto itself. From 
(4) and (5) we get Un n Um = 0 and t/n n Um = 0 for ra,m 6 Z, n ^ m. 
Since / and g are homeomorphisms of the plane onto itself, we have by (8) 
and (9) 

(19) g[Un) = Un for n 6 Z, 

and 
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(20) f[UN] = UN for neZ. 

Let 

f? := (5 , ' ( / N ^B ) ) ,5 < + 1 ( / n (x B ) ) ] C Kn for n G Z, i G Z , 
and 

GJ, := (/V(*J*))> f + V ( * B ) ) ] C A-„ for n € Z, t € Z. 
Then 

and 

Moreover 

and 

for n € Z. 

Let 

Put 

Then 

= 9n[(Ą], G\ = f [G°J. 

A" 1 = (J F? 

tez 

M£ := M n n Mm for n,m G Z. 

l £ := M m U U G : + 1 for n,m G Z. 

( / n + i 0 ^ m + i ) ( a . B ) € f f « for n ł T n € Z . 

It is easy to see that 

U"= (J ŁC for n G Z 
mez 

and 
= (J CC for meZ. 

n€Z 

Hence 
(J ^ = R 2 

n,m€Z 
and the sets U™, for n, TO G Z, are pairwise disjoint. 

8* 
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Define the function <p by the formula 

(21) <p(x) := M(f~n 0 9~m)(*)) + («.m), x e n,m € Z. 

It is clear that y> is a unique solution of system (15) satisfying (18) and that 
if> is continuous in U„,mgz Mm-

Now we shall show that <p is continuous in GQ \ {f(xB)}. Take any 
XQ € GQ \ {/(IB)}. Let R be an open disc with centre at xo such that 

RC(G%\{f{zB)})\JM%UM\. 

Put 
Ri\=Rt\M$, R2:= Rf\MQ_i, Rn:=RnG%. 

Then 
f <A)(z) for xe R\, 
\ - (0 ,1) for x 6 i 2 2 U i ? o . 

Hence by (21) y>(x) = <fio(x) for x € Eo-
Let x/b —• xo as k -*• +oo, where xjt G i£. If x* € R\ U i?o, then 

lim (p(xk) = lim <po(sfc) = <Po(xo) = <p(xo), 
k—>+oo K—*+oo 

since y?o is continuous in R\ U i?o C GQ U MQ . If xt € #2) then S^fc) € MQ 
and g(xk) g{xo) € G? as k -> +oo. Then 

lim p(x*) = Urn (y>o(s(a;*)) - (0,1)) = vo{g(x0)) - (0,1) = <p(x0), 
k—»+oo fc—»+oo 

since y>o is continuous and xo € G®. Consequently (p is continuous at xo G 
G§ \ {/(XB)}- In the similar way we can show that (p is continuous in 
F§\{9(XB)}. 

Next we shall prove that <p is continuous at x#. Let i2 be an open disc 
with centre at XB such that 

R CMQ U U Af 0

- 1 U M l j 1 U 

(G8 \ { / ( * B ) } ) U ( J ? \ {g{xB)}) u G o 1 u Fit. 

Put iE x := 5 n M§, R2:= Rn M ° x , fi3 := Rn M 0

_ 1 , ft, := -Rn M Z i , 
i? 5 := Rn G§, R6:=Rf\ F§, R7 := RCl GQ1, R8 := fin Then 

(po(x) for x € 
Vo(ff(*))-(0,l) . for xeRiURa, 
Vo(/(*))-(1.0) for x < E f l 3 U E 6 , 

I ¥*>((/o »)(«)) - (1,1) for x € i? 4 'U i?7 U Rs, 
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since Rx C Ug, R2 UR h C Ullt R3URe C tf0

-1, #4 U i27 U i? 8 C IC*. Hence 
by (21) <p(x) = <fi0(x) for a; € R5 U #6. , 

Let Xk —* XB as A; -»• +00, where x* G i2. Considering the four cases: 
xk G i?i U Rs U i26, «fc G R3, Xk G i?2, xjt G i?4 U R7 U we see that in 
each of these cases 

lim (p(xk) = <p(xB)-
k—>+oo 

Thus (p is continuous at x B . 
Fix an arbitrary x 0 G R 2 \ ( J n mgz ^ m - Then there exist n, m G Z such 

that x 0 G Um \ Mm- Hence, by the definition of f/TO, one of the following 
three cases holds: x 0 G Fm+* \ { ( / n + 1 o gm+1)(xB)}, x0 G \ { ( / n + 1 o 
9m+1)(xB)hxo = ( / n + 1 o gm+1)(xB). 

Let x 0 G F m

+ 1 \ { ( / n + 1 o fifm+1)(xB)} and let P be an open disc with 
centre at xo such that 

P c (K+1 \ { ( / n + 1 0 9m+1)(*B)}) U M ; U 

Then 
( / - ""Vo g-m)[P] C (itf \ {(/(XB)}) U Mo"1 U M0° 

and ( / ~ n - t o g~m)[P] is a neighbourhood of the point ( / _ n _ 1 o </~m)(x0) G 
FQ \ {^(XB)}. Since <p is continuous in FQ \ {g(xB)}, it is continuous at xo. 
Similar arguments apply to the cases x 0 G G£ , + 1 \ { ( / n + 1 ° 9m+1)(xB}} and 
xo = ( / n + 1 o gm+1)(xB)- Consequently <p is continuous on the whole plane. 

Assume, in addition, that <po is one-to-one and 

¥>O[{*B} U F ° ] D {vo[{xB} u F°] + (0,1)) = {¥>O(*B) + (o, 1)}. 

Then <po is a homeomorphism, since U§ U FQ3 U G§ U {X b } is compact. Thus 
J* := <po[fo u U F0

X U G\ U {x B}] is the set of values of a Jordan curve. 
From assertions (a) and (b) of Lemma 2 we obtain that L° := 

U*ez(¥>o[{*B} U F0°] + (0,&)), L0 := UfceZ(v>o[{*B} U G°Q] + (k,0)) are lines 
and /,° n (Z° + (1,0)) = 0, i 0 n (L0 + (0,1)) = 0. 

Denote by JV° the strip bounded by L° and L° + (1,0). then ^o[^°] n 
(<PoW°] + (k,0)) = 0 for every k € Z \ {0}, since ip0[U°] C W°, where 
W~° := JV°U(Z/° + (l,0)) (see [5], the proof of Theorem 2, part (c)). Likewise, 
we get that (f0[U0] 0 (<po[U0] + (0,A;)) = 0 for every k G Z \ {0}, since 
ipo[U0] C Wo, where W 0 := iV 0 U ( i 0 + (0,1)) and N0 denotes the strip 
bounded by LQ and LQ + (0,1). 

We shall show that <p is one-to-one. Let x,y G R 2 and <p(x) = ip(y). Then 
there exist k,l,m,n G Z such that x G J7 ,̂ y G Hence x G U1, y G ?7n. 
From the fact that ¥>o[tf°] n (vo[^°3 + G»0)) *? 0 for every i G Z \ {0} it 
follows that I = n (see [5], the proof of Theorem 2, part (b)). On the other 
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hand x G Uk, y G Um. Applying the same method as above we get k = m 
(now we use the fact that (po[Uo]n((po[Uo] + (0,k)) = 0 for every k G Z\{0}). 
Therefore x = y, since <po is one-to-one. Note that <p, being a continuous 
one-to-one mapping of the plane into itself, is a homeomorphism (see e.g. 
[3], p. 186). 

It remains to prove that y>[R2] = R 2 . Let 

A:= | J X o + (n,0)U ( J l 0 + (0,n). 
ngZ ngZ 

Then A C <p[R2]. Take any x0 G R 2 \ A. Put N$ := N° n No and W§ := 
W° n Wo. Then Wff = JV0° U fa>[/?] + (1,0)) U (^[Gg] + (0,1)). Let 
iV£ := iVo3 + (n, m) and W£ := W§ + (n, m) for n, m G Z. Then by assertion 
(c) of Lemma 2 

Wl

knW^ = <D for (n,m) #(/,*), 

and 
( J ^ m = R 2 -

n,m6Z 

Therefore there exist n,?n G Z such that xo G iV£, since xo S' A. Note that 
(«/*+(n, m)) is the set of values of a Jordan curve and = ins (J*+(n, m)). 
Hence x 0 G v[R 2], since «/* + (n, m) C ¥>[R2] and <p[R2] is a simply connected 
region (i.e. for every Jordan curve 7 such that 7* C ¥>[R2] we have ins 7* C 
y>[R2]). This completes the proof. • 

From Theorem 1 (b) - by the Schonflies theorem (see e.g. [2], p. 370) -
we obtain 

COROLLARY l.Iff and g are orientation preserving homeomorphisms of 
the plane onto itself such that f o g = g 0 /, then (D) implies (A). 

As a consequence of Proposition 3 and Corollary 1 we get 

COROLLARY 2. Let f and g be orientation preserving homeomorphisms 
of the plane onto itself such that fog = gof. Then conditions (A) and (D) 
are equivalent. 

3. Now we proceed to the construction of solutions of system (15) which 
are of class Cp (p > 0). First we quote the following 

LEMMA 3. ([4]) If the functions h and ip are of class Cp (p > 0) in a 
region V C R 2 such that h[V] C V, then for x G V 

to 9 2 

dX. dx- M « > I = E E 
'« fc=iii.-.i*=i 
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q = 1,... ,p, where 

(22) dxS-d*^ 

Hl'"ig(x) ma,y be expressed by means of sums and products of a\(x),... , 

Consequently b{l"j* are of class Cp~9+k~1. In particular, 

A:iHx) = 4(x).....a^(x). 

Let / and g be orientation preserving homeomorphisms of the plane onto 
itself such that / o g = g o f and satisfying (D). Let ij) be a continuous 
function defined on UQ U F§ U Gg U {XB}, P times continuously differentiable 
in MQ . We write 

dk 

(23) (*o) t= Jim ~ - — * = l , - - ,P 

for x 0 e i^UGguĄ 1 UG?U{XB} (provided this limit exists), and for x e M§ 
the function $i^.,.ik is given by (22). The function if) is said to be of class Cp 

in f/" U F, 0 U Gg U {x B } , if all the functions if), V>t, • • • , V'si.-.tp are continuous 
in this set. 

We have the following 

THEOREM 2. Let f and g be orientation preserving Cp diifeomorphisms 
mapping R 2 onto itself such that fog = gof and satisfying (D). Assume that 
for every x\ £ FQ \ {/(XB)}, for every x2 £ Gg \ {g(xB)} and for the point 
XB 6 A ' 0 n A'o tiiere exist three pairs of linearly independent vectors uXl and 
ux! > uxz a n d ux2 > UXB AN^ UXB a n < * * f l e r e e x , s * constants tXl, tXi, tXj) > 0 such 
that each of the sets 1^ n (F° U {x B }), I2

Xl f~l (FQ3 U { x B » , Ą 2 fi (Gg U {x B }) , 
J 2

2 n (Gg U { x B » , / i B n (F° U Gg U {xB}), llB n (Fó3 U Gg U {x B }) is at most 
denumerable, where Ix := {x + tu* : |t| < t°x}, Ix:= {x + i u 2 : |t| < t°x}. Let 
V> be a CP function from U§ U F§ U Gg U {x B } into R 2 wnici satisfies 

V[/(x)] = V»(x) + (l,0) for x e F ^ U i x B } , 

^[£f(x)3 = V(*) + (0,1) for x € Ggu { x s } , 
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and for q = 1,... ,p, i\,... , iq = 1,2 

E E 6 t t W i x . . . i J / W ] = V'n . . , ,W for s 6 * ? U { x f l } , 
fe=i ji...jk=i 

q 2 

E E ^::i (*)^i . .Ab(*) l = ^i...ł f(*) for x e G ° U { x s } , 
fc=i ji...i*=i 

where the functions h^"t*, 6 f a r e those occuring in Lemma 3 for h = /, 
h — g, resp. Then there exists a unique solution <p of system (15) such that 

(p(x) = i(j(x) for xeUoUF^UGoU{xB}. 

This solution is of class Cv in the plane. 

PROOF . Define <p by setting 

¥>(*):= V>((/~" o g~m)(«)) + (n, m) for x € 0 £ , n, m € Z. 

From Theorem 1 we get that (p is continuous in R 2 . The fact that <p is of 
class Cp in the plane can be obtained in the same way as that of Theorem 3.1 
in [4], part 2 (with the partial derivatives replaced by directional derivatives 
in the directions of the linearly independent vectors which occurs in our 
assumptions). This completes the proof. • 

In particular, from Theorem 2 we obtain the existence of a Cp solution of 
system (15) provided the desired pairs of vectors exist (the main theorem of 
[7] yields the existence of il> satisfying the assumptions of Theorem 2). 

4. The last section deals with families of homeomorphic images of a 
straight line which fill the plane. Let us introduce the following conditions: 

(E) there exist lines K°, KQ and families of homeomorphic images of a 
straight line {Ca : a G h}, {Ca : a G / 2} satisfying (8), (9), (10) 
and 

(24) f[Ca]~Ca for ae / i , 

(25) CanCp = 9 for a,0ehyaćP, 

(26) card(#° f\Ca) = 1 for a e/i, 
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(27) U CQ = K 2 ; 
ot€h 

(28) g[Ca] = Ca for a £ /2, 

(29) C a n C / J = 0 for a,0eI2,aćP, 

(30) card {K0 n G a ) = l for a£l2, 

(31) | J C a = R 2 ; 
a<El2 

(E') there exist families of lines {Ca : a 6 /)}, {Ca : a e I2} satisfying 
(24), (25), (27), (28), (29), (31) and 

(32) card(C a n Cp) = 1 for a e I\,P 6 I2. 

Fig. 5 
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The situation described in (E) is presented in Fig. 5. 

PROPOSITION 4. If f and g satisfy (A), then they satisfy (E'). 

PROOF . Let <p be a homeomorphism of the plane onto itself such that 
<p o / = Ti o tp and <p o g = T2 o (p. Put Da := {(x\,x2) € R 2 : x 2 = a} and 
Da := {(xi ,x 2 ) € R 2 : x i = a} for every a e R. Let Ca := <p-l[Da] and 
Ca := (p~^[Da}. It is easy to see that condition (E ) is satisfied. • 

We also have the1 following 

PROPOSITION 5. Let f anU g be homeomorphisms of the plane onto itself 
without fixed points such that'f o j = j o / . Then (E) implies (D). 

PROOF . Let K°, K0 be lines and let {Ca : a £ A } , {Ca : a € /2>'be 
families of homeomorphic images of a straight line such that condition (E) 
holds. Then K° satisfies (2), (4) and (6) (see [5], Theorem 3 and Corollary 
3). In the same manner we can see that KQ satisfies (3), (5) and (7). This 
completes the proof. • 

From Propositions 4 and 5, and Corollary 2 we get 

PROPOSITION 6. Let f and g be free mappings such that f o g = g o f. 
Then conditions (A), (D), (E) and (E ) are equivalent. 
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