TRANSFORMING THE FUṄCTIONAL EQUATION OF GO£AB-SCHINZEL INTO ONE OF CAUCHY

Peter Kahlig and Jens Schwaiger

Abstract

It is shown that Goląb-Schinzel's equation may be transformed into one of Cauchy's equations by an embedding and limit process concerning the general continuous solution.

A meteorological problem of interpolation

$$
f(x+h(x, y))=f(x) g(y), \quad f, g: \mathbf{R} \rightarrow \mathbf{R}, h: \mathbf{R}^{2} \rightarrow \mathbf{R},
$$

where, f, g, h are functions to be determined, comprises Gołąb-Schinzel's functional equation ([1], [2], [4])

$$
\begin{equation*}
f(x+y f(x))=f(x) f(y) \tag{1}
\end{equation*}
$$

by choosing $g(y)=f(y), h(x, y)=y f(x)$, but also one of Cauchy's functional equations ([1])

$$
\begin{equation*}
f(x+y)=f(x) f(y) \tag{2}
\end{equation*}
$$

by specializing $g(y)=f(y), h(x, y)=y$. Now the question may be raised if there exists a connection between (1) and (2) via an embedding.

Replacing in (1) the value $f(x)$ by $f(x)^{1 / n}$ where n is an odd positive integer, we obtain a family of modified Gołab-Schinzel equations with a parameter $n \in 2 \mathbf{N}_{0}+1=\{1,3,5, \ldots\}$,

$$
\begin{equation*}
f\left(x+y f(x)^{1 / n}\right)=f(x) f(y) \tag{n}
\end{equation*}
$$

[^0]Goła̧b-Schinzel's original equation (1) is recovered for $n=1$. Concerning the meteorological problem, $\left(3_{n}\right)$ is the special case $g(y)=f(y), h(x, y)=$ $y f(x)^{1 / n}$. Nicole Brillouët-Belluot's generalization ([3]) of (1)

$$
f\left(f(y)^{k} x+f(x)^{l} y\right)=F(x, y, f(x), f(y), f(x y))
$$

where k, l are integers and F is a given function, evidently does not comprise $\left(3_{n}\right)$. It is well known from [$1, \mathrm{p} .312$] that
a continuous $f: \mathbf{R} \rightarrow \mathbf{R}$ is a solution, of (1) if, and only if, f has one of the mutually exclusive forms:

$$
\begin{gather*}
f(x)=a x+1 \quad(a \in \mathbb{R}) \tag{4}\\
f(x)=0, \tag{5}
\end{gather*}
$$

$$
\begin{equation*}
f(x)=\max (a x+1,0) \quad\left(a \in \mathbb{R}^{*}=\mathbb{R} \backslash\{0\}\right) \tag{6}
\end{equation*}
$$

Using this and the fact that a function f solves $\left(3_{n}\right)$ if, and only if, $x \mapsto f(x)^{1 / n}$ solves (1) we get

Theorem 1. A continuous $f: \mathbb{R} \rightarrow \mathbb{R}$ is a solution of $\left(3_{n}\right)$ (n a positive odd integer) if, and only if, f has one of the mutually exclusive forms:

$$
\begin{equation*}
f(x)=(a x+1)^{n} \quad(a \in \mathbb{R}) \tag{n}
\end{equation*}
$$

$$
\begin{equation*}
f(x)=\max \left((a x+1)^{n}, 0\right) \quad\left(a \in \mathbb{R}^{*}=\mathbb{R} \backslash\{0\}\right) . \tag{n}
\end{equation*}
$$

Now, let us consider a sequence $\left(f_{n}\right)_{n \in 2 \mathrm{~N}_{0}+1}$ of continuous solutions f_{n} of $\left(3_{n}\right)$. Then we may ask for conditions implying that this sequence converges. We want to show that this is the case if, and only if, the limiting function is a continuous solution of (2). Suppose that the sequence $\left(f_{n}\right)$ converges and let

$$
f(x):=\lim _{\substack{n \\ n \in 2 N_{0}+1}} f_{n}(x) .
$$

Since $f_{n}(0) \in\{0,1\}$ and $f_{n}(0)=0$ if, and only if, $f_{n}=0$, we have $f(0)=$ $0(1)$ if, and only if, $f_{n}=0(\neq 0)$ for almost all n. Thus, excluding the case that $f_{n}=0$ for almost all n, Theorem 1 gives a sequence $b_{n}, n=1,3, \ldots$ of real numbers such that

$$
\begin{equation*}
f_{n}(x)=\left(b_{n} x+1\right)^{n} \quad \text { or } \quad f_{n}(x)=\max \left(\left(b_{n} x+1\right)^{n}, 0\right) \tag{7}
\end{equation*}
$$

for almost all $n \in 2 \mathbf{N}_{0}+1$. Then by (7) and Bernoulli's inequality, (and since $\left.\max \left(f_{n}(x), f_{n}(-x)\right) \geq 1\right)$

$$
1+n\left|b_{n}\right| \leq \dot{\left(1+\left|b_{n}\right|\right)^{n} \leq M, \quad\left(n \geq n_{0}\right), ~}
$$

where (say) $M:=\max (f(1), f(-1))+1(>1)$. Thus

$$
\begin{equation*}
\left|b_{n}\right| \leq \frac{M-1}{n} \quad\left(n \geq n_{0}\right) \tag{8}
\end{equation*}
$$

This implies

$$
\lim _{n \in 2 N_{0}+1} b_{n}=0
$$

and (since $\left|b_{n} x\right|<1$ for $n \geq n(x)$)

$$
f(x)=\lim _{\substack{n \in 2 N_{0}+1}} f_{n}(x)=\lim _{\substack{n \rightarrow 2 N_{0}+1}}\left(1+b_{n} x\right)^{n}
$$

for all $x \in \mathbf{R}$. Next we want to show that f is a solution of (2). Fixing x and putting $M^{\prime}:=M-1(\geq 0)$ we see that for sufficiently large n the value $1+b_{n} x$ is positive and that

$$
\left(1-\frac{M^{\prime}}{n}|x|\right)^{n} \leq\left(1+b_{n} x\right)^{n} \leq\left(1+\frac{M^{\prime}}{n}|x|\right)^{n}
$$

Thus

$$
\begin{equation*}
0<\exp \left(-M^{\prime}|x|\right) \leq f(x) \leq \exp \left(M^{\prime}|x|\right) . \tag{9}
\end{equation*}
$$

Put $g_{n}(x):=\left(1+b_{n} x\right)^{n}$ and fix $x, y \in \mathbf{R}$. Then $g_{n}(x+y) \neq 0$ for almost all n. Thus we may form the expression $g_{n}(x) g_{n}(y)\left(g_{n}(x+y)\right)^{-1}=:\left(1+c_{n}\right)^{n}$, where

$$
c_{n}=\frac{b_{n}^{2} x y}{1+b_{n}^{n}(x+y)}
$$

But $\left|c_{n}\right| \leq M^{\prime \prime} n^{-2}$ for some constant $M^{\prime \prime}$ depending on x and y. This implies $\lim _{n \rightarrow \infty}\left(1+c_{n}\right)^{n}=1$ as can be seen from the following

Lemma. Let $\left(a_{n}\right)$ be a sequence of real numbers such that $\left|a_{n}\right| \leq C n^{-2}$ for all n. Then $\left(1+a_{n}\right)^{n}$ converges to 1 when n tends to ∞.

Proof. It is enough to use the estimate

$$
\begin{aligned}
\left|n \ln \left(1+a_{n}\right)\right| & =\left|n\left(a_{n}-a_{n}^{2} / 2+a_{n}^{3} / 3-+\ldots\right)\right| \\
& \leq\left|n a_{n}\right|\left(1+\left|a_{n}\right|+\left|a_{n}\right|^{2}+\ldots\right) \leqslant\left|n a_{n}\right| \frac{1}{1-\left|a_{n}\right|}
\end{aligned}
$$

which is true for large n. It clearly shows that $\lim _{n \rightarrow \infty} n \ln \left(1+a_{n}\right)=0$, as desired.

Thus $g_{n}(x) g_{n}(y)\left(g_{n}(x+y)\right)^{-1}$ tends to 1 for n tending to x. But this means that f is a solution of (2). By (9) his solution is bounded from above on (any) bounded interval. This implies ([1, p. 29]) that there is some constant b such that

$$
f(x)=\exp (b x) \quad(x \in \mathbb{R})
$$

Moreover, by using the logarithmic series again, it can be seon that the sequence ($n b_{n}$) converges (with b as its limit).

We have the following.
Theorem 2. Let $\left(f_{n}\right)_{n \in \mathbb{N}_{0}+1}$ be a sequence of solutions of $\left(3_{n}\right)$. Thrn the limit

$$
f:=\lim _{\substack{n \rightarrow \infty \\ n \in 2 N_{0}+1}} f_{n}
$$

exists if, and only if, either $f_{n}=0$ for almost all n (and $f=0$) or if there is a sequence $\left(b_{n}\right)_{n \in \because N_{0}+1}$ of real numbers such that

$$
b:=\lim _{\substack{n \rightarrow 2 N_{0}+1}} n b_{n}
$$

exists and f_{n} is of one of the forms (7) (and $f(x)=\exp (b x)$ for all $\left.x\right)$.
One part of the proof has been given above. The other part is obvious.
Let us point out the following: (3_{1}) admits continuous nondifferentiable solutions. This is not the case for solutions of $\left(3_{n}\right)$ when $n \geq 3$. Each continuous solution in this case is $(n-1)$-times differentiable. But there are solutions which are not n-times differentiable.

Furthermore we have the following.

$(1+x / 3)^{3}$

$\max \left(0,(1+x / 5)^{5}\right)$

$$
(1+x / 7)^{7}
$$

Figure 1

Remark. If, for $p>0$ and $x \in \mathbb{R}$, we define $x^{[p]}:=\operatorname{sign}(x)|x|^{p}$, we may consider

$$
\begin{equation*}
f\left(x+y f(x)^{[1 / p]}\right)=f(x) f(y) \tag{p}
\end{equation*}
$$

Then, since $x \longmapsto x^{[p]}$ is a strictly increasing power function mapping \mathbb{R} bijectively onto itself and because of $x^{[p q]}=\left(x^{[p]}\right)^{[q]}$ Theorem 1 may be generalized to hold in this situation, too. Theorem 2 also holds in this new setting. In detail we may formulate the following.

Theorem 1 '. A continuous $f: \mathbb{R} \rightarrow \mathbb{R}$ is a solution of $\left(3_{p}\right)$ (p a positive real number) if, and only if, f has one of the mutually exclusive forms:

$$
\begin{array}{lc}
\left(4_{p}\right) & f(x)=(a x+1)^{[p]} \quad(a \in \mathbb{R}) \tag{p}\\
\left(5_{p}\right) & f(x)=0, \\
\left(6_{p}\right) & f(x)=\max \left((a x+1)^{[p]}, 0\right) \quad\left(a \in \mathbb{R}^{*}=\mathbb{R} \backslash\{0\}\right)
\end{array}
$$

Theorem 2'. Let $\left(p_{n}\right)_{n \in \mathbb{N}}$ be a sequence of positive real numbers such that $p_{n} \rightarrow \infty$ as $n \rightarrow \infty$, and let $\left(f_{n}\right)_{n \in \mathbb{N}}$ be a sequence of solutions of $\left(3_{p_{n}}\right)$. Then the limit $f:=\lim _{n \rightarrow \infty} f_{n}$ exists if, and only if, either $f_{n}=0$ for almost all n (and $f=0$) or if there is a sequence $\left(b_{n}\right)_{n \in \mathbb{N}}$ of real numbers such that

$$
b:=\lim _{n \rightarrow \infty} p_{n} b_{n}
$$

exists and such that, for almost all $n, f_{n}(x)$ is of one of the forms $\left(b_{n} x+1\right)^{\left[p_{n}\right]}$ or $\max \left(\left(b_{n} x+1\right)^{\left[p_{n}\right]}, 0\right)$. Furthermore, in this case, f is given by $f(x):=$ $\exp (b x)$.

To illustrate the behaviour of certain sequences $\left(f_{n}\right)$ we include two figures. In figures 1 and 2 we have $b_{n}=1 / n$ and $b_{n}=1 / n^{2}$ respectively resulting in the limit functions $\exp (x)$ and 1.

Figure 2

References

[1] J. Aczél and J. Dhombres, Functional equations in several variables, Cambridge University Press, Cambridge, 1989.
[2] J. Aczèl and S. Golăb, Remarks on one-parameter subsemigroups of the affine group and their homo and isomorphisms, Aequationes Math. 4 (1970), 1-10.
[3] N. Brillouët-Belluot, On some functional equations of Golgb-Schinzel type, Aequationes Math. 42 (1991), 239-270.
[4] S. Goląb and A. Schinzel, Sur l'équation fonctionnelle $f[x+y f(x)]=f(x) f(y)$, Publ. Math. Debrecen 6 (1959), 113-125.

Angewandte Analytische Meteorologie
Universität Wien
Hohe Warte 38
A-1190 Wien, Austria
Institut für Mathematik
Karl-Franzens-Universität Graz,
Heinrichstrasse 36
A-8010 Graz, Austria

[^0]: Received February 28, 1994.
 AMS (1991) subject classification: Primary 39B12, 39B22.

