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O N T H E S U P E R S T A B I L I T Y O F T H E G E N E R A L I Z E D 

O R T H O G O N A L I T Y E Q U A T I O N IN E U C L I D E A N S P A C E S 

J A C E K CHMIELIŃSKI 

Abstract. We consider a class of approximate solutions of the generalized 
orthogonality equation in E" (n > 2). We prove that this class coincides with 
the class of solutions of the equation, i.e., the superstability of the generalized 
orthogonality equation holds. 

1. Introduction. Let E be an inner product space ("xoy" stands for the 
inner product of x and y). In 1931 E.P. Wigner [9] considered the functional 
equation 

\T(x) o T(y)\ = I a; o y\ for x,y £ E 

with the unknown function T : E —> E. This equation is referred to as 
the generalized orthogonality equation. In the present paper, however, we 
are not interested in true solutions of this equation (for them we refer to 
[7], [1], [2], [8]) but in approximate ones. Defining the class of approximate 
solutions of the generalized orthogonality equation we follow the method of 
D . H . Hyers applied originally to the Cauchy equation in [6]. Namely, for 
fixed s > 0, we investigate the class of solutions of the functional inequality 

I \T(x) o T(y)\ - \x o y\ \ <e for x,y £ E. 

It turns out (see [3]) that in the case where E is a real Hilbert space for each 
solution of the above inequality T , we may choose T* - a true solution of the 
generalized orthogonality equation such that the difference between T and 
T* is uniformly bounded by a constant (namely, by y/z). In other words, 
we may prove the stability of the generalized orthogonality equation in the 
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case of a real Hilbert space. In this paper we deal with the case where E 
is a finite-dimensional Euclidean space R n (with n > 2). Using a method 
different from that applied in [3] we obtain, in this particular case, a stronger 
result. What we are going to prove is the superstability of the generalized 
orthogonality equation. It means that the class of solutions of the functional 
inequality 

(1) I \T(x)oT(y)\ -\xoy\\<e for x,yeRn 

coincides with the class of solutions of the equation 

(2) \T(x) o T(y)\ = |x o y\ for x,yeRn. 

2. Preliminary results. We begin with a lemma which apparently is 
not connected with the generalized orhogonality equation. However, we will 
strongly use this lemma in the proof of a proposition that follows. 

L E M M A 1. Fix n>2 and e > 0. For each rj > 0 there exists kQ € N such 
that for any k > ko, if the vectors a,u\,U2,... , « n - i € R n \ {0} satisfy the 
conditions 

(3) i-JL<\\Ui\\* <1 + JL for i = l , 2 , . . . , n - l , . 

(4) \uiOUj\<— for i J = 1,2,... , n - 1; i ^ j, 

(5) l a o t t i l ^ r for i = 1,2,... , n — 1, 

then: 

a) vectors U\,... ,un-i are linearly independent and hence H := l i n{u i , 
. . . , « n _ i } is an (n — l)-dimensioiiai subspace in Kn; 

b) |cosj4(a,^| > 1 — 77, where t denotes the line in R n which is the 
orthogonal complement of H and A(-, •) stands for the angle. 

P R O O F . 1. To begin with we prove a). Consider the Gram determinant 
for vectors « i , . . . u n _ i : 

W(ui,... , u „ _ i ) =det 

| | « l | | 2 « i O « 2 . . . UlOUn-i 

U2OUi \\U2\\2 . . . U 2 ° « n - 1 

L t t n - l ° « l M n - 1 ° « 2 ••• l l u n - l | | 2 
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B 
, * , 

+ E (-l)''(u\ 0 ("2 0 «/(•>)) •...'•(Un-1 ° «/(„-!))• 
/€Per{l n-1} 

'/#'"! 

Per { 1,... , K — 1} is the set of all permutations of the set { 1 , . . . , n — 1} and 
/ / denotes the number of inversions of a permutation / . Suppose that k is 
large enough that (1 - p-) > 0. From (3) we have 

(6) M | > ( l - - 1 as fc^oo. 

From (3) and (1) we get 
(7) | t f | < ( ( „ _ i ) ! _ i ) ( i + ^ ) " ~ \ . L _ o as A r ^ o o . 
Formulae (6) and (7) imply that, for a sufficiently large k, there is M l > \B\ 
and hence 

U ' ( , « „ . , ) = A + 11 ± 0, 
i.e., M I , . . . ,un-\ are linearly independent. 

2. Take an un € E " such that (. — l in{M n } and | |? i n | | = 1. We have a 
unique decomposition 

a = h + /, with l> e II, I e C 

and, moreover, there exist ,£„_i ,£„ € R such that 

/* = 6 « 1 + . . . + ^ n - l M „ - l , 'I = CnUn. 

Using (3) and (1) wc obtain 

n—1 ?i—l 

II«II2 >IHI2 = h o h = ii«,ii* + . . . . + u 2 + E E ° u> 
i=i i=i 

>tfl l«i. l l 3 + . . . + e 2 - , l l«n- i | | 2 - E E 
t=i j=i 

j=i j=i 

9 - Annates. 
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Defining f := max{|£i| , . . . , |£„_i |} we get 

(« + . . . + « - , ) ( ' - ^ ) > « J ( . - ^ ) 
and 

n—1 n—1 
£ 

i=l j=l 

which enable us to continue the previous approximation so thus we get 

W 2 > e 2 ( l - ^ - ( n - l ) ( n - 2 ) ^ ) . 

Denoting 

¥ < * ) : = ( l - £ - ( » - l ) ( » - 2 ) £ ) 

we have, for A; sufficiently large, 

{< -jteL 

and then 

(8) K l | + . . . + | t ^ 1 , < ( . _ , ) f s f c ^ f c ! ! . 

As | | / i | | 2 = aofcwe get, using (5), 

||fc||2 = 6 « ° « i + • • • + * n—10 O ^n—1 

< l 6 l | o o « l | + . . . . + | f n - l | | o o t ł B _ 1 | < (|6l + --.+ lf»^l| 

which, together with (8), implies 

We have 

( a o U n ) 2 = ( / o U n ) 2 = | | / | | 2 = | | a | | 2 - | | / i | | 2 

and then 
cos2 A(a,l) = cos2"A(a,un) = = 1 - jj^jjj• 

e 
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Now, (9) implies 

cos2 A{a,l) > 1 - J^L~l) . 

Since <p(k) —»• 1 as k -* oo, the above inequality means that |cos>t(a,£)| 
can be arbitrarily, close to 1 provided that k is sufficiently large. This is 
equivalent to the assertion of the lemma in point b). • 

PROPOSITION 1. If T: R" R n (n > 2) satisfies (1), then: 

(i) ||s||2 - s < |m^)ll 2 < ll*ll8 + e for * € R", 

(ii) T(z) = 0 i = 0, 

(iii) for each i C R " there exists a function ftx : R —> R such that, for 
each A € R, T(Xx) - fix(X) • T(x) and \nx(X)\ -» oo as |A| -+ oo for A € R, 

(iv) T(x)±T(y) xLy. 

PROOF. 1. To prove (i) we need only to put x = y in (1). Now suppose 
T(x) = 0. By (1) we have for an arbitrary y € R n that \x o y\ < e. Taking 
y = kx we get A:||x||2 < e, for an arbitrary fc, which implies x = 0. Thus we 
have proven "=>" in (ii). 

2. Now, let us discus (iii). At first, consider the case where x ^ 0 and 
• A 0. Suppose that T(x) and T(Xx) are linearly independent; thus we 
^ would be able to set 

(10) I cos A(T(x), T(Ax))[ = 1 - u for some u > 0. 

Take v\,... ,vn-i € R n , ||t>i|| = . . . = | |v n - i | | = 1 such that {x,v\,..., 
vn-i} forms an orthogonal basis in R**. For any k € Nandz,j = 1,2,... ,n— 
1; t' ^ j we have 

kpi o x = 0, &t>,- o Ax = 0, kvi o = 0 

and so, by inequality (1), we get 

\T(kvi)oT(x)\<£, 

(11) \T(kvi)oT(Xx)\<e, 

\T(kvi)oT(kvj)\ <e 

for k € N; t', j' = 1,... , n — 1; t ̂  j. If we denote (with a fixed k) 

a := T(x); a', := T(Ax); :=. ^T(ib»i) for i = 1,... , n - 1, 
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then we may write (11) in the form 

s s • 
0 a| < - , [iii o «' | < j [iii o < j-j 

for i,j — 1,.,. ,n — 1; i ^ j. Moreover, from (i) 

i - | r < I N I 2 < i + ^ -

Thus we may apply Lemma 1 for the system {«, ?'i«• • • « } a » ( l for 
{ o ' , M ] , . . . ,M„_I} as well. If (. denotes 1-dimensional orthogonal comple­
ment of the subspace l in{?t] , . . . , ' «„_]} , then choosing k sufficiently largo 
we will get | cos/1(«, £)| and | c o s a r b i t r a r i l y close to 1 which implies 
that I cos A(a, a')\ = | cos A(T(x), T(Xx))\ is arbitrarily dose to 1 as well. Hut 
this contradicts (10), whence T(x) and T(\x) have to bo linearly dependent. 
Having proved the implication "=>" in (ii) we know that T{x) ^ 0; thus wo 
can choose / t X (A) G R such that T(Xx) = /<X(A) • T(x). If |A| — oo, then 
| |A.T | | —»• oo and - by (i) - | |T(A.T) | | —*• oo as well wliich implies | / i R ( A ) | — oo. 
We have proved (iii) for x ^ 0 and A ̂  0. 

3. Now we consider (iv) beginning with the part "x o y = 0 => T(x) o 
T(y) = 0". At first, wo consider the case x ^ 0. If x o y = 0, then, for each 
A; G N , we have kx o y = 0 so, from (1), wo derive \T(kx) o T(y)\ < s. Since 
x ^ 0, by what wo have proved above, T(kx) = /ix(k) • T(x). Thus wo may 
write, for each k G N , 

\T(x)oT(y)\< 
\fix{k)\ 

which yields T(x)oT(y) = 0. 
4. Now we can prove T(0) = 0. Indeed, by (1) for any 0 # x G R " and 

an arbitrary k G N there is \T(kx) o T(0)| < s. Since T(kx) = fix(k) • T(.r), 
we get 

for an arbitrary x / 0 which implies T(,T) O T(0) = 0. Now, if wo take an 
arbitrary orthogonal basis {x^,... ,.i-n} in R" , then the system of vectors 
{T(x\),... ,T(xn)} forms and orthogonal basis as well (see: point 3. in the 
proof and in (ii)). Thus we obtain that {T(0),T(. i- ,) , . . . ,T(xn)} is a 
system of n + 1 orthogonal vectors in R " which implies T(0) = 0. Thus the 
proof of (ii) has been completed. 

5. Now, we easily complete the proof of ";c o y = 0 T(x)o T(y) = 0'1 

in the remaining case x = 0. We may also finish the proof of (iii) taking 
Mx(0) = 0 and, in the case where x = 0, setting e.g., /to(A) = A. 
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6. We need only to prove 'T(ar) o T(y) = 0 => .z- o y = 0". Notice, that 
if T(x) o I^J/) = 0, then, for an arbitrary k € N , we have 

\T{kx)o T(y)\ = \px{k)\ • \T(x) o T(y)\ = 0 

and then, by (1), we have, for any k (EN, \kx o y\ < e, whence 

\x o y\ < j- —> 0 as k —• oo 

so x o y = 0. We have completed the proof of (iv) and the proof of the whole 
proposition as well. • 

Let us emphasize that in proofs of points (ii), (iii) and (iv) we essentially 
used the fact that we deal with the finite-dimensional space. 

PROPOSITION 2. If T : R " -+ R N satisfies (1) and 2 < k < n, then: 
(a) vectors x\,... , x^ are linearly independent in R " if and only if their 

images T(x^),... ,T(x^) are linearly independent; 
(b) T transforms a k-ditnensional subspace V = l in{a ' i , . . . , x^} into the 

k-dimensional subspace V' = l in{T(a; i ) , . . . , T(a:j..)}; 
(c) in particular, the image of a plane in R " is contained in another plane 

and, similarly, the image of a line in Kn is contained in a line. 

The proof of this proposition runs exactly in the same way as the ones of 
Propositions 1 and 2 hi [4]. What we essentially need to follow those proofs 
are properties (ii) and (iv) established in Proposition 1 of the present paper. 

We end this section with two easy lemmas. 

L E M M A 2. Suppose that TUT2 : R N R " (n > 2) are solutions of (I) 
with constants on the right hand sides^ and Ei, respectively. The composi­
tion T :— TiT\ satisfies the inequality (1) with the constant e := €i + So. 

We omit an easy proof of this lemma as well as that one of the following 

C O R O L L A R Y 1. The composition of a solution of (1) with a solution of 
the (generalized) orthogonality equation is also a solution of (I) (with the 
same s). 

L E M M A 3. IfT : R ' 1 -> R N (n > 2) satisfies (1), then for any x, y G R " 
we have 

lim ^•||r(fc*)ll-lin*»)ll = IWI-llwll-fc—>oo K 
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P R O O F . On account of Proposition l.(i) for an arbitrary k G N we'have 

\/lWI2 - £ • - p <pl | r ( te) l l •lint»)ll 

s ^ P + ^^to l l ' + i . . 

It is obvious that if —> oo, then expressions on the right and on the left 
tend to | |x| | • \\y\\, whence so does the middle one. • 

3. Superstability. In this section we prove the main result of the paper. 

T H E O R E M 1. If T : R N R N (n>2) satisfies inequality (1), i.e., if 

I | r ( x ) o T(y)\ - |x o y\ | < e for x,y G R N 

(with a fixed e > 0), then T satisfies the generalized orthogonality equation 

\T(x)oT(y)\ = \xoy\ for x,y£Rn. 

In order to prove this theorem we need to state and to prove some partial 
results at first. We begin with the following 

PROPOSITION 3. Suppose that T : R N —• R N (n>2) satisfies (1). Then, 
for arbitrary x, y G R " \ {0}, one has 

|coSi4(T(a:),r(y))| = |coSi4(a:,y)|.; 

P R O O F . We fix x, y € R N \ {0}. Of course, for any k G N , 

cos A(x, y) — cos A(kx, ky). 

Moreover, since T preserves linear dependence of vectors and maps a nonzero 
vector into a nonzero one (Proposition l.(ii) , (in)), we may state that 

| C O S 4 ( T ( X ) , T ( J O ) | = \ cosA{T{kx),T{ky))\. 

Using inequality (1) for kx and ky and dividing by k2 we get 

||*|| -It/H • |oo8il(. ,y)| - ± - < l | | T ( f c x ) | | • | |T(*y)| | • | cos A(T(x),T(y))\ 

' < | | x | | . | M | - | c o s ^ ( x , j , ) | + ^ . 



Letting k —• oo we obtain, on account of Lemma 3, 

\\xl\.\\y\\.\coSA(x,y)\ = \\x\\.\\y\\.\cosA(T(x),T(y))l 

whence 

1 cos A(x, y)\ = I cos A(T(x),T(y))\. 

To facilitate further calculations we prove the following 

L E M M A 4. If T : R n —• R n (n > 2) satisfies inequality (1), then there 
exists an orthogonal automorphism <p such that 

(i) the composition T' := <pT satisfies (1) (with the same e); 
(ii) elements of the canonical basis in R n — C ] , . . . , e n are eigen vectors 

for T', namely 

(12) T'(ei) = A,e,- for a certain A,- € (0, \ /TT7], i = 1,... , n. 

P R O O F . If { e j , . . . ,en} is the canonical basis in R n , then - by Proposition 
l.(ii),(iv) - {T(e-i),... ,T (e„ )} forms an orthogonal basis in R n . We define 
an automorphism <p : R n —>• R n by 

V»(T( € j ) ) := \\T{ei)\\-ei for t = l , . . . , n . 

It is easy to prove (using Corollary 1) that tpT satisfies (1). From Proposition 
l.(i), (ii) we get 

0 < ||T(e,)|| < v / i T 7 for i=l,...,n. 

• 
Bearing in mind Proposition 2.(c), now we investigate the case n = 2. 

PROPOSITION 4. Let T : R 2 -»• R 2 satisfy (1) and the condition (12) as 
well. Then either 

T(x) = ±x for all x 6 R 2 

or 
T(x) = ±x for all x 6 R 2 . 

(Here i denotes the vector conjugate with a vector x, i.e., x = (x\, —x^) for 
x = (xt,x2)). 
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P R O O F . Of course, T(0) = 0 (Proposition l.(ii)) so for x = 0 the assertion 
is clear. 

1. We fix 0 ^ x G R 2 . According to Proposition 3, using (12), we get 

I cos / l(T(x) ,ei) | = | cos A(x, e\ )|. 

Thus we have proved that for a vector x G R 2 there exists a A G R such 
that either (a): T(x) = Ax or (b): T(x) = Xx. We consider sets A and 
B consisting of those vectors in R 2 for which the case (a) or (b) holds, 
respectively. Of course, vectors in lin t\U lin c2 belong to the intersection of 
A and B. The set R 2 := R 2 \ (lin eiU line2) is contained either in A or in B. 
Indeed, if there existed vectors x,y G R 2 and A,/t G R \ {0} such that 

T(x) = Xx and T(y) — [iy, 

then, by Proposition 3, we would have 

I cos A(x,y)\ = \ cos A(T(x),T(y))\ = | cos A(x, y)\, 

which means that x or y belongs to l ine iU lin e2 - a contradiction. 
2. From the above we may state that for some A : R 2 —* R there is either 

(a) T(x) = A(x) • x for all x G R 2 

or 

((i) T(x) = X(x)-x for all x G R 2 . 

In the case (a), using (1), we get 

I |A(x)x o A(x)x| — |x o x\ I < e for any x G R 2 , 

whence 

| A 2 ( x ) - l | - | | x | | 2 < £ for x G R 2 . 

In particular, taking an x ^ 0 and an arbitrary k G N , we have 

| A 2 ( f c x ) - l | - | | x | | 2 < ^ , 

whence 
lim A2(A;x) = 1 for i ^ O . 

k—»oo 
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Now we fix arbitrary x, y G R 2 such that x o y ^ 0 and an arbitrary k G N . 
From (1) we get 

I |A(x)x o A(fct/)A;j/| - |x o ky\ \ < e. 

Dividing by k and letting k —• oo we get 

I | A ( x ) | - l | . | x o j / | = 0, 

which yields |A(x)| = 1 for any x G R 2 ; in other words, in the case (a), 
T(x) = ± x for each x G R 2 . 

3. Proceeding analogously we may prove that in the case we have 
T(x) = ±x for each x G R 2 . • 

The above proposition together with Lemma 4 imply (without assuming 
(12)) the following corollary. 

C O R O L L A R Y 2. If T : R 2 -»• R 2 satisfies (1), then 

\\T(x)\\ = | |x|| for every x G R 2 . 

Now we are going to generalize the last corollary to the case of the spaces 
of higher dimensions. 

PROPOSITION 5. If T : R N R N (n > 2) satisfies the inequality (1), 
then 

\\T(x)\\ = \\x\\ for each x G R " . 

P R O O F . 1. For x = 0 the assertion holds trivially (Proposition l.(ii)). 
We fix an x € R n \ {0} and take an arbitrary 0 ^ y G (lin x ) 1 . We have, 
in particular, T{x) # 0, T(y) # 0 and T(y)±T{x) (Proposition l.(u),(iv)). 
Using Proposition 2.(c) we obtain 

T(lin{iRir i 4 ) ) g iroii}* 
whence, for a pair of reals ( A i , A 2 ) , there exists a unique pair ( A ' i , A ' 2 ) such 
that 

. T r IN + W\)" 1 wm+ 2 ITOII ' 
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We define a mapping T': R 2 —• R 2 by the formula 

T'(X) = A', 

where A = ( A i , A2) and A' = (A{, A 2 ) - according to the rule described above. 
2. We prove that the function T' is a solution of (1). Let A = (Ai ,A2), 

/ i = (ni,(i2) G R 2 be fixed and let 

x y x y 

\\x\\ \\v\\ Nl h\\ 

Then 
|w o v\ = \\1H1 + A2M21 = |A o / i | 

and 

\T(u)oT(v)\ = (Xi
 T W + X' T M \ o (u' T & 4- „' ^ ^ 

= | A V i + A V 2 I = | A ' o / i ' | = | T ' ( A ) o T ' ( M ) | . 

Since T satisfies (1), 

I |T '(A) 0 T V ) | - |Ao /* | | = | |r(tt) o T(«) | - \u o i , | I < e, 

whence T' satisfies (1) as well. 
3. Now we may use Corollary 2. We have | |T'(A)| | = ||A||- for each 

A G R 2 . Let A = (||x||,0) € R 2 ; then, by the definition of function T ' , we 
have T'(A) = (| |T(x)||,0) and so 

x = = | |T'(A)| | = | |T(x)| | . 

• 
. P R O O F OF T H E O R E M 1. A l l we need to do now, is to combine the asser­

tion of Proposition 3 with the one of Proposition 5. • 

4. Final remarks. The following example shows that the superstability 
of the generalized orthogonality equation is no longer true in the general 
case. 

E X A M P L E 1. We consider the Hilbert space / 2 with the usual inner prod­
uct and define a mapping T : I2 -* / 2 by the formula 

T(x) = r ( x 1 , x 2 , . . . ) : = ( v ^ , x 1 , X 2 , . . . ) for x G I2. 

file:////1H1
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We have T(x) o T(y) = x o y + e so T satisfies (1). On the other hand, 
T ( 0 , 0 , . . . ) = (y/e, 0 ,0 , . . . ) , whence T cannot be a solution of the generalized 
orthogonality equation as for each such solution should be T(0) = 0. 

If we consider the orthogonality equation 

(13) f (x) o T(y) = x o y for x,y£Rn 

and the approximate solutions of it, given by 
/ 

(14) \T(x) o T(y) - x o y\ < e for x,y£Rn 

we obtain immediately that (14) implies (1) and then, as a corollary from 
Theorem 1, that T is a solution of (2). However, from (2) and (14) one can 
derive (13). That means the superstability of the orthogonality equation. 
We omit the details of the proof. 

Finally, let us remark that the superstability phenomenon is sometimes 
considered as something unnatural and caused by an improper definition 
of the class of approximate solutions (see [5, pp. 109-110]). Comparing 
both sides of (2) it would be, probably, more adequate to the structure of 
the inner product space, to deal with the division of values of those sides 
instead of the difference when defining approximate solutions. The author 
has made such an attempt and proved the stability, in the new sense, of 
the generalized orthogonality equation in the case of the Euclidean space R n 

(see [4]). Superstability does not hold in that case. 
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