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F U N C T I O N A L E Q U A T I O N S F O R 

H O M O G E N E O U S P O L Y N O M I A L S A R I S I N G F R O M 

M U L T I L I N E A R M A P P I N G S A N D T H E I R S T A B I L I T Y 

J E N S S C H W A I G E R 

Abstract. Some characterizations of homogeneous polynomials and of poly
nomials in general are given. This is done not only in the usual case but also 
for vector spaces over non archimedean valued fields. Moreover stability 
results in connection with these characterizations are given. 

1. Introduction. Let A be a commutative ring with identity element 1 
and let M and N be A-modules. For mappings / : M —• N (/ £ NM) and 
elements x € M the difference operator A s : NM -* NM is defined by 

A/(y) := / (x + y ) - / (y ) . 
X 

Ax a,...,x„ is defined by 

A := A o • • • o A • 

K . J . Heuvers ([4]) introduced the operators K n defined by 

Knf{xu...,xn):= A /(0) + ( - l ) n + 1 / ( 0 ) 
X l , x n 

and used them to formulate functional equations whose splutions a£e the 
diagonalizations of n-linear mappings with domain Mn and range"W. (It 
seems to be unclear whether in the most general case considered by K . J . 
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Heuvers these functional equations are characterizations of these homoge
neous polynomials.) 

The usual characterizations of homogeneous polynomials (see e.g. [5], 
[3]) use the difference operators AJJ = Ah,...,k- But in this case one only 
gets a characterization of those homogeneous polynomials which are the 
diagonalization of n-additive (= Z-n-linear) mappings. 

In this paper we present a characterization of n-homogeneous polynomials 
which are diagonalizations of 7i-linear mappings when the ring A is such that 
n! is a unit in this ring. This characterization is close to the usual one for 
diagonalizations of n-additive functions. Furthermore we investigate the 
stability properties of both those functional equations. This is clone not 
only in the usual case (i.e. for normed or topological vector spaces over the 
reals) but also for normed vector spaces over the p-adic completion Q p of 
Q with respect to the non-archimedean absolute value | | p . Regarding the 
latter case (even for A — Z) relatively little seems to be known (see [2]). 

J . Tabor ([9]) considered stability theorems in connection with R-linear 
functions. He presented his results at the 3 0 t n ISFE held in Oberwolfach in 
1992. At that occasion G . L. Forti pointed out to me that one of the author's 
earlier results ([7]) could be used for investigating the stability properties of 
R-linear mappings in the following way: 

Let V be a real vector space and let E be a Banach space over R. Then 
for any f : V —> E the following holds. If 

\\f(ax + /3y)- f(ax)- < e(a,/3) (x,y € V, a,0 € R) , 

wiiere e : R 2 —> R+ := { 7 € R | 7 > 0}, there is a unique R-linear function 
g : V —> E such that the difference f — g is bounded. 

Here one of the important points is that the bound e may depend on a 
and (i. In fact, Tabor's result was that for e not depending on the scalars 
a and /3 "superstability" appears, i.e. in this case / itself necessarily lias to 
be R-linear. Our future investigations will follow this line. This means that 
our stability results are presented in a form where the bound e may depend 
on the scalars involved. 

2. The stability of Heuver's equation. In order to formulate the 
results from [4] and to consider the stability properties of the functional 
equation involved we need some preliminaries. 

Let M, N, A,... be as in the Introduction. Let n be an integer, w. > 2. 
For a := (ctu... , a „ ) € An, x := (xu... ,xn) £ Mn, and / € JV A / let 

Ltf,„/(a:) := Laf(x) 

( 1 ) —1 
— -Ł/n - E v a S K"/(*'>' 
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where 

S„ := S := j a = (su...,sn) £ NJf| 0 < st < n - 1, \s\ := C s, = T* 

. — (X])... , .T ], . . . , X n , . . . , # j!), 
> — v — ' - v — ' 

s\ times s„ times 
n n 

as := J ] cv*1, s! := J ] a,-!, and L n := lcm{s!| 5 £ 5}. 
J=I t=i 

For convenience we also mention two formulae which will be useful in the 
future. 

T H E M U L T I N O M I A L T H E O R E M (see e.g. [8]). Let A,M,N be as above. 
Let g : M " — N be n-linear and symmetric. Then for x = («],..: £ 

and o = ( o j , . . . , Qjt) £ we have 

ST |^5>^ ^ = J^^atg(xt), 

where Tk := T := {/. = (*!,... ,t f c) £ Ng I E?=i = »}• 

In [4] one finds the explicit expression 

Kf{xu... ,xn) = Y,(-l)K-WlfG:Jej*i), 

where the sum runs over all nonempty subsets J of n := {1 ,2 , . . . , n} and 
I J\ denotes the cardinality of J. 

Among others, in [4] the following is proved. 

T H E O R E M 1. Let A be a commutative ring with identity and let M be a 
free A-module. Let A contain elements u and v such that y H-» uv(u + v)y 
is an injection from the A-module N into itself, and let, for some integer 
n > 2, (n — 1)! be a unit in A. Then, given a mapping f : M —• N, the 
condition 

(2) L a / = 0 (aeAn) 

implies that there is some n-linear mapping g : Mn —• N such that f is the 
diagonalization of g, i.e. f = g o 6n (with 6n(x) = (x,... ,x) £ Mn for all 
x £ M). 
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R E M A R K 1. In the case that n! is a unit in A - which implies that also 
(n — 1)! is a unit - the converse is also true: 

Let A be a commutative ring with identity such that for n £ N , n > 2, 
the number n! is a unit in A. Let M,N be arbitrary A-moduies, and let 
f : M —• N be the diagonalization of some n-linear mapping g : Mn —> N. 
Then f fulfils (2). 

P R O O F O F R E M A R K 1. In the case considered g may be supposed to be 
symmetric since / = g o 6n implies / = g' o 6n where g' defined by 

g'(xi,... ,xn) = ^ flf(ar»(1),..'_. ,*„(„)) 
' *€S„ 

(S n denotes the group of all permutations of n), is n-linear and symmetric. 
But then by the multinomial theorem (for the diagonalization of symmet

ric n-linear functions) and using the relation 

K / ( t / i , . . . , J / n ) = A /(0) 
n V i i — t V n 

A (g'°6n){0) = rig'(yi,... ,yn) 
yi,— ,Vn 

\ \ t = i / / t=i ses ' 

«=I s e s s - n 

which - when multiplied by Ln - is the desired result. • 

Now we consider a non trivial valuation | | on the field Q of rational 
numbers. For the following facts on valuations we refer to [6]. 

It is well-known (Ostrowski's theorem) that such a valuation is either 
equivalent to the usual absolute value or to one of the (non-archimedean) 
valuations | | p where p is some prime and | r | p = p~k if Q 9 r = phj,k £ 
Z,a ,6 £ Z ,a ,6 ^ 0, and (a,p) = (6,p) = 1 (and |0 | p = 0). Furthermore we 
may embed (Q, | |) in a complete valuated field (Q, | |). Normed spaces and 
Banach spaces may be defined as usual. 

We have the following. 

as well as 

(see [3]) we get 

/ n > 
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T H E O R E M 2. Let A be a commutative ring containing Q as a subring. 
Let Q 9 1 be the identity of A. Let furthermore M, N be A-moduIes and let 
(N, || ||) at the same time be a Banach space over the completion (Q, | |) for 
some absolute value | | of Q. Then, for f : M —> N and n>2, the condition 

(3) |W(*)| | < e(a) (x£Mn,aeAn), 

where e : An —> E + is some given function, implies that there is a (unique) 
A-n-linear and symmetric function g : Mn —• 'N, such that f - g o 6n is 
bounded. 

P R O O F . Using ( 3 ) for aj = m e A and a, = 0 for 2 < i < n gives 

(4) | | / (mx) - m n / ( x ) | | < e' (e' := e(m, 0 , . . . , 0 ) / \ L \ , x e M, m € A). 

Now we consider two cases. 
C A S E 1. | | is the usual absolute value (and Q = R) . In this case (4) for 

m 6 N , m > 2 reads as 

(4') < (x G M , m € N). 
m 

Fix m > 2 and put Vk(x) := ^ r * - Then by (4') 

I f(mmkx) f(mkx) 
\\<Pk+i(x) - <Pk(x)\\ = 

m('k+l)n m kn < 
m ( f c + l ) n -

Thus using standard arguments the sequence (y>/t(x) | A; € No) is Cauchy 
with 

(5) 
- Vk(x)\\ < £ ' ( r o _ n ( f c + 1 ) + • • • + m 

— n \ —1 

-n(fc+/) 
) 

- m n ( f c + i p > 

Denoting the limit function by <p and putting k = 0 in (5) we get for> —• oo 

(6) I M * ) - / ( * ) « < < e'. 

By the explicit formula for K n / as given above we see that 

K <pk(x\, • • • , xn) = m k n K / ( m f e x i , . . . , mhxn). 

11 - Annates. 
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Thus (3) (with x replaced by mkx) yields 

(7) l |L„V*(*)| | < 

Obviously limfc-xx, La(pk(x) — L a 9(a ; ) . Accordingly (7) implies Laip(x) = 0. 
By Theorem 1 this means that there is some symmetric and 7i-linear g such 
that <p = go6n. Moreover, using (6), we have that / — goSn is bounded. The 
uniqueness is shown in the usual way. If g' is another ?i-linear and symmetric 
mapping such that / — g' o 6n is bounded, then (g - g') o Sn is bounded and 
thus (by homogeneity) 0. But then (using the relation mentioned in the 
proof of Remark 1) 

0 = A (g-g')°6n(0) = n\{g-g')(yu... ,yn) 

implying g = g', as desired. 1 

C A S E 2. | | = | | P for some prime p. Then (3) foT ct\ = l/p and a, = 0 
for i > 1 leads to 

\\f{x/p) - p-nf(x)\\ < e' (e' := £ ( l / p , 0 , . . . , 0)/ | I | , x € M). 
Jit 

Multiplying this by | p n | and observing that now |p| = \p\p = l/p we get 

(4") \\P

nf(x/p) - f(x)\\ < £ (xeM). 
In this case we define <pk(x) '•= pnkf(x/pk). Similarly as in the first case we 
have 

e' e' I 

||yfc+i(aO- vfc(*)ll < ^pry a n d llv»fc+/(*) - v>*(*)ll < p n ( f c + 1 ) Y _ p -^ 
which shows that the sequence (cpjt(x)) is a Cauchy sequence and that for 
k = 0 and / —• oo (with ip := limfc_>oo <pk) 

e' 
M*) ~ /(*)« < ~—: 

pn — 1 

From this point on we may argue as in the first case. • 

Let us point out that restricting ourselves to the cases considered is no 
real restriction of generality since replacing a valuation by an equivalent one, 
up to a change in the function e, does not affect the validity of the condition 
(3). 
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The case n = 1 (i.e., the linear case) is not contained in this theorem. 
But we have the following generalization of the result mentioned in the 
Introduction. 

T H E O R E M 3. Let A be a commutative ring containing Q as a subring. 
Let Q ^ 1 be the identity of A. Let furthermore M,N be A-modules and 
let (N, || ||) at the same time be a Banach space over the completion (Q, | |) 
for some absolute value | | ofQ. Then, for f : M —• N the condition 

(8) \\f(ax + liy)-af(x)-Pf(y)\\<e{a,(3) {a,(3 € A, x,y € M ) , 

where e : A2 —»• R+ is some given function, implies that there is a (unique) 
A-linear g : M —> N, such that f — g is bounded. 

P R O O F . In the case of the (usual) archimedean absolute value the sub
stitution Q = /3 — 1 shows that the conditions for applying the well-known 
stability result of Hyers (see e.g. [5]) are fulfilled. Thus there is a unique 
additive function g such that / — g is bounded. Moreover g is given by 
g(x) = limic-HX)(f(kx)/k). We have to show that g is /1-linear. But (8) for 
(1 = 0 gives 

\\f(ax) - af(x)\\ < e' :=e(a ,0) 

which holds true for all a and all a;. Replacing x by kx, dividing by A; and 
letting tend k to oo then yields ||</(orx) — a^(x)|| = 0. This shows that g is 
homogeneous and thus ,4-linear. 

In the non-archimedean case | | = | | p we may use similar arguments. 
Again a = j3 = 1 leads to 

(8') \\f(x + y)-f(x)-f(y)\\<e' (x,y £ M), 

where e' = e(l, 1). It is easy to see by induction that this implies ||/(na;) -
n/(x) | | < (n — \)e' for all n 6 N . For n = p this means that 

||/(a0 - pf(x/p)\\ <(p- l)e' =: e" (x e M). 

Using this for x/pn yields 

\\pnf(x/pn) - Pn+'f(x/pn+x)\\ <\P

n\e" = e"/pn. 

Thus the sequence (gn(x)),gn(x) Pnf{%lpn) is Cauchy. Explicit bounds 
(as- ip the proof of the theorem above) show that the norm of f — gn is 
bounded by some constant independent of n. So / —g, g :=. I im n _,oo5n» ' s 

bounded. Finally (8') for pnx and pny shows that 

\\9n(x + y)-gn(x)-9n(y)\\<e'/pn 

\ 
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which for n —» oo implies that g is additive. This g is the only additive 
function such that / — g is bounded. In fact, the boundedness of / — h, h 
additive, implies that pnf(x/pn) — h(x) = pn(f(x/pn) - h(x/pn)) tends to 
0 for n —* oo. Thus h = g. 

This additive function, g, is also homogeneous. This follows from equation 
(8) multiplied by \pn\ for /? =s 0 and n —• oo, when a; is replaced by x/pn. • 

R E M A R K 2 . Inspecting the proof of the second part one sees that we have 
also proved the following: 

Let G be an abelian group which, for p prime, is uniquely divisible by p. 
Let E be a Banach space over Q p , the completion ofQ with respect to | \ p . 
Then for any f : G —> E the condition 

\\f(x + y):-f(x)-f(y)\\<e 

implies that there is a (unique) additive mapping g : G —> E such that f — g 
is bounded. 

This was shown for G = Q p in [2]. 

3 . A characterization of homogeneous functions arising f rom 
n-linear mappings. Corollary 3 from [3] may be formulated as follows. 

T H E O R E M 4 . Let H be an abelian semigroup and G an abelian group 
satisfying the condition: for each a 6 G the equation (n\)x = a has a 
unique solution x = a/(n!). Then a necessary and sufficient condition that 
f : H —• G has the form f = g o 6n, where g is symmetric and additive in 
each variable is that 

A / = n!/(u) for all ueH. 
u 

Our aim now is to get a characterization for functions / to be of the form 
/ = g o 6n, where g is n-linear and symmetric. 

We assume as above that A is a commutative ring with identity which 
is uniquely divisible by n!, where n > 2 is a fixed integer. M and N are 
>l-modules. For x = ( x j , . . . , x n ) C. Mn and s = ( s j , . . , ,sn ) e N " we use 
the notion 

A := A o • • • o A . 

For / : M —> N, a = ( a i , . . . , a „ ) € An, and y 6 M we consider the 
operator Ha,y defined by 

(9) na,yf(x) := n! 
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Then the following holds true. 

T H E O R E M 5. Let A, M, N, and n 
sufficient condition that f : M —* N 
Mn —> N is n-linear, is that 

(10) Ho,yf(x) = 0 (ae 

be as above. Then a necessary and 
has the form f = g o 6n, where g : 

An,x e Mn,ye M). 

P R O O F . At first we show that the condition is necessary. So, let / = gobn, 
where g is ?i-linear. As in the proof of Remark 1 we may assume that g is 
also symmetric. From [3] we know that 

(11) A (go6n)(y) - n\g(xu... ,xn). 

Using (11) , the definition of H a ) ! / , and the multinomial theorem one gets 
the desired result in a way similar to the corresponding part in the proof of 
Remark 1. 

The condition is also sufficient. For, suppose that (10) holds. Then for 
c*i = /3, a, = 0 for i > 2 we get 

(12) n!(/(/3.r ]) - /?"/(*,)) = 0 (fl e A,X] 6 M) 

since for this a we have Q s = 0 if s € Sn. Using (10) for x = ( a , . . . , a) with 
all the z,- = a G M we get (since A x » = A " for s € Sn) 

But / ( ( E ; = I " . ) « ) = ( E L i o O V W by (12) and 

Ws„ ' / (£T ' t£Un \i=l / i=l 

Thus 

(13) ((l>) / ( » ) ) = <> f f l ^ M , o £ T ) . 

By Lemma 1 below this implies 

»!/(<») = A / ( y ) , ( o , y G A f ) , 
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and by previous statements that / = go6n for some symmetric and n-additive 
function g (which in fact is given by <jr(a;i,... ,.?:„) = ( n ! ) - t A r , x„ f(y))-
We still have to show that g is n-linear. Fix a and x and write ax := 
( « i x i , . . . ,anxn). Let furthermore m = ( m i , . . . , m „ ) £ (Z • 1)" C An and 
ma := (m\a\,... ,mnan). By (10) and (9) 

\ \t=l / i=\ / «65„ 

Since f = g o 6n and n!</(a;') = Ar« f(y) for all ż G T we obtain 

" : ( / ( E ^ ) - E | « ^ ' ) ) = °-

Dividing by n\ and replacing a by ma leads to 

Putting in this equality a = (1 ,1 , . . . ,1) and then replacing x by ax we get 

/ ( ^2 mtotiXij = Y, 7 r m ' f f ( ( ^ ) ( ) -
\ i= i / ter l-

Equating the right-hand sides of these equations and using Lemma 1 again 
finally ends up with 

alg(xl) = g((axY) (t£T = Tn) 

which for t = ( 1 , . . . , 1) implies the homogeneity of g in each variable. • 

L E M M A 1. Let A be a commutative ring with identity containing a set U 
consisting of n (> 2) units and the 0-element of A. Let U be such that the 
set E := U — U of all differences u — v, u, v £ U is contained in U (A) U {0}, 
where U (A) is the group of units of A. Let M be an A-module. Then for 
any k > 1 the relation 

^ « ' x , = 0 (« = ( « i , . . . , Ufc) £ Ek) 

implies that all the xi £ M vanish. Here Lk := {I = (h,--- ,lk) £ N Q | 
/ I , . . . < n}. 
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P R O O F . The proof is by induction. For k = 1 the relation reads as 

^ u'ar, = 0 ( « € E). 
1=0 

Next we choose (which is possible) n + 1 distinct elements U Q , . . . ,un € E. 
Then we have a system of linear n + 1 linear equations 

n 

1=0 
n 

/=0 

. . . = 0 , 
n 

5>!,x/ = 0. 
/=o 

The determinant of the matrix C := («'•)<><><» ' s the Vandermonde deter-
«<'<» 

min ant Y\ {uj ~ ui) which by our assumptions is a unit in A. Thus C 
0<i<j<n 

has an inverse C - 1 in the ring of (n x n)-matrices over A- This implies that 
the above system of equations has only the trivial solutions. The induction 
process then uses that the original relation may be written as 

Fixing v and varying u then yields that the inner sums vanish for all v. Then 
we may apply our induction hypothesis. • 

Now we investigate the stability properties of (10) . 

T H E O R E M 6. Let A be a commutative ring containing Q as a subring. 
Let Q 9 1 be the identity of A. Let furthermore M, N be A-modules and let 
(N, || ||) at the same time be a Banach space over the completion (<Q>, | |) for 
some absolute value \ \ of Q. Then, for f : M —> N and n > 2, the condition 

(14 ) | | I W ( x ) | | < e(a) (x£ Mn,aeAn,yeM), 

where e : An —> R+ is some given function, implies that there is a (unique) 
A-n-Hnear and symmetric function g : M n —• N, such that f — g b 6n is 
bounded. 
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P R O O F . The proof completely follows the lines given in the proof of 
Theorem 2. For some estimates one has to use the following explicit formula 
for A x i , . . . , i , / which may be found in [5, p. 367]: 

A f(y) = E ( - l ) B - | J | / ( ! f + Z ; i € J * i ) -
Xl,...,~„ 

• 
4. The stability of some functional equations for polynomials 

and homogeneous polynomials in the non-archimedean case. In [5, 
Ch . XVII] the stability properties of the equations 

(15) A f(y) = 0, nAf{y) = 0, and Af(y) = n\f(x) 
* 1 , . . . , X „ + 1 x X 

are investigated when the underlying Banach spaces are real spaces, i.e., the 
archimedean situation is considered. Here we want to do the same in the 
non-archimedean case. In doing so we follow the lines as given in the above 
reference. 

Let I I = I |p be a fixed non-archimedean valuation of Q and Q p the 
completion thereof. Let furtheremore M be a vector space over Q and N a 
Banach space over Q p . This notations are held fixed in this chapter. 

Then we have the following generalization of Remark 2. 

T H E O R E M 7. Let n > 2 be a fixed integer. If f : M " —>• N satisfies for 
every x\,... , xn, y\,... , yn 6 M tiie system of inequalities 

(16) { , X i + y>-'-- - ~ /(*!>••• 
\ - f(xu... ,yi,... ,xn)\\ < Si ( l < i < n ) , 

where £j, 1 < i < n are positive numbers, then there exists a unique n-
-additive function g : Mn —• N such that f — g is bounded. Moreover, if f 
is symmetric, then g also is symmetric. The bound for f — g may be chosen 
to depend on e only. 

P R O O F . By (the proof of) Theorem 3, for every x\,... , xn € M the limit 

g(xu... ,xn)= lim pkf(x1/pk,x2,... ,xn) 
k—>oo 

exists, and with fixed x%,... , x n is additive in x\. Moreover, for some e' 

| | / ( x i , . . . ,xn) - g(xu... ,xn)\\ < e' 
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for all x j , . . . , x„ G M.. For every i = 2 , . . . , n and all x j , . . . , x n , ?/; G M we 
have by (16) 

| | / ( x i / / / ' , . . . , Xj + . . . , x „ ) - / ( x , / ; / ' , . . . , x , , . . . , x n ) -

- f{x\/pk,--- ,!/;,••• ,av)ll < £i> 
whence, on multiplying by | ; / ' | and passing to the limit as A; —*• oo, we 
obtain that g is u-additive. Uniqueness follows from the fact that (as in the 
archimedean case) a bounded n-additive function vanishes. 

The symmetry of g for symmetric / can be seen as follows. Let n G S N 

be fixed. Then the function h, li(x\,... ,xn) := g(xv^),... , x T ( n j ) , is n-
-additive. The symmetry of / then implies 

| | / ( x i , . . . , x n ) - / j ( x 1 ? . . . , x„ ) | | < e', 

whence by the uniqueness part of the theorem g - h. Since ir was arbitrary 
this means that g is symmetric. The bound for / — g can be given in the 
form e' = cpe where cp depends only on the prime p. This follows from the 
proof of Remark 2. • 

Generalized polynomials (with Z-/-homogeneous components) can be de
fined as the solutions of the first or second equation of (15). The following 
two theorems deal with the stability of these equations. 

T H E O R E M 8. Let, for fixed n G N 0 , the function f : M -> N satisfy (with 
certain e > 0) 

(17) || A / ( l 0 | | < £ (2/ ,x, , . . . , x n + 1 G M ) . 
Xl,...,X„ + i 

Then there exist symmetric k-additive functions Fk : Mk —> N, 0 < A; < n, 
unique except for Fo, such that 

(18) f — g is bounded, 

where 
n 

(19) j - p k o ^ 

P R O O F . For the existence proof one may use the arguments of [1] with 
almost no changes. These arguments can also be found in [5, Ch . XVII] . 
The uniqueness result follows from the fact that the boundedness of 

n 

h := £ Hk o h 
A.-0 
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implies that h is constant, when Ilk is fc-additive for all k. In our non-
-archimedean situation this can be seen by considering the values h(x/pm) — 
HQ = 5Zjt>i l/pmk{Hk 0 &k)(x) and letting tend m to oo. • 

T H E O R E M 9. Let, for fixed n 6 No, the function f : M -* N satisfy-(with 
certain e > 0) 

(20) \\nAf(y)\\<e (x,y£M). 

Then there exist symmetric k-additive functions Fk : Mk —»• A/, 0 < A; < n, 
unique except for FQ, such that 

(21) / - g is bounded, 

where 
n 

(22) g:=J2Fko6k. 

P R O O F . This is derived from the previous theorem in the same way as 
this was done in [5, Ch . XVII] for the archimedean case. • 

Finally we formulate a result which in the archimedean case is formulated 
as an exercise in the reference above. Details in this case are to be found in 
[1]. Compare also with Theorem 4. 

T H E O R E M 10. Let, for fixed n e N , the function f : M —• N satisfy (with 
a certain e > 0) 

(23) \\Af(y)-n\f(x)\\<e (x,y 6 M ) . 

Then there exists a unique symmetric n-additive function F : Mn -> N, 
such that 

(24) / - F o 6n is bounded. 

P R O O F . (23) implies that 

II n A / (y) | | =11 £ / ( * + » ) - A / M i l 
X X X 

<|| A / ( x + y) - n\f(x)\\ + || A / ( l / ) - n\f(x)\\ <2e. 
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Thus by the previous theorem we have symmetric fc-additive functions Fk, 
0 < k < n, unique up to Fo, such that for some e' 

( 2 5 ) \\f-J2Fko6k\\<e'. 

Put h:= f - £ f c Fk o 6k. Then \\h{y)\\ < e' for all y € M . The formula 

A . . . = X>i)B-'-"/(y + E j e ^ i ) 
X i , . . . , 1 , 

mentioned in the proof of Theorem 6 then leads to 

i=o \ J ' 
< 2n2e' = 2 n + V . 

But, as A£ Fit o 6k = 0 for k < n and A£ F n o £ n = n!F n (a ; , . . . ,x), we 
obtain A J h(y) = A " / (y ) - n\(FnoSn)(x). This together with (23) and the 
inequality above then shows that f — Fn o 6n is bounded. Obviously Fn is 
also unique. • 
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