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SELECTIONS OF BIADDITIVE SET-VALUED FUNCTIONS

JOANNA SZCZAWINSKA

Abstract. In this paper we prove that there exists a biadditive selection f
of a biadditive set-valued function F and a continuous selection when F is
lower semicontinuous.

We begin with some notations and definitions. Let n(Y) denote the set
of all nonempty subsets of a nonempty set Y. If ¥ is a normed space then
cc(Y) denotes the set of all compact and convex elements of n(Y').

DEFINITION 1. Let X,Y,Z be real vector spaces. We say that a set-
-valued function F : X — n(Z) (abbreviated to "s.v. function”) in the
sequel is additive iff

F(z+y)= F(2)+ F(y) for z,y€ X.
A s.v. function F: X x Y — n(Z) is called biadditive iff F is additive

with respect to each variable.

DEFINITION 2. The point zo of a subset C of real vector space X is called .
an algebraic interior point of C' (we write zg € core() iff for each z € X
there is a real positive ¢ such that

tr+(1-t)zg € C for |t| <e.

DEFINITION 3. We say that a point zg € C, C C X is an eztreme point
of C iff there are no two different points 2,y € C' and no number ¢t € (0,1)
such that ‘

zo =tz + (1 - t)y.
The set of all extreme points of C' is denoted by ExtC.
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DEFINITION 4. A set C C X is said to be a convez cone ifC+CccC
and tC C C for all t € (0, 00).

K. Nikodem in the paper [4] proved the following theorem.

THEOREM. Let X,Y be real vector spaces and C' be a convex cone in X.
Assume that F : C — n(Y) is an additive s.v. function, x¢ € coreC’ and p €
ExtF(z¢). Then there exists exactly one additive selection f : C' =Y of F
such that f(z¢) = p. In addition,

f(z) € ExtF(z) for ze€C.

The following lemma (N ikodem [4]) will be useful for us.

LEMMA. Let B and C be subsets of a real vector space. If p € Ext(B+('),
then there exists exactly ene point b € B and exactly one point ¢ € (' such
that b+¢ = p. Moreover, b € ExtB and ¢ € ExtC,ie. Ext(B+C) C ExtB+
ExtC.

Now, we shall formulate a theorem, analogue to Nikodem’s Theorem.

THEOREM 1. Let X,Y,Z be real vector spaces, C', D be convex cones
in X,Y, respectively, and F : C x D — n(Z) be a biadditive s.v. function.
Moreover, let z¢ € coreC, ¥y € coreD and p € ExtF(xg, y0). Then there exists
exactly one biadditive selection f : C x D — Z of F such that f(zo,%0) = p.

PROOF. Let U := CN(z9~C).If u € U then 2o —u € U. Fix any element
a € U. Since p € ExtF(zo,y0) = Ext {F(a, )+ F(x0 - a, Yo)}, there exist,
by Nikodem’s lemma, a unique point Pa € ExtF(a,yy) and a unique point
Pzo—a € ExtF(zo — a, Yo) such that

(L.1) P = Pa+ Pry-a
For the additive s.v. function F(a,-): D — n(Z), yo € coreD and the point

Pa € ExtF(a,yo), the assumptions of Nikodem’s Theorem hold. So there
exists exactly one additive selection f, : D — Z of F(a,-) such that

fa(yO) = Pa-

It holds for any a € U. Now, let us define a function go: U x D — Z as
follows:

90(a,y) := fq(il) for (a,y)eUx D.



229
It is easy to check that go is properly defined and
go(a,y) = fuly) € Fla,y) for («,y)e U x D.
Moreover,
go(a,z +y) = fa(2) + fu(y) = go(@, ) + go(a,y)  for ae€lU, =z,y€D.

Now, we shall show that go(a + b,2) = go(a,z) + go(b, ) for all z € D,
a,b € U such that a + b € U. Since p € Ext{F(«a,y) + F(zo — a,y0)}, there
exist exactly one a; € F(a, yo) and exactly one by € I'(x9 — @, yo) such that
p = @y +b;. Similarly p € Ext{F(b,y0)+ F(x0 — b, %0)}, whence p = az + b,
where ay € F(b,y0),02 € F(xg = b,y0) and p € Ext{F(«,y0) + F(b,y0) +
F(zg—a—b,y9)} so p = a3 + b3 + ca, where a3z € F(a,yo), b3 € F(b,yo) and
c3 € F(zg —a—b,yo). We get

p=a3+(ba+cz)=a, +b, ar,a3 € Fla,p), b1,b3+ c3 € F(xo — @, %),

whence, by the uniqueness of the representation (1.1), we infer that a3 =
@1 = pgu. In the same way we get that b3 = @ = p, and p,4 = a3+ b3. That
iS Pa + Pb = Pats. This means that

fa(yO) + fb(yO) = fa+b(y0)-

Since the fact that f, is a selection of F(«,-) and f; is a selection of F(b,-)
implies that f, + f, is a selection of F(« + b,-), and by the uniqueness of
selection passing through the point yg, we deduce that

Jaro(y) = fa(y)+ fuly)  for ye D

and

gola+b,9) = fars(y) = fa(¥)+ fily) = gola,y) + go(b,y)

fory € D, a,b € U such that a + b € U. So, we have proved that g is a
biadditive selection of F on the set U x D.

Now, we shall extend ¢o to a biadditive function defined on C' x D. Fix
any point & € C. Since zg € core(’, there exists an ¢ > 0 such that

ro+teeC for |tl|<e.

Let us take a number n € N such that 7]—1 < €. Then

1
——z 42y €C.
n
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Consequently

& @
— € xg — (' and — e C.
n n

It implies that £ € U. Put g(z,y) := ngo(,y). This definition is correct.
Indeed, if m € Nis such a number that o € U, then L = (l—;—l)-O+7—};-% €
g — C as well as = € C thus =2~ € U and

mmn mn

a x x
mgo (—,y) = mngy (——,y) = ngy (—-,y) .
m nm n

Moreover, the function g : C' x D — Z defined above is biadditive. Indeed,
let 2 € C, y € C, n € N be a number so large that £, L XY ¢ {1, Then

‘n' =n

4y

x 3
9(z +y,2) = ngo ( n ,3) = ngo (;, 3) + ngo (%, 3) =g(x,z)+ g(y, z).

Lastly, the function g is a selection of F. If z ¢ C,ye D, neNand
% €U, then

x x X x

9(z,y) = ngo (—l,y) €nl (;,y) c F(,—,y) +...+F (—,y) = F(a,y).
7 ! n

To end the proof we have to show that ¢ is a unique selection of I passing

through the point ((x9, ), p). So, assume that there exists G :CxD—2Z
biadditive selection of F" such that gy(zo, Yo) = p. Fix any a € U. Then

P = g1(z0,%0) = g1(a, %) + g1(2x0 — @, yo).

Since g1(a, o) € F(a,yo) and gy (zg—a, yo) € F(xo—a,yo), by the uniqueness
of representation (1.1), we have that

.(/l(“a 3/0) =DPa = fu(:’/ﬂ) = !](“, 3/0)-

Thus g1(e, ) = g(a,y0) for a € U. Since g1(a,-), f, are additive selections
of F(a,-) and g1(a, 1) = p, = Sfa(Y0), we deduce that

gi(a,y) = fu(y) =g(a,y) for y€D, a€l

(because the selection is unique). If e € ¢, n € N an + € U then

.(l a
a(9) =g (7.9) =ng (S9) =g(a,y)  for acC, yeD.

Hence g = g; on the set C' x D. This completes the proof. O
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REMARK 1. The last proof implies that
f(z,y) € Ext F(z,y) for (z,y9)€ Cx D,

whenever I : C'x D — conv(Z), where conv(Z) denotes the set of nonempty
convex subsets of Z. Indeed, if z € U and y € D, then go(2,y) € ExtF'(z, y).
Fix 2 € C, y€ D, n € Nsuch that £ € U. Then

g(x,y) = nge (%,y) € nExtF (%,y) C Ext <nF (%,y)) C ExtF(z,y).

TueorReM 2. Let X,Y,Z be real vector spaces, and C', D convex cones
in X,Y, respectively. Assume that F : C x'D — conv(Z) is a biadditive
s.v. function and zg € coreC',yg € coreD and p € conv[ExtF(zo,yo)]. Then
there exists a biadditive function [ : C x D — Z such that f(zo,%) = p
and

f(z,y) € conv[ExtF(z,y)] for (x,y) € C x D.

ProoF. The point p belongs to conv[ExtF(xg,¥0)], so there exist a
number n € N, points py,...,p, € ExtF(2o,y) and nonnegative numbers
AM,...y Ay such that Z?=1 Xi = 1land p =31, \ppi. By Theorem 1, there
exist biadditive functions f; : C' x D — Z for which f;(zo, %) = pi and

fi(z,y) € Ext F(z,y) . for (2,y)€CxD, i=1,...,n

It is casy to check that the function f:C x D — Z given by formula
f(%,y) = Z/\ifi(way) for (.’L’,y)ECvX D
i=1

is biadditive, f(zo,%0) = i, Aipi = p and f(z,y) € conv[ExtF(z,y)] for
all (z,y)e Cx D. . ' O

DEFINITION 5. Assume that X,Y are topological vector spaces and C' is
an open subset of X. We say that a s.v. function F': C — n(Y) is lower
semicontinuous (I.s.c.) at a point zg € C iff for any neighbourhood V of
zero in Y, there exists a neighbourhood U of zero in X such that

(5.1) Flzo)C F(z)+V  for z€xo+U.

We say that F is upper semicontinuous (u.s.c.) at xo € C' iff for every
neighbourhood V of zero in Y there exists a neighbourhood U of zero in X
such that

(5.2) F(2)C F(zo)+V for z€xo+U.

F is called continuous at z¢ € C iff it is both ].s.cv.‘ and 1'1.s.c‘. at zg.
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THEOREM 3. Let X,Y, Z be topological vector spaces and Z be locally
convex, C, D open convex cones in X,Y, respectively. A s.v. function A :
Cx D — ce(Z) is biadditive if and only if there exist a biadditive continuous
s.v. function L : C X D — cc(Z) and a biadditive function « : C x D — Z
such that

Alz,y) = a(z,y) + L(z.y) for (z,y)e C x D.

Proor. By Theorem 1, there exists a biadditive selection ¢ : C' x D — Z
of A. Let us define an s.v. function L: C x D — cc(Z) as follows:

L(z,y) := A(z,y) — a(z,y)  for (z,y)€ C x D.

Obviously 0 € L(z,y) for all (z,y) € C x D Fix any (20,90) € C x D. Let W
be a neighbourhood of zero in Z. L(zg, yg) is bounded, so there is a positive
integer n > 3 such that

2
—L(2o,y0) C W.
n

There exist a balanced neighbourhood U of 0 in X such that lzot+tuec,
:z:o +u € C for all v € U and a neighbourhood V of 0 in Y such that
nyo+ve D,yo+v e D forveV. Then

2
L(zo, y0) L( 7«0»3/0) + - L(lo,./o)

cL(®

2 -1
2o, Yo) + L( :1:0 + ————u ) + W

—l -1
= L(*——0 + “——u,10) + W = L(zo +u, -

-1
%)+ W

-1 1
CL(zo + u, z %)+ L(zo + u, Yo +v)+ W

=L(zo + u,y0 +v) + W,

where (u,v) € UxV. So, L(20,%) C L(z,y)+W for (z,y) € (20, y0)+ U x V.
Hence the function L is lower semicontinuous at (zo,y0) and L is Ls.c. in
C x D.

Since (‘a:o, 1) € C x D and C x D is open, there exist a balanced
nenghbourhood U of 0in X and a balanced neighbourhood V of 0 in Y such
that ‘—:co—uGC:co+u€CforuEU —yo—-—'"—veD ¥ + v € D for
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v € V. Let (u,v) € U x V. Then

. .
L(zo +u,y0 + v) CL(zo + u, %0 + v) + L (;370 = u,Y + v)

1 1
=L (n:lxo,yo-{-v) :L(xo,n: Yo + ny v)

n
‘ n+1 n+1 1 n+1
CcL (:1:0, Y + " v) + L (zo,;yo - v)

n+2 2
=L (1‘0, : yo) = L(zo,y0) + ;L(-"?o,yo)
CL(zo,y0)+ W.

So, L(zo + u,y0 + v) C L(zo, %) + W for (u,v) € U x V. Hence L is upper
semicontinuous at (g, yo). By the first part of the proof L is continuous in
C x D. W]

For the next theorem we need some Banach-Steinhaus-type theorems for
a bilinear function, which are probably known, however we will give them
here for convenience of readers.

DEFINITION 6. Let X,Y,Z be real normed spaces. A bilinear map 7T :
X XY — Z is called bounded iff there exists a real number M > 0 such that

IT(z9) IS Mzl -yl for (z,9)€ X xY.

The norm of a bilinear bounded map T is defined by the formula

WTl=  sup || T(=z,9)].
ERNMES!

A bilinear map is bounded if and only if it is continuous.

THEOREM 4. Let X,Y be Banach spaces and Z be a normed space.,
Assume that bilinear maps T, : X x Y — Z are continuous, n € N. If the
sequence {Ty(z,y)}, cy is bounded for all (z,y) € X x Y, then the sequence
{Il T 1} .en is bounded.

Proor. Let Ay := {(2,y) € X X Y : || Tu(z,y) ||[< k, n€ N}, ke N. It
is easy to verify that

X xY =] A
kEN »
The continuity of the maps T}, and the norm implies that sets Aj are closed,
k € N. Since X,Y are Banach spaces, we deduce by Baire’s theorem that
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X x Y is the second category set; this means that there exists a number
ko € N such that A, is not a nowhere dense set; in other words IntA;, # 0.
so there exist real numbers r; > 0,7, > 0 such that

cKy(zo,71) X clK2(yo,72) C Ag,

(where Ky isaballin X, KyisaballinY). If ||z -0 ||[< ryand || y—yo ||I<
72, then || Ty(z,y) ||< ko for all n € N. Fix (z,y) € X x Y such that = # 0

and y # 0. Since || ("—“rl +:z:0) — o ||= 7 and || (ﬂ-y—[rz + yo) - % ||_ s
one has

1T (n " +||_zn“) I ko

(u ur-""’)H Q

Ty _Tl'l'any _Tn(xo’y)
™1 ll=Il

SM( (u o ¥ 0¥ )“*”T (””"’-"’”)

T (—r +z ,—r2+yo)
"\l 0 |l

and

ITw(z, 9)l| =

|

ﬁ

i T (z07 ”y",,.2 + yo) - Tn(z07 yO)

||m|| il
for (z,9) € X XY such that z # 0,y # 0. Hence

}

4k
| T ll=  sup || Tu(z,9) |I< % for neN.
' fzli=llylii=1 T172

O

DEFINITION 7. A subset A of a normed space X is called linearly dense
in X iff the set

n.
{Z Aia;; a; €A, MER, i= 1,.};.*.,72; ne N}
i=1 o ] '

is dense in X.
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THEOREM 5. Let X,Y,Z be Banach spaces and Ay, A, be linearly dense
sets in X,Y, respectively. Assume thatT, : X xY — Z, n € N is a sequence
of bilinear and continuous maps. The sequence {Tn(2,9)},en is convergent
for all (z,y) € X X Y iff {T,(2,y)}nen is convergent for all (z,y) € Ay x Ay
and the sequence {|| T, ||}nen is bounded.

Proofr. If the sequence {T(z; y)}nen is convergent in X x Y then it'is in
Ay X A;. Since {T(z,y)}nen is convergent, the sequence {lIl Tnlz, ) ||} nen
is bounded for any (z,y) € X x Y. Hence, by Theorem 4, the sequence
{ll T ||}nen is bounded. B

Now we assume that {T.(z,y)}nen is convergent in A; X Ay “and
{ll Tw ||}nen is bounded by M. Fix any pair (zo,%) € X x Y and let a
be an element of the set A,. Then the map F, : Y — Z, given by the for-
mula F,(y) := Ty(a,y) for y € Y, is linear and continuous in Y. Moreover, -
the sequence {F,(y)}nen is convergent for any y € A, and {l Fr l|}nen is
bounded. Indeed, '

Il Full= sup | Fu(y)ll= sup || Tu(a,y) ||
llvii=1 llyli=1

< sup. ITwlllelllyll=M-|al, neN.
y =

So, by Theorem 16.8 ([3] p.156), we get the convergence of the sequence
{Fa(y)}nen for all y € Y. Hence, in particular, {Fa(y0)}nen is convergent.
Since a € A, is arbitrary, the sequence {T.(a,90)}nen is convergent for any
a € A

Let us define maps G, : X — Z as follows:

Gn(z) := Tu(z,y0) for z€ X, neN.

G are linear and continuous maps and the sequence {Gr(2)}nen is conver-
gent for any = € A;. Moreover, '

IGnll= sup Il Gale) IS M-I 3o, neN.

Hence, by the same theorem, the- sequ/ence_-_{Gn(m)}n, € N is convergent
for any z € Xy, in particular for z = zo. Consequently {T.(2o,¥0)}nen is
convergent. ' ‘ : - a

THEOREM 6. Let X,Y,Z,A,, A, be Jjust like in the last theorem. If a
sequence Ty, : X X Y — Z of bilinear and continuous maps is convergent

in 4 x Ay and the sequence {|| T, ||}nen s bounded then the function
T:X xY — Z given by

T(z,y):= Jim Tu(z,y) for (z,y)e X xY
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is a bilinear as well as continuous map and

T |<sup | Tn |l -
neN

Proor. Theorem 5 implies the convergence of the sequence {T,,(z, ¥)}nen

for all (z,y) € X x Y and hence, the correctness of definition of the map T.

Its bilinearity and continuity follow from the Theorem 48.4 ([1] p.139).
Letze X,yeYand ||z ||[<1,||y]|< 1. Then

| (2, 9) 1< 1| T2, 9) — Tul2,9) | + || Tu(z, ) |

SN T(z,y) = Talz,9) | +M Lz llll w |l
S ” T(x’y)_Tn(zsy) ” +M l '

for n € N, where M = sup,¢y || T || . By letting n — oo, we obtain
| T(z,y) ||< M for (z,y) € X xY, ||z ||< 1,] y||< 1. Thus
“ T ”= sup ” T(Il), y) ”S M = sup ” T, “ .
l=li<1,]lyli<1 neN

a

LEMMA 1. Let X,Y,Z be real vector spaces, C, D convex cones in X,Y,
respectively. Let f : C x D — Z be a biadditive function. Then there
exists a biadditive function f : X x Y — Z such that f(z,y) = f(z,y) for
(z,y) € C x D. If C, D are open then '

f(z,?/) = f(zlayl) - f(wz,'yl) - f(-"«'hyz) + f($21y2)'
where z = 2y — 23, Y= 41 — ¥2, 21,22 € C, 1, y2 € D.

PROOF. If C, D are cones then (C x D) — (C x D) = (C — C) x (D = D)
is a subspace of X X Y. Let us define a function fy on (C — C) x (D D) as
follows:

Jo(z,9) := f(z1, 1) — f(z2, 1) — f(21,92) + f(z2,92),

where z = z; —I2, Y= — Y2 wlaiZ €C,n,pp€D.

At first we shall show that the definition of fy is correct. Assume that
T=1x1—22 = 21—2 and y = y; —y2 where z¢,2,,21,20 € C and y;,y, € D.
Then 21 + 29 = 21 + 22 and

[f(z1,m) = f(=1,92) = f(z2,01) + f(z2, )]
= [f(z1,0) = f(21,92) — f(z2, ) + f(22,%2))
=f(z1 4+ z2,0) + f(z2 + z1,92) = f(Z2 + 21,1) — f(71 + 22, 12)
=[f(z1+ 22,01) — f(z2 + 21, 0)] + [f(22 + 21, 42) = f(21 + 22, 92)) = 0.
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The case when ¢ = 27 — 2y and y = 3 — Y2 = w —ug, (x1,20 € C,
Y1,y2, ur,uz € D) is similar. , ’

We shall check that fy is a biadditive map on (C' - C) x (D — D) to Z
and fo(z,y) = f(x,y) for (z,y) € C x D. Indeed, let r,z € C—~C and
y € D — D. Then there exist zy,2,,2,20 € C and %,Y2 € D such that
ST =2Ty = T2, Y=Y — Y2, 2 = 21 — 23. By defintion of fy

folz +2,9) =fo((z1+ 21) = (22 + 22), 11 — 12)
=flzr + 21,9) = f(21 + 21, 2)
~ f(z2 + 22, 51) + f(22 + 22, 52)
=[f(z1,91) = f(z1,92) = f(22, 1) + f(z2,32))]
+ [f(z1,m) = f(z1,12) = f(z2,91) + f(22, %))
=fo(z,y) + fo(z,y).
In the same way we éan prove the addivity of fo with respect to the second

variable. Finally, we shall check that fy is an extension of f. Let (z,y) &
C x D. Then (z,y) = (2z,2y) — (z,y) and

fO(zay) =f(‘21,2y)—f(7:,2y)—f(2z,y)+f(z,y) ;
=f(z,2y) = [f(22,9) - f(2,9)] = f(z,2y) - f(z,y) = f(=,y).

Let X7 be a subspace of X, and ¥; be a subspace of ¥ such that (C-C)s
Xi=Xand (D-D)®Y; =Y. So,if (z,y) € X x Y then

(z,y) = (z1+ 22,51 + 12), where 2, € C = C,z2 € X1,y; € D-D,y€Y,.

Let us define a function f: X x Y — Z as follows:

f(z,y) = fo(z1,11)-
It is easy to check that f is properly defined biadditive extension of f- O

REMARK 2. With respect to the above lemma we may assert in Theorem
3 that the biadditive function a is given on X x Y. Similarly in the next
theorem.

Now, we shall prove the following theorem, analogue to Theorem 2 from

[6].

THEOREM 7. Let X,Y be real separable Banach spacés, C,D be open,
convex cones in X, Y, respectively, and let Z be a real Banach space. Assume
that F : C x D — cc(Z) is a biadditive s.v. function, zo € C, yo € D and
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p € F(zo,y0). Then there exists a biadditive selection f : C'x D — Z of F
“such that f(zo,y0) = p. Moreover, if F is lower semicontinuous, then f is
‘continuous.

ProoF. Since F is compact and convex valued in Z, by the Krein-Milman
Theorem ([5])
p € F(zo,y0) = cl[convExt F(zo, yo))]-

Then for each n € N there is an element p, € convExt F(zg, yo) such that

1
” Pn—D ”< f,;

Theorem 2 guarantees the existence of biadditive fﬁnctiqns foiCxD—Z
such that

fn((l?anO) =Pn

and
fa(z,y) € convExt F(z,y) C F(z,y) for (z,y)e C x D.

The set C x D is an open cone in X x Y and the set (C x D) — (C x D)
is an open subspace of X X Y, whence

(CxD)—(CxD)=lin(CxD)=(C-C)x(D-D)=XxY.
By Lemma 1

fa(z,y) := fa(@i, 1) — fa(@2, 11) — fr(Z1,92) + fo(z2,92),

where £ = z1 — 23, ¥y = %1 — ¥2, 21,22 € C, #%,¥2 € D, is a biadditive map
from X x Y to Z and fu(z,y) = fu(z,y) for (z,y) € C x D.

Now, we assume that F is a lower semicontinuous s.v.function. For a
fixed z € C a function y — F(z,y) is additive and Q4-homogeneous on
D (see Lemma 5.1 in [4]). There exists a constant M(z) > 0 such that

| F(z,y) 1< M(z) || y ||, where || F(z,y) l|= sup{|| u [l € F(z,y)} for
y € D (see Theorem 4 in [7]). Then, for each z € C, the set

F(z,3)= | F(=,y),

yEX

where £ = {y € D; || y ||< 1} is bounded. By Smajdor’s theorem from {7]
there exists a constant M such that

sup || F(z,y) IS M| z}] for z€C.
yEX
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Let us take a point ¥ € D and let {rn}nen be a sequence of rational numbers
such that limy_,oo 7, =|| y || and | ¥ l< r for n € N. Since <+ e x,
|| F(z, L)IIKM ||z | forall n €N, z € C. Hence | F(z,y) |I< Mr. ||z ] .
Passing to the limit with n — oo, we get

(7.1) I Fz. < Miizlllyll for (a,9)€C x D.
Hence and by the relation f,(z,y) € F(z,y) we deduce that
(7.2) | fulz, ) IS M |z |||y . for (z,y) € Cx D, n€N.

For every z € X, the function f,(z,-): Y — Z is additive in Y and bounded
in some neighbourhood of any point of D, so by the Mehdi theorem (Theorem
4in [2]) fu(z,-) is continuous. Similarly, we get continuity of f,(-,y) for any
y € Y. Thus f, is a bilinear and continuous mapon X x Y.

Now, we shall show that the sequence {|| £, I}nen is bounded. Let us fix
(z,y) € XxY and 71,25 € C,y;,y, € D such that z = Ti—T2, Y= — Y.
Then :

Il fu(z,9) 1= || fa(zr,91) = fu(z1,92) = fulza, 1) + falz2,92) ||
SN falzn o) 1+ 1) falza,92) ||
+ “ fn($27 yl) ” + ” fTI(x2ay2) ”a

whence and by (7.2) we get

I FaCo, ) U< MU a iy I+ 2 w2 0+ 2 W9 ]+ 022 [ 92 1)-

Thus, by Theorem 4 the sequence {|| f, I} nen is bounded.
Let sets A and B be dense and countable in C and D, respectively. The
set

S:=AxXB= {(121,?/1),(932,92), e}

is dense in C' X D and linearly dense in X x Y. We choose a subsequence
{f>, }nen of the sequence {f,}.en convergent to the point (z1,y;). We are
able to do it because { (21,41 ) }nenis a sequence of elements of the compact
set F(zq1,y1). Next, we choose a subsequence of {f), }nen convergent to
(22,92), etc. Using the diagonal method we get the subsequence {fy, }ien
of {fn}nen convergent on S. The sequence {f,, }ren is convergent on the
lineary dense in X xY set § and the sequence {|| fn, ||}ren is bounded, so by
Theorem 5 it converges to some bilinear and continuous map f: X xY — Z.
For any (z,y) € C x D we have : ' '

f(z.9) € cllconvExtF(z,y)] = F(z,y).
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Therefore f := f |cxp is a selection of F' on the cone CxD.
If F:Cx D — cc(Z) is a biadditive s.v.function, then there exist a

biadditive function @ : X X Y — Z and a biadditive continuous s.v.function
L:C x D — cc(Y) such that

F(z,y) = a(z,y) + L(z,y) for (z,y)e Cx D

(cf. Theorem 3 and Remark 2). By the first part of the proof there exists
a bilinear and continuous function f : X x Y — Z such that flcxp.is a
“selection of L on the cone C' x D and ' '

f(zo, %) = p — a(xo,%0).

Then the function f; : X x Y — Z given by

filz,y):= a(z,y) + f(z,y) . for (z,y) € X x Y.
restricted to C' x D, is a biadditive selection of F satisfying the condition

 fi(zo, %) = a(20,%0) + f(20,Y0) = P

This completes the proof. O
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