SELECTIONS OF BIADDITIVE SET-VALUED FUNCTIONS

Joanna Szczawińska

Abstract

In this paper we prove that there exists a biadditive selection f of a biadditive set-valued function F and a continuous selection when F is lower semicontinuous.

We begin with some notations and definitions. Let $n(Y)$ denote the set of all nonempty subsets of a nonempty set Y. If Y is a normed space then $\mathrm{cc}(Y)$ denotes the set of all compact and convex elements of $\mathrm{n}(Y)$.

Definition 1. Let X, Y, Z be real vector spaces. We say that a set--valued function $F: X \rightarrow n(Z)$ (abbreviated to "s.v. function") in the sequel is additive iff

$$
F(x+y)=F(x)+F(y) \text { for } x, y \in X .
$$

A s.v. function $F: X \times Y \rightarrow n(Z)$ is called biadditive iff F is additive with respect to each variable.

Definition 2. The point x_{0} of a subset C of real vector space X is called an algebraic interior point of C (we write $x_{0} \in \operatorname{core} C$) iff for each $x \in X$ there is a real positive ε such that

$$
t x+(1-t) x_{0} \in C \quad \text { for }|t| \leq \varepsilon
$$

Definition 3. We say that a point $x_{0} \in C, C \subseteq X$ is an extreme point of C iff there are no two different points $x, y \in C$ and no number $t \in(0,1)$ such that

$$
x_{0}=t x+(1-t) y .
$$

The set of all extreme points of C is denoted by Ext C.
Received January 11, 1994 and, in final form, May 10, 1994.
AMS (1991) subject classification: Primary 26E25, 54C65.

Definition 4. A set $C \subseteq X$ is said to be a convex cone iff $C+C \subseteq($ and $t C \subseteq C$ for all $t \in(0, \infty)$.
K. Nikodem in the paper [4] proved the following theorem.

Theorem. Let X, Y be real vector spaces and C be a convex conc in X. Assume that $F: C \rightarrow \mathrm{n}(Y)$ is an additive s.v. function, $x_{0} \in \operatorname{corcC}$ and $p \in$ $\operatorname{Ext} F\left(x_{0}\right)$. Then there exists exactly one additive selection $f: C \rightarrow Y$ of F such that $f\left(x_{0}\right)=p$. In addition,

$$
f(x) \in \operatorname{Ext} F(x) \quad \text { for } \quad x \in C
$$

The following lemma (Nikodem [4]) will be useful for us.
Lemma. Let B and C be subsets of a real vector space. If $p \in \operatorname{Ext}\left(B+C^{\prime}\right)$, then there exists exactly one point $b \in B$ and exactly one point $c \in C$ such that $b+c=p$. Moreover, $b \in \operatorname{Ext} B$ and $c \in \operatorname{Ext} C$, i.e. $\operatorname{Ext}(B+C) \subseteq \operatorname{Ext} B+$ ExtC.

Now, we shall formulate a theorem, analogue to Nikodem's Theorem.
Theorem 1. Let X, Y, Z be real vector spaces, C, D be convex cones in X, Y, respectively, and $F: C \times D \rightarrow \mathrm{n}(Z)$ be a biadditive s.v. function. Moreover, let $x_{0} \in \operatorname{core} C, y_{0} \in \operatorname{core} D$ and $p \in \operatorname{Ext} F\left(x_{0}, y_{0}\right)$. Then there exists exactly one biadditive selection $f: C \times D \rightarrow Z$ of F such that $f\left(x_{0}, y_{0}\right)=p$.

Proof. Let $U:=C \cap\left(x_{0}-C\right)$. If $u \in U$ then $x_{0}-u \in U$. Fix any element $a \in U$. Since $p \in \operatorname{Ext} F\left(x_{0}, y_{0}\right)=\operatorname{Ext}\left\{F\left(a, y_{0}\right)+F\left(x_{0}-a, y_{0}\right)\right\}$, there exist, by Nikodem's lemma, a unique point $p_{a} \in \operatorname{Ext} F\left(a, y_{0}\right)$ and a unique point $p_{x_{0}-a} \in \operatorname{Ext} F\left(x_{0}-a, y_{0}\right)$ such that

$$
\begin{equation*}
p=p_{a}+p_{x_{0}-a} \tag{1.1}
\end{equation*}
$$

For the additive s.v. function $F(a, \cdot): D \rightarrow n(Z), y_{0} \in \operatorname{core} D$ and the point $p_{a} \in \operatorname{Ext} F\left(a, y_{0}\right)$, the assumptions of Nikodem's Theorem hold. So there exists exactly one additive selection $f_{a}: D \rightarrow Z$ of $F(a, \cdot)$ such that

$$
f_{a}\left(y_{0}\right)=p_{a}
$$

It holds for any $a \in U$. Now, let us define a function $g_{0}: U \times D \rightarrow Z$ as follows:

$$
g_{0}(a, y):=f_{a}(y) \quad \text { for } \quad(a, y) \in U \times D
$$

It is easy to check that g_{0} is properly defined and

$$
g_{0}(a, y)=f_{a}(y) \in F(a, y) \quad \text { for } \quad(a, y) \in U \times D
$$

Moreover,
$g_{0}(a, x+y)=f_{a}(x)+f_{a}(y)=g_{0}(a, x)+g_{0}(a, y) \quad$ for $\quad a \in U, \quad x, y \in D$.
Now, we shall show that $g_{0}(a+b, x)=g_{0}(a, x)+g_{0}(b, x)$ for all $x \in D$, $a, b \in U$ such that $a+b \in U$. Since $p \in \operatorname{Ext}\left\{F\left(a, y_{0}\right)+F\left(x_{0}-a, y_{0}\right)\right\}$, there exist exactly one $a_{1} \in F\left(a, y_{0}\right)$ and exactly one $b_{1} \in F\left(x_{0}-a, y_{0}\right)$ such that $p=a_{1}+b_{1}$. Similarly $p \in \operatorname{Ext}\left\{F\left(b, y_{0}\right)+F\left(x_{0}-b, y_{0}\right)\right\}$, whence $p=a_{2}+b_{2}$, where $a_{2} \in F\left(b, y_{0}\right), b_{2} \in F\left(x_{0}-b, y_{0}\right)$ and $p \in \operatorname{Ext}\left\{F\left(a, y_{0}\right)+F\left(b, y_{0}\right)+\right.$ $\left.F\left(x_{0}-a-b, y_{0}\right)\right\}$ so $p=a_{3}+b_{3}+c_{3}$, where $a_{3} \in F\left(a, y_{0}\right), b_{3} \in F\left(b, y_{0}\right)$ and $c_{3} \in F\left(x_{0}-a-b, y_{0}\right)$. We get
$p=a_{3}+\left(b_{3}+c_{3}\right)=a_{1}+b_{1}, \quad a_{1}, a_{3} \in F\left(a, y_{0}\right), b_{1}, b_{3}+c_{3} \in F\left(x_{0}-a, y_{0}\right)$,
whence, by the uniqueness of the representation (1.1), we infer that $a_{3}=$ $a_{1}=p_{a}$. In the same way we get that $b_{3}=a_{2}=p_{b}$ and $p_{a+b}=a_{3}+b_{3}$. That is $p_{a}+p_{b}=p_{a+b}$. This means that

$$
f_{a}\left(y_{0}\right)+f_{b}\left(y_{0}\right)=f_{a+b}\left(y_{0}\right) .
$$

Since the fact that f_{a} is a selection of $F(a, \cdot)$ and f_{b} is a selection of $F(b, \cdot)$ implies that $f_{a}+f_{b}$ is a selection of $F(a+b, \cdot)$, and by the uniqueness of selection passing through the point y_{0}, we deduce that

$$
f_{a+b}(y)=f_{a}(y)+f_{b}(y) \quad \text { for } \quad y \in D
$$

and

$$
g_{0}(a+b, y)=f_{a+b}(y)=f_{a}(y)+f_{b}(y)=g_{0}(a, y)+g_{0}(b, y)
$$

for $y \in D, a, b \in U$ such that $a+b \in U$. So, we have proved that g_{0} is a biadditive selection of F on the set $U \times D$.

Now, we shall extend g_{0} to a biadditive function defined on $C \times D$. Fix any point $x \in C$. Since $x_{0} \in \operatorname{core} C$, there exists an $\varepsilon>0$ such that

$$
x_{0}+t x \in C \quad \text { for } \quad|t|<\varepsilon
$$

Let us take a number $n \in \mathbb{N}$ such that $\frac{1}{n}<\varepsilon$. Then

$$
-\frac{1}{n} x+x_{0} \in C
$$

Consequently

$$
\frac{x}{n} \in x_{0}-C \quad \text { and } \quad \frac{x}{n} \in C
$$

It implies that $\frac{x}{n} \in U$. Put $g(x, y):=n g_{0}\left(\frac{x}{n}, y\right)$. This definition is correct. Indeed, if $m \in \mathbb{N}$ is such a number that $\frac{x}{m} \in U$, then $\frac{x}{n m}=\left(1-\frac{1}{m}\right) \cdot 0+\frac{1}{m} \cdot \frac{x}{n} \in$ $x_{0}-C$ as well as $\frac{x}{m n} \in C$ thus $\frac{x}{m n} \in U$ and

$$
m g_{0}\left(\frac{x}{m}, y\right)=m n g_{0}\left(\frac{x}{n m}, y\right)=n g_{0}\left(\frac{x}{n}, y\right)
$$

Moreover, the function $g: C \times D \rightarrow Z$ defined above is biadditive. Indeed, let $x \in C, y \in C, n \in \mathbb{N}$ be a number so large that $\frac{x}{n}, \frac{y}{n}, \frac{x+y}{n} \in U$. Then

$$
g(x+y, z)=n g_{0}\left(\frac{x+y}{n}, z\right)=n g_{0}\left(\frac{x}{n}, z\right)+n g_{0}\left(\frac{y}{n}, z\right)=g(x, z)+g(y, z) .
$$

Lastly, the function g is a selection of F. If $x \in C, y \in D, n \in \mathbb{N}$ and $\frac{x}{n} \in U$, then

$$
g(x, y)=n g_{0}\left(\frac{x}{n}, y\right) \in n F\left(\frac{x}{n}, y\right) \subseteq F\left(\frac{x}{n}, y\right)+\ldots+F\left(\frac{x}{n}, y\right)=F(x, y)
$$

To end the proof we have to show that g is a unique selection of F passing through the point $\left(\left(x_{0}, y_{0}\right), p\right)$. So, assume that there exists $g_{1}: C \times D \rightarrow Z$ biadditive selection of F such that $g_{1}\left(x_{0}, y_{0}\right)=p$. Fix any $a \in U$. Then

$$
p=g_{1}\left(x_{0}, y_{0}\right)=g_{1}\left(a, y_{0}\right)+g_{1}\left(x_{0}-a, y_{0}\right)
$$

Since $g_{1}\left(a, y_{0}\right) \in F\left(a, y_{0}\right)$ and $g_{1}\left(x_{0}-a, y_{0}\right) \in F\left(x_{0}-a, y_{0}\right)$, by the uniqueness of representation (1.1), we have that

$$
g_{1}\left(a, y_{0}\right)=p_{a}=f_{a}\left(y_{0}\right)=g\left(a, y_{0}\right)
$$

Thus $g_{1}\left(a, y_{0}\right)=g\left(a, y_{0}\right)$ for $a \in U$. Since $g_{1}(a, \cdot), f_{a}$ are additive selections of $F(a, \cdot)$ and $g_{1}\left(a, y_{0}\right)=p_{a}=f_{a}\left(y_{0}\right)$, we deduce that

$$
g_{1}(a, y)=f_{a}(y)=g(a, y) \quad \text { for } \quad y \in D, \quad a \in U
$$

(because the selection is unique). If $a \in C, n \in \mathbb{N}$ and $\frac{a}{n} \in U$ then

$$
g_{1}(a, y)=n g_{1}\left(\frac{a}{n}, y\right)=n g\left(\frac{a}{n}, y\right)=g(a, y) \quad \text { for } \quad a \in C, y \in D
$$

Hence $g=g_{1}$ on the set $C \times D$. This completes the proof.

Remark 1. The last proof implies that

$$
f(x, y) \in \operatorname{Ext} F(x, y) \quad \text { for } \quad(x, y) \in C \times D,
$$

whenever $F: C \times D \rightarrow \operatorname{conv}(Z)$, where $\operatorname{conv}(Z)$ denotes the set of nonempty convex subsets of Z. Indeed, if $x \in U$ and $y \in D$, then $g_{0}(x, y) \in \operatorname{Ext} F(x, y)$. Fix $x \in C, y \in D, n \in \mathbb{N}$ such that $\frac{x}{n} \in U$. Then

$$
g(x, y)=n g_{0}\left(\frac{x}{n}, y\right) \in n \operatorname{Ext} F\left(\frac{x}{n}, y\right) \subseteq \operatorname{Ext}\left(n F\left(\frac{x}{n}, y\right)\right) \subseteq \operatorname{Ext} F(x, y)
$$

Theorem 2. Let X, Y, Z be real vector spaces, and C, D convex cones in X, Y, respectively. Assume that $F: C \times D \rightarrow \operatorname{conv}(Z)$ is a biadditive s.v. function and $x_{0} \in \operatorname{core} C, y_{0} \in \operatorname{core} D$ and $p \in \operatorname{conv}\left[\operatorname{Ext} F\left(x_{0}, y_{0}\right)\right]$. Then there exists a biadditive function $f: C \times D \rightarrow Z$ such that $f\left(x_{0}, y_{0}\right)=p$ and

$$
f(x, y) \in \operatorname{conv}[\operatorname{Ext} F(x, y)] \quad \text { for }(x, y) \in C \times D
$$

Proof. The point p belongs to $\operatorname{conv}\left[\operatorname{Ext} F\left(x_{0}, y_{0}\right)\right]$, so there exist a number $n \in \mathbb{N}$, points $p_{1}, \ldots, p_{n} \in \operatorname{Ext} F\left(x_{0}, y_{0}\right)$ and nonnegative numbers $\lambda_{1}, \ldots, \lambda_{n}$ such that $\sum_{i=1}^{n} \lambda_{i}=1$ and $p=\sum_{i=1}^{n} \lambda_{i} p_{i}$. By Theorem 1, there exist biadditive functions $f_{i}: C \times D \rightarrow Z$ for which $f_{i}\left(x_{0}, y_{0}\right)=p_{i}$ and

$$
f_{i}(x, y) \in \operatorname{Ext} F(x, y) \text {. for }(x, y) \in C \times D, \quad i=1, \ldots, n
$$

It is easy to check that the function $f: C \times D \rightarrow Z$ given by formula

$$
f(x, y):=\sum_{i=1}^{n} \lambda_{i} f_{i}(x, y) \quad \text { for } \quad(x, y) \in C \times D
$$

is biadditive, $f\left(x_{0}, y_{0}\right)=\sum_{i=1}^{n} \lambda_{i} p_{i}=p$ and $f(x, y) \in \operatorname{conv}[\operatorname{Ext} F(x, y)]$ for all $(x, y) \in C^{\prime} \times D$.

Definition 5. Assume that X, Y are topological vector spaces and C is an open subset of X. We say that a s.v. function $F: C \rightarrow \mathrm{n}(Y)$ is lower semicontinuous (l.s.c.) at a point $x_{0} \in C$ iff for any neighbourhood V of zero in Y, there exists a neighbourhood U of zero in X such that

$$
\begin{equation*}
F\left(x_{0}\right) \subseteq F(x)+V \quad \text { for } \quad x \in x_{0}+U \tag{5.1}
\end{equation*}
$$

We say that F is upper semicontinuous (u.s.c.) at $x_{0} \in C$ iff for every neighbourhood V of zero in Y there exists a neighbourhood U of zero in X such that

$$
\begin{equation*}
F(x) \subseteq F\left(x_{0}\right)+V \quad \text { for } \quad x \in x_{0}+U \tag{5.2}
\end{equation*}
$$

F is called continuous at $x_{0} \in C^{\prime}$ iff it is both l.s.c. and u.s.c. at x_{0}.

Tineorem 3. Let X, Y, Z be topological vector spaces and Z be locally convex, C, D open convex cones in X, Y, respectively. A s.v. function A : $C \times D \rightarrow \operatorname{cc}(Z)$ is biadditive if and only if there exist a biadditive continuous s.v. function $L: C \times D \rightarrow \operatorname{cc}(Z)$ and a biadditive function $a: C \times D \rightarrow Z$ such that

$$
A(x, y)=a(x, y)+L(x, y) \quad \text { for } \quad(x, y) \in C \times D
$$

Proof. By Theorem 1, there exists a biadditive selection a : $C \times D \rightarrow Z$ of A. Let us define an s.v. function $L: C \times D \rightarrow \operatorname{cc}(Z)$ as follows:

$$
L(x, y):=A(x, y)-a(x, y) \quad \text { for } \quad(x, y) \in C \times D
$$

Obviously $0 \in L(x, y)$ for all $(x, y) \in C \times D$. Fix any $\left(x_{0}, y_{0}\right) \in C \times D$. Let W be a neighbourhood of zero in $Z . L\left(x_{0}, y_{0}\right)$ is bounded, so there is a positive integer $n \geq 3$ such that

$$
\frac{2}{n} L\left(x_{0}, y_{0}\right) \subseteq W .
$$

There exist a balanced neighbourhood U of 0 in X such that $\frac{1}{n} x_{0}+u \in C$, $x_{0}+u \in C$ for all $u \in U$ and a neighbourhood V of 0 in Y such that $\frac{1}{n} y_{0}+v \in D, y_{0}+v \in D$ for $v \in V$. Then

$$
\begin{aligned}
L\left(x_{0}, y_{0}\right) & =L\left(\frac{n-2}{n} x_{0}, y_{0}\right)+\frac{2}{n} L\left(x_{0}, y_{0}\right) \\
& \subseteq L\left(\frac{n-2}{n} x_{0}, y_{0}\right)+L\left(\frac{1}{n} x_{0}+\frac{n-1}{n} u, y_{0}\right)+W \\
& =L\left(\frac{n-1}{n} x_{0}+\frac{n-1}{n} u, y_{0}\right)+W=L\left(x_{0}+u, \frac{n-1}{n} y_{0}\right)+W \\
& \subseteq L\left(x_{0}+u, \frac{n-1}{n} y_{0}\right)+L\left(x_{0}+u, \frac{1}{n} y_{0}+v\right)+W \\
& =L\left(x_{0}+u, y_{0}+v\right)+W
\end{aligned}
$$

where $(u, v) \in U \times V$. So, $L\left(x_{0}, y_{0}\right) \subseteq L(x, y)+W$ for $(x, y) \in\left(x_{0}, y_{0}\right)+U \times V$. Hence the function L is lower semicontinuous at $\left(x_{0}, y_{0}\right)$ and L is l.s.c. in $C \times D$.

Since $\left(\frac{1}{n} x_{0}, \frac{1}{n} y_{0}\right) \in C \times D$ and $C \times D$ is open, there exist a balanced neighbourhood U of 0 in X and a balanced neighbourhood V of 0 in Y such that $\frac{1}{n} x_{0}-u \in C, x_{0}+u \in C$ for $u \in U, \frac{1}{n} y_{0}-\frac{n+1}{n} v \in D, y_{0}+v \in D$ for
$v \in V$. Let $(u, v) \in U \times V$. Then

$$
\begin{aligned}
L\left(x_{0}+u, y_{0}+v\right) & \subseteq L\left(x_{0}+u, y_{0}+v\right)+L\left(\frac{1}{n} x_{0}-u, y_{0}+v\right) \\
& =L\left(\frac{n+1}{n} x_{0}, y_{0}+v\right)=L\left(x_{0}, \frac{n+1}{n} y_{0}+\frac{n+1}{n} v\right) \\
& \subseteq L\left(x_{0}, \frac{n+1}{n} y_{0}+\frac{n+1}{n} v\right)+L\left(x_{0}, \frac{1}{n} y_{0}-\frac{n+1}{n} v\right) \\
& =L\left(x_{0}, \frac{n+2}{n} y_{0}\right)=L\left(x_{0}, y_{0}\right)+\frac{2}{n} L\left(x_{0}, y_{0}\right) \\
& \subseteq L\left(x_{0}, y_{0}\right)+W
\end{aligned}
$$

So, $L\left(x_{0}+u, y_{0}+v\right) \subseteq L\left(x_{0}, y_{0}\right)+W$ for $(u, v) \in U \times V$. Hence L is upper semicontinuous at $\left(x_{0}, y_{0}\right)$. By the first part of the proof L is continuous in $C \times D$.

For the next theorem we need some Banach-Steinhaus-type theorems for a bilinear function, which are probably known, however we will give them here for convenience of readers.

Definition 6. Let X, Y, Z be real normed spaces. A bilinear map T : $X \times Y \rightarrow Z$ is called bounded iff there exists a real number $M>0$ such that

$$
\|T(x, y)\| \leq M\|x\| \cdot\|y\| \quad \text { for } \quad(x, y) \in X \times Y
$$

The norm of a bilinear bounded map T is defined by the formula

$$
\|T\|=\sup _{\|x\| \leq 1,\|y\| \leq 1}\|T(x, y)\|
$$

A bilinear map is bounded if and only if it is continuous.
Theorem 4. Let X, Y be Banach spaces and Z be a normed space. Assume that bilinear maps $T_{n}: X \times Y \rightarrow Z$ are continuous, $n \in \mathbb{N}$. If the sequence $\left\{T_{n}(x, y)\right\}_{n \in \mathbb{N}}$ is bounded for all $(x, y) \in X \times Y$, then the sequence $\left\{\left\|T_{n}\right\|\right\}_{n \in \mathbb{N}}$ is bounded.

Proof. Let $A_{k}:=\left\{(x, y) \in X \times Y:\left\|T_{n}(x, y)\right\| \leq k, n \in \mathbf{N}\right\}, k \in \mathbb{N}$. It is easy to verify that

$$
X \times Y=\bigcup_{k \in \mathbb{N}} A_{k}
$$

The continuity of the maps T_{n} and the norm implies that sets A_{k} are closed, $k \in \mathbb{N}$. Since X, Y are Banach spaces, we deduce by Baire's theorem that
$X \times Y$ is the second category set; this means that there exists a number $k_{0} \in \mathbb{N}$ such that $A_{k_{0}}$ is not a nowhere dense set; in other words $\operatorname{Int} A_{k_{0}} \neq \emptyset$. so there exist real numbers $r_{1}>0, r_{2}>0$ such that

$$
\operatorname{cl} K_{1}\left(x_{0}, r_{1}\right) \times \operatorname{cl} K_{2}\left(y_{0}, r_{2}\right) \subseteq A_{k_{0}}
$$

(where K_{1} is a ball in X, K_{2} is a ball in Y). If $\left\|x-x_{0}\right\| \leq r_{1}$ and $\left\|y-y_{0}\right\| \leq$ r_{2}, then $\left\|T_{n}(x, y)\right\| \leq k_{0}$ for all $n \in \mathbb{N}$. Fix $(x, y) \in X \times Y$ such that $x \neq 0$ and $y \neq 0$. Since $\left\|\left(\frac{x}{\|x\|} r_{1}+x_{0}\right)-x_{0}\right\|=r_{1}$ and $\left\|\left(\frac{y}{\|y\|} r_{2}+y_{0}\right)-y_{0}\right\|=r_{2}$ one has

$$
\left\|T_{n}\left(\frac{x}{\|x\|} r_{1}+x_{0}, \frac{y}{\|y\|} r_{2}+y_{0}\right)\right\| \leq k_{0}
$$

and

$$
\begin{aligned}
\left\|T_{n}(x, y)\right\|= & \left\|T_{n}\left(\frac{x}{\|x\|} r_{1}, y\right)\right\| \cdot \frac{\|x\|}{r_{1}} \\
= & \frac{\|x\|}{r_{1}}\left\|T_{n}\left(\frac{x}{\|x\|} r_{1}+x_{0}, y\right)-T_{n}\left(x_{0}, y\right)\right\| \\
\leq & \frac{\|x\|}{r_{1}}\left(\left\|T_{n}\left(\frac{x}{\|x\|} r_{1}+x_{0}, y\right)\right\|+\left\|T_{n}\left(x_{0}, y\right)\right\|\right) \\
= & \frac{\|x\|}{r_{1}}\left\{\frac{\|y\|}{r_{2}} \| T_{n}\left(\frac{x}{\|x\|} r_{1}+x_{0}, \frac{y}{\|y\|} r_{2}+y_{0}\right)\right. \\
& -T_{n}\left(\frac{x}{\|x\|} r_{1}+x_{0}, y_{0}\right) \| \\
& \left.+\frac{\|y\|}{r_{2}}\left\|T_{n}\left(x_{0}, \frac{y}{\|y\|} r_{2}+y_{0}\right)-T_{n}\left(x_{0}, y_{0}\right)\right\|\right\} \\
\leq & \frac{4 k_{0}}{r_{1} \cdot r_{2}}\|x\| \cdot\|y\|
\end{aligned}
$$

for $(x, y) \in X \times Y$ such that $x \neq 0, y \neq 0$. Hence

$$
\left\|T_{n}\right\|=\sup _{\|x\|=\|y\|=1}\left\|T_{n}(x, y)\right\| \leq \frac{4 k_{0}}{r_{1} r_{2}} \quad \text { for } n \in \mathbb{N}
$$

Definition 7. A subset A of a normed space X is called linearly dense in X iff the set

$$
\left\{\sum_{i=1}^{n} \lambda_{i} a_{i} ; \quad a_{i} \in A, \quad \lambda_{i} \in \mathbb{R}, \quad i=1, \ldots, n ; \quad n \in \mathbb{N}\right\}
$$

is dense in X.

Theorem 5. Let X, Y, Z be Banach spaces and A_{1}, A_{2} be linearly dense sets in X, Y, respectively. Assume that $T_{n}: X \times Y \rightarrow Z, n \in \mathbb{N}$ is a sequence of bilinear and continuous maps. The sequence $\left\{T_{n}(x, y)\right\}_{n \in \mathbb{N}}$ is convergent for all $(x, y) \in X \times Y$ iff $\left\{T_{n}(x, y)\right\}_{n \in \mathbb{N}}$ is convergent for all $(x, y) \in A_{1} \times A_{2}$ and the sequence $\left\{\left\|T_{n}\right\|\right\}_{n \in \mathbb{N}}$ is bounded.

Proof. If the sequence $\left\{T_{n}(x, y)\right\}_{n \in \mathbb{N}}$ is convergent in $X \times Y$ then it is in $A_{1} \times A_{2}$. Since $\left\{T_{n}(x, y)\right\}_{n \in \mathbb{N}}$ is convergent, the sequence $\left\{\left\|T_{n}(x, y)\right\|\right\}_{n \in \mathbb{N}}$ is bounded for any $(x, y) \in X \times Y$. Hence, by Theorem 4 , the sequence $\left\{\left\|T_{n}\right\|\right\}_{n \in \mathbb{N}}$ is bounded.

Now we assume that $\left\{T_{n}(x, y)\right\}_{n \in \mathbb{N}}$ is convergent in $A_{1} \times A_{2}$ and $\left\{\left\|T_{n}\right\|\right\}_{n \in \mathbb{N}}$ is bounded by M. Fix any pair $\left(x_{0}, y_{0}\right) \in X \times Y$ and let a be an element of the set A_{1}. Then the map $F_{n}: Y \rightarrow Z$, given by the formula $F_{n}(y):=T_{n}(a, y)$ for $y \in Y$, is linear and continuous in Y. Moreover, the sequence $\left\{F_{n}(y)\right\}_{n \in \mathbb{N}}$ is convergent for any $y \in A_{2}$ and $\left\{\left\|F_{n}\right\|\right\}_{n \in \mathbb{N}}$ is bounded. Indeed,

$$
\begin{aligned}
\left\|F_{n}\right\| & =\sup _{\|y\|=1}\left\|F_{n}(y)\right\|=\sup _{\|y\|=1}\left\|T_{n}(a, y)\right\| \\
& \leq \sup _{\|y\|=1}\left\|T_{n}\right\|\|a\|\|y\|=M \cdot\|a\| ; \quad n \in \mathbb{N} .
\end{aligned}
$$

So, by Theorem 16.8 ([3] p.156), we get the convergence of the sequence $\left\{F_{n}(y)\right\}_{n \in \mathbb{N}}$ for all $y \in Y$. Hence, in particular, $\left\{F_{n}\left(y_{0}\right)\right\}_{n \in \mathbb{N}}$ is convergent. Since $a \in A_{1}$ is arbitrary, the sequence $\left\{T_{n}\left(a, y_{0}\right)\right\}_{n \in \mathbb{N}}$ is convergent for any $a \in A_{1}$.

Let us define maps $G_{n}: X \rightarrow Z$ as follows:

$$
G_{n}(x):=T_{n}\left(x, y_{0}\right) \quad \text { for } \quad x \in X, \quad n \in \mathbb{N}
$$

G_{n} are linear and continuous maps and the sequence $\left\{G_{n}(x)\right\}_{n \in \mathbb{N}}$ is convergent for any $x \in A_{1}$. Moreover,

$$
\left\|G_{n}\right\|=\sup _{\|x\|=1}\left\|G_{n}(x)\right\| \leq M \cdot\left\|y_{0}\right\|, \quad n \in \mathbb{N}
$$

Hence, by the same theorem, the sequence $\left\{G_{n}(x)\right\}_{n} \in \mathbb{N}$ is convergent for any $x \in X_{1}$, in particular for $x=x_{0}$. Consequently $\left\{T_{n}\left(x_{0}, y_{0}\right)\right\}_{n \in \mathbb{N}}$ is convergent.

Theorem 6. Let X, Y, Z, A_{1}, A_{2} be just like in the last theorem. If a sequence $T_{n}: X \times Y \rightarrow Z$ of bilinear and continuous maps is convergent in $A_{1} \times A_{2}$ and the sequence $\left\{\left\|T_{n}\right\|\right\}_{n \in \mathbb{N}}$ is bounded then the function $T: X \times Y \rightarrow Z$ given by

$$
T(x, y):=\lim _{n \rightarrow \infty} T_{n}(x, y) \quad \text { for } \quad(x, y) \in X \times Y
$$

is a bilinear as well as continuous map and

$$
\|T\| \leq \sup _{n \in \mathbb{N}}\left\|T_{n}\right\|
$$

Proof. Theorem 5 implies the convergence of the sequence $\left\{T_{n}(x, y)\right\}_{n \in \mathbb{N}}$ for all $(x, y) \in X \times Y$ and hence, the correctness of definition of the map T. Its bilinearity and continuity follow from the Theorem 48.4 ([1] p.139).

Let $x \in X, y \in Y$ and $\|x\| \leq 1,\|y\| \leq 1$. Then

$$
\begin{aligned}
\|T(x, y)\| & \leq\left\|T(x, y)-T_{n}(x, y)\right\|+\left\|T_{n}(x, y)\right\| \\
& \leq\left\|T(x, y)-T_{n}(x, y)\right\|+M\|x\|\|y\| \\
& \leq\left\|T(x, y)-T_{n}(x, y)\right\|+M
\end{aligned}
$$

for $n \in \mathbb{N}$, where $M=\sup _{n \in \mathbb{N}}\left\|T_{n}\right\|$. By letting $n \rightarrow \infty$, we obtain $\|T(x, y)\| \leq M$ for $(x, y) \in X \times Y,\|x\| \leq 1,\|y\| \leq 1$. Thus

$$
\|T\|=\sup _{\|x\| \leq 1,\|y\| \leq 1}\|T(x, y)\| \leq M=\sup _{n \in \mathbb{N}}\left\|T_{n}\right\|
$$

Lemma 1. Let X, Y, Z be real vector spaces, C, D convex cones in X, Y, respectively. Let $f: C \times D \rightarrow Z$ be a biadditive function. Then there exists a biadditive function $\bar{f}: X \times Y \rightarrow Z$ such that $\bar{f}(x, y)=f(x, y)$ for $(x, y) \in C \times D$. If C, D are open then

$$
\bar{f}(x, y):=f\left(x_{1}, y_{1}\right)-f\left(x_{2}, y_{1}\right)-f\left(x_{1}, y_{2}\right)+f\left(x_{2}, y_{2}\right)
$$

where $x=x_{1}-x_{2}, y=y_{1}-y_{2}, x_{1}, x_{2} \in C, y_{1}, y_{2} \in D$.
Proof. If C, D are cones then $(C \times D)-(C \times D)=(C-C) \times(D-D)$ is a subspace of $X \times Y$. Let us define a function f_{0} on $(C-C) \times(D-D)$ as follows:

$$
f_{0}(x, y):=f\left(x_{1}, y_{1}\right)-f\left(x_{2}, y_{1}\right)-f\left(x_{1}, y_{2}\right)+f\left(x_{2}, y_{2}\right)
$$

where $x=x_{1}-x_{2}, y=y_{1}-y_{2}, x_{1}, x_{2} \in C, y_{1}, y_{2} \in D$.
At first we shall show that the definition of f_{0} is correct. Assume that $x=x_{1}-x_{2}=z_{1}-z_{2}$ and $y=y_{1}-y_{2}$ where $x_{1}, x_{2}, z_{1}, z_{2} \in C$ and $y_{1}, y_{2} \in D$. Then $x_{1}+z_{2}=z_{1}+x_{2}$ and

$$
\begin{aligned}
& {\left[f\left(x_{1}, y_{1}\right)-f\left(x_{1}, y_{2}\right)-f\left(x_{2}, y_{1}\right)+f\left(x_{2}, y_{2}\right)\right] } \\
& -\left[f\left(z_{1}, y_{1}\right)-f\left(z_{1}, y_{2}\right)-f\left(z_{2}, y_{1}\right)+f\left(z_{2}, y_{2}\right)\right] \\
= & f\left(x_{1}+z_{2}, y_{1}\right)+f\left(x_{2}+z_{1}, y_{2}\right)-f\left(x_{2}+z_{1}, y_{1}\right)-f\left(x_{1}+z_{2}, y_{2}\right) \\
= & {\left[f\left(x_{1}+z_{2}, y_{1}\right)-f\left(x_{2}+z_{1}, y_{1}\right)\right]+\left[f\left(x_{2}+z_{1}, y_{2}\right)-f\left(x_{1}+z_{2}, y_{2}\right)\right]=0 . }
\end{aligned}
$$

The case when $x=x_{1}-x_{2}$ and $y=y_{1}-y_{2}=u_{1}-u_{2}, \quad\left(x_{1}, x_{2} \in C\right.$, $\left.y_{1}, y_{2}, u_{1}, u_{2} \in D\right)$ is similar.

We shall check that f_{0} is a biadditive map on $(C-C) \times(D-D)$ to Z and $f_{0}(x, y)=f(x, y)$ for $(x, y) \in C \times D$. Indeed, let $x, z \in C-C$ and $y \in D-D$. Then there exist $x_{1}, x_{2}, z_{1}, z_{2} \in C$ and $y_{1}, y_{2} \in D$ such that $x=x_{1}-x_{2}, y=y_{1}-y_{2}, z=z_{1}-z_{2}$. By defintion of f_{0}

$$
\begin{aligned}
f_{0}(x+z, y)= & f_{0}\left(\left(x_{1}+z_{1}\right)-\left(x_{2}+z_{2}\right), y_{1}-y_{2}\right) \\
= & f\left(x_{1}+z_{1}, y_{1}\right)-f\left(x_{1}+z_{1}, y_{2}\right) \\
& -f\left(x_{2}+z_{2}, y_{1}\right)+f\left(x_{2}+z_{2}, y_{2}\right) \\
= & {\left[f\left(x_{1}, y_{1}\right)-f\left(x_{1}, y_{2}\right)-f\left(x_{2}, y_{1}\right)+f\left(x_{2}, y_{2}\right)\right] } \\
& +\left[f\left(z_{1}, y_{1}\right)-f\left(z_{1}, y_{2}\right)-f\left(z_{2}, y_{1}\right)+f\left(z_{2}, y_{2}\right)\right] \\
= & f_{0}(x, y)+f_{0}(z, y) .
\end{aligned}
$$

In the same way we can prove the addivity of f_{0} with respect to the second variable. Finally, we shall check that f_{0} is an extension of f. Let $(x, y) \in$ $C \times D$. Then $(x, y)=(2 x, 2 y)-(x, y)$ and

$$
\begin{aligned}
f_{0}(x, y) & =f(2 x, 2 y)-f(x, 2 y)-f(2 x, y)+f(x, y) \\
& =f(x, 2 y)-[f(2 x, y)-f(x, y)]=f(x, 2 y)-f(x, y)=f(x, y) .
\end{aligned}
$$

Let X_{1} be a subspace of X, and Y_{1} be a subspace of Y such that $(C-C) \oplus$ $X_{1}=X$ and $(D-D) \oplus Y_{1}=Y$. So, if $(x, y) \in X \times Y$ then $(x, y)=\left(x_{1}+x_{2}, y_{1}+y_{2}\right)$, where $x_{1} \in C-C, x_{2} \in X_{1}, y_{1} \in D-D, y_{2} \in Y_{2}$.

Let us define a function $\bar{f}: X \times Y \rightarrow Z$ as follows:

$$
\bar{f}(x, y)=f_{0}\left(x_{1}, y_{1}\right) .
$$

It is easy to check that \bar{f} is properly defined biadditive extension of f.
Remark 2. With respect to the above lemma we may assert in Theorem 3 that the biadditive function a is given on $X \times Y$. Similarly in the next theorem.

Now, we shall prove the following theorem, analogue to Theorem 2 from [6].

Theorem 7. Let X, Y be real separable Banach spaces, C, D be open, convex cones in X, Y, respectively, and let Z be a real Banach space. Assume that $F: C \times D \rightarrow \operatorname{cc}(Z)$ is a biadditive s.v. function, $x_{0} \in C, y_{0} \in D$ and
$p \in F\left(x_{0}, y_{0}\right)$. Then there exists a biadditive selection $f: C \times D \rightarrow Z$ of F such that $f\left(x_{0}, y_{0}\right)=p$. Moreover, if F is lower semicontinuous, then f is continuous.

Proof. Since F is compact and convex valued in Z, by the Krein-Milman Theorem ([5])

$$
p \in F\left(x_{0}, y_{0}\right)=\operatorname{cl}\left[\operatorname{convExt} F\left(x_{0}, y_{0}\right)\right] .
$$

Then for each $n \in \mathbb{N}$ there is an element $p_{n} \in \operatorname{convExt} F\left(x_{0}, y_{0}\right)$ such that

$$
\left\|p_{n}-p\right\|<\frac{1}{n}
$$

Theorem 2 guarantees the existence of biadditive functions $f_{n}: C \times D \rightarrow Z$ such that

$$
f_{n}\left(x_{0}, y_{0}\right)=p_{n}
$$

and

$$
f_{n}(x, y) \in \operatorname{convExt} F(x, y) \subseteq F(x, y) \text { for }(x, y) \in C \times D
$$

The set $C \times D$ is an open cone in $X \times Y$ and the set $(C \times D)-(C \times D)$ is an open subspace of $X \times Y$, whence

$$
(C \times D)-(C \times D)=\operatorname{lin}(C \times D)=(C-C) \times(D-D)=X \times Y
$$

By Lemma 1

$$
\bar{f}_{n}(x, y):=f_{n}\left(x_{1}, y_{1}\right)-f_{n}\left(x_{2}, y_{1}\right)-f_{n}\left(x_{1}, y_{2}\right)+f_{n}\left(x_{2}, y_{2}\right),
$$

where $x=x_{1}-x_{2}, y=y_{1}-y_{2}, x_{1}, x_{2} \in C, y_{1}, y_{2} \in D$, is a biadditive map from $X \times Y$ to Z and $\bar{f}_{n}(x, y)=f_{n}(x, y)$ for $(x, y) \in C \times D$.

Now, we assume that F is a lower semicontinuous s.v.function. For a fixed $x \in C$ a function $y \rightarrow F(x, y)$ is additive and \mathbb{Q}_{+}-homogeneous on D (see Lemma 5.1 in [4]). There exists a constant $M(x)>0$ such that $\|F(x, y)\| \leq M(x)\|y\|$, where $\|F(x, y)\|=\sup \{\|u\| ; u \in F(x, y)\}$ for $y \in D$ (see Theorem 4 in [7]). Then, for each $x \in C$, the set

$$
F(x, \Sigma)=\bigcup_{y \in \Sigma} F(x, y)
$$

where $\Sigma=\{y \in D ;\|y\| \leq 1\}$ is bounded. By Smajdor's theorem from [7] there exists a constant M such that

$$
\sup _{y \in \Sigma}\|F(x, y)\| \leq M\|x\| \quad \text { for } \quad x \in C .
$$

Let us take a point $y \in D$ and let $\left\{r_{n}\right\}_{n \in \mathbb{N}}$ be a sequence of rational numbers such that $\lim _{n \rightarrow \infty} r_{n}=\|y\|$ and $\|y\|<r_{n}$ for $n \in \mathbb{N}$. Since $\frac{y}{r_{n}} \in \Sigma$, $\left\|F\left(x, \frac{y}{r_{n}}\right)\right\| \leq M\|x\|$ for all $n \in \mathbb{N}, x \in C$. Hence $\|F(x, y)\| \leq M r_{n}^{r_{n}}\|x\|$. Passing to the limit with $n \rightarrow \infty$, we get

$$
\begin{equation*}
\|F(x, y)\| \leq M\|x\|\|y\| \quad \text { for }(x, y) \in C \times D \tag{7.1}
\end{equation*}
$$

Hence and by the relation $f_{n}(x, y) \in F(x, y)$ we deduce that

$$
\begin{equation*}
\left\|f_{n}(x, y)\right\| \leq M\|x\|\|y\|, \text { for }(x, y) \in C \times D, n \in \mathbb{N} \tag{7.2}
\end{equation*}
$$

For every $x \in X$, the function $\tilde{f}_{n}(x, \cdot): Y \rightarrow Z$ is additive in Y and bounded in some neighbourhood of any point of D, so by the Mehdi theorem (Theorem 4 in [2]) $\bar{f}_{n}(x, \cdot)$ is continuous. Similarly, we get continuity of $\bar{f}_{n}(\cdot, y)$ for any $y \in Y$. Thus \bar{f}_{n} is a bilinear and continuous map on $X \times Y$.

Now, we shall show that the sequence $\left\{\left\|\bar{f}_{n}\right\|\right\}_{n \in \mathbb{N}}$ is bounded. Let us fix $(x, y) \in X \times Y$ and $x_{1}, x_{2} \in C, y_{1}, y_{2} \in D$ such that $x=x_{1}-x_{2}, y=y_{1}-y_{2}$. Then

$$
\begin{aligned}
\left\|\bar{f}_{n}(x, y)\right\| & =\left\|f_{n}\left(x_{1}, y_{1}\right)-f_{n}\left(x_{1}, y_{2}\right)-f_{n}\left(x_{2}, y_{1}\right)+f_{n}\left(x_{2}, y_{2}\right)\right\| \\
& \leq\left\|f_{n}\left(x_{1}, y_{1}\right)\right\|+\left\|f_{n}\left(x_{1}, y_{2}\right)\right\| \\
& +\left\|f_{n}\left(x_{2}, y_{1}\right)\right\|+\left\|f_{n}\left(x_{2}, y_{2}\right)\right\|
\end{aligned}
$$

whence and by (7.2) we get

$$
\left\|\bar{f}_{n}(x, y)\right\| \leq M\left(\left\|x_{1}\right\|\left\|y_{1}\right\|+\left\|x_{1}\right\|\left\|y_{2}\right\|+\left\|x_{2}\right\|\left\|y_{1}\right\|+\left\|x_{2}\right\|\left\|y_{2}\right\|\right)
$$

Thus, by Theorem 4 the sequence $\left\{\left\|\bar{f}_{n}\right\|\right\}_{n \in \mathbb{N}}$ is bounded.
Let sets A and B be dense and countable in C and D, respectively. The set

$$
S:=A \times B=\left\{\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right), \ldots\right\}
$$

is dense in $C \times D$ and linearly dense in $X \times Y$. We choose a subsequence $\left\{\bar{f}_{\lambda_{n}}\right\}_{n \in \mathbb{N}}$ of the sequence $\left\{\bar{f}_{n}\right\}_{n \in \mathbb{N}}$ convergent to the point $\left(x_{1}, y_{1}\right)$. We are able to do it because $\left\{\bar{f}_{n}\left(x_{1}, y_{1}\right)\right\}_{n \in \mathbb{N}}$ is a sequence of elements of the compact set $F\left(x_{1}, y_{1}\right)$. Next, we choose a subsequence of $\left\{\bar{f}_{\lambda_{n}}\right\}_{n \in \mathbb{N}}$ convergent to $\left(x_{2}, y_{2}\right)$, etc. Using the diagonal method we get the subsequence $\left\{\bar{f}_{n_{k}}\right\}_{k \in \mathbb{N}}$ of $\left\{\bar{f}_{n}\right\}_{n \in \mathbb{N}}$ convergent on S. The sequence $\left\{\bar{f}_{n_{k}}\right\}_{k \in \mathbb{N}}$ is convergent on the lineary dense in $X \times Y$ set S and the sequence $\left\{\left\|\bar{f}_{n_{k}}\right\|\right\}_{k \in \mathbb{N}}$ is bounded, so by Theorem 5 it converges to some bilinear and continuous map $\bar{f}: X \times Y \rightarrow Z$. For any $(x, y) \in C \times D$ we have

$$
\bar{f}(x, y) \in \mathrm{cl}[\operatorname{convExt} F(x, y)]=F(x, y)
$$

Therefore $f:=\left.\bar{f}\right|_{C \times D}$ is a selection of F on the cone $C \times D$.
If $F: C \times D \rightarrow \mathbf{c c}(Z)$ is a biadditive s.v.function, then there exist a biadditive function $a: X \times Y \rightarrow Z$ and a biadditive continuous s.v.function $L: C \times D \rightarrow \mathrm{cc}(Y)$ such that

$$
F(x, y)=a(x, y)+L(x, y) \quad \text { for } \quad(x, y) \in C^{\prime} \times D
$$

(cf. Theorem 3 and Remark 2). By the first part of the proof there exists a bilinear and continuous function $f: X \times Y \rightarrow Z$ such that $\left.f\right|_{C \times D}$. is a selection of L on the cone $C \times D$ and

$$
f\left(x_{0}, y_{0}\right)=p-a\left(x_{0}, y_{0}\right)
$$

Then the function $f_{1}: X \times Y \rightarrow Z$ given by

$$
f_{1}(x, y):=a(x, y)+f(x, y) \text {. for }(x, y) \in X \times Y \text {, }
$$

restricted to $C \times D$, is a biadditive selection of F satisfying the condition

$$
f_{1}\left(x_{0}, y_{0}\right)=a\left(x_{0}, y_{0}\right)+f\left(x_{0}, y_{0}\right)=p
$$

This completes the proof.

References

[1] W. Kolodziej, Wybrane rozdzialy analizy matematycznej, PWN, Warszawa 1982.
[2] M. R. Mehdi, On convex functions, J. London Math. Soc. 39 (1964), 321-326.
[3] J. Musielak, Wsţp do analizy funkcjonalnej, PWN, Warszawa 1989.
[4] K. Nikodem, K-convex and K-concave set valued functions, Zeszyty Naukowe Politechniki Lódzkiej, Mat.559, Rozprawy Naukowe 114, 1989.
[5] H. H. Schaefer, Topolagical vector spaces, New York and London, 1966.
[6] A. Smajdor, Additive selections of a composition of additive set-valued functions, (to appear).
[7] W. Smajdor, Superadditive set-valued functions and Banach-Stcinhaus theorem, Radovi Mat. 3 (1987), 203-214.

Institute of Mathematics
Pedagogical University
Podchorażych 2
Pl-30-084 Kraków, Poland

