SELECTIONS OF BIADDITIVE SET-VALUED FUNCTIONS

JOANNA SZCZAWIŃSKA

Abstract. In this paper we prove that there exists a biadditive selection f of a biadditive set-valued function F and a continuous selection when F is lower semicontinuous.

We begin with some notations and definitions. Let n(Y) denote the set of all nonempty subsets of a nonempty set Y. If Y is a normed space then cc(Y) denotes the set of all compact and convex elements of n(Y).

DEFINITION 1. Let X,Y,Z be real vector spaces. We say that a set-valued function $F:X\to n(Z)$ (abbreviated to "s.v. function") in the sequel is additive iff

$$F(x+y) = F(x) + F(y)$$
 for $x, y \in X$.

A s.v. function $F: X \times Y \to n(Z)$ is called *biadditive* iff F is additive with respect to each variable.

DEFINITION 2. The point x_0 of a subset C of real vector space X is called an algebraic interior point of C (we write $x_0 \in \text{core} C$) iff for each $x \in X$ there is a real positive ε such that

$$tx + (1-t)x_0 \in C$$
 for $|t| \le \varepsilon$.

DEFINITION 3. We say that a point $x_0 \in C$, $C \subseteq X$ is an extreme point of C iff there are no two different points $x, y \in C$ and no number $t \in (0, 1)$ such that

$$x_0 = tx + (1-t)y.$$

The set of all extreme points of C is denoted by ExtC.

Received January 11, 1994 and, in final form, May 10, 1994. AMS (1991) subject classification: Primary 26E25, 54C65.

DEFINITION 4. A set $C \subseteq X$ is said to be a *convex cone* iff $C + C \subseteq C$ and $tC \subseteq C$ for all $t \in (0, \infty)$.

K. Nikodem in the paper [4] proved the following theorem.

THEOREM. Let X, Y be real vector spaces and C be a convex cone in X. Assume that $F: C \to n(Y)$ is an additive s.v. function, $x_0 \in \text{core} C$ and $p \in \text{Ext} F(x_0)$. Then there exists exactly one additive selection $f: C \to Y$ of F such that $f(x_0) = p$. In addition,

$$f(x) \in \operatorname{Ext} F(x)$$
 for $x \in C$.

The following lemma (Nikodem [4]) will be useful for us.

LEMMA. Let B and C be subsets of a real vector space. If $p \in \operatorname{Ext}(B+C)$, then there exists exactly one point $b \in B$ and exactly one point $c \in C$ such that b+c=p. Moreover, $b \in \operatorname{Ext} B$ and $c \in \operatorname{Ext} C$, i.e. $\operatorname{Ext}(B+C) \subseteq \operatorname{Ext} B+\operatorname{Ext} C$.

Now, we shall formulate a theorem, analogue to Nikodem's Theorem.

THEOREM 1. Let X,Y,Z be real vector spaces, C,D be convex cones in X,Y, respectively, and $F:C\times D\to \operatorname{n}(Z)$ be a biadditive s.v. function. Moreover, let $x_0\in\operatorname{core} C,y_0\in\operatorname{core} D$ and $p\in\operatorname{Ext} F(x_0,y_0)$. Then there exists exactly one biadditive selection $f:C\times D\to Z$ of F such that $f(x_0,y_0)=p$.

PROOF. Let $U := C \cap (x_0 - C)$. If $u \in U$ then $x_0 - u \in U$. Fix any element $a \in U$. Since $p \in \operatorname{Ext} F(x_0, y_0) = \operatorname{Ext} \{F(a, y_0) + F(x_0 - a, y_0)\}$, there exist, by Nikodem's lemma, a unique point $p_a \in \operatorname{Ext} F(a, y_0)$ and a unique point $p_{x_0 - a} \in \operatorname{Ext} F(x_0 - a, y_0)$ such that

$$(1.1) p = p_a + p_{x_0 - a}.$$

For the additive s.v. function $F(a,\cdot): D \to n(Z)$, $y_0 \in \text{core } D$ and the point $p_a \in \text{Ext} F(a,y_0)$, the assumptions of Nikodem's Theorem hold. So there exists exactly one additive selection $f_a: D \to Z$ of $F(a,\cdot)$ such that

$$f_a(y_0)=p_a.$$

It holds for any $a \in U$. Now, let us define a function $g_0: U \times D \to Z$ as follows:

$$g_0(a,y) := f_a(y)$$
 for $(a,y) \in U \times D$.

It is easy to check that g_0 is properly defined and

$$g_0(a, y) = f_a(y) \in F(a, y)$$
 for $(a, y) \in U \times D$.

Moreover,

$$g_0(a, x + y) = f_a(x) + f_a(y) = g_0(a, x) + g_0(a, y)$$
 for $a \in U$, $x, y \in D$.

Now, we shall show that $g_0(a+b,x)=g_0(a,x)+g_0(b,x)$ for all $x\in D$, $a,b\in U$ such that $a+b\in U$. Since $p\in {\rm Ext}\{F(a,y_0)+F(x_0-a,y_0)\}$, there exist exactly one $a_1\in F(a,y_0)$ and exactly one $b_1\in F(x_0-a,y_0)$ such that $p=a_1+b_1$. Similarly $p\in {\rm Ext}\{F(b,y_0)+F(x_0-b,y_0)\}$, whence $p=a_2+b_2$, where $a_2\in F(b,y_0), b_2\in F(x_0-b,y_0)$ and $p\in {\rm Ext}\{F(a,y_0)+F(b,y_0)+F(x_0-a-b,y_0)\}$ so $p=a_3+b_3+c_3$, where $a_3\in F(a,y_0),\ b_3\in F(b,y_0)$ and $c_3\in F(x_0-a-b,y_0)$. We get

$$p = a_3 + (b_3 + c_3) = a_1 + b_1, \ a_1, a_3 \in F(a, y_0), \ b_1, b_3 + c_3 \in F(x_0 - a, y_0),$$

whence, by the uniqueness of the representation (1.1), we infer that $a_3 = a_1 = p_a$. In the same way we get that $b_3 = a_2 = p_b$ and $p_{a+b} = a_3 + b_3$. That is $p_a + p_b = p_{a+b}$. This means that

$$f_a(y_0) + f_b(y_0) = f_{a+b}(y_0).$$

Since the fact that f_a is a selection of $F(a,\cdot)$ and f_b is a selection of $F(b,\cdot)$ implies that $f_a + f_b$ is a selection of $F(a + b,\cdot)$, and by the uniqueness of selection passing through the point y_0 , we deduce that

$$f_{a+b}(y) = f_a(y) + f_b(y)$$
 for $y \in D$

and

$$g_0(a+b,y) = f_{a+b}(y) = f_a(y) + f_b(y) = g_0(a,y) + g_0(b,y)$$

for $y \in D$, $a, b \in U$ such that $a + b \in U$. So, we have proved that g_0 is a biadditive selection of F on the set $U \times D$.

Now, we shall extend g_0 to a biadditive function defined on $C \times D$. Fix any point $x \in C$. Since $x_0 \in \text{core } C$, there exists an $\varepsilon > 0$ such that

$$x_0 + tx \in C$$
 for $|t| < \varepsilon$.

Let us take a number $n \in \mathbb{N}$ such that $\frac{1}{n} < \varepsilon$. Then

$$-\frac{1}{n}x + x_0 \in C.$$

Consequently

$$\frac{x}{n} \in x_0 - C$$
 and $\frac{x}{n} \in C$.

It implies that $\frac{x}{n} \in U$. Put $g(x,y) := ng_0(\frac{x}{n},y)$. This definition is correct. Indeed, if $m \in \mathbb{N}$ is such a number that $\frac{x}{m} \in U$, then $\frac{x}{nm} = (1 - \frac{1}{m}) \cdot 0 + \frac{1}{m} \cdot \frac{x}{n} \in x_0 - C$ as well as $\frac{x}{mn} \in C$ thus $\frac{x}{mn} \in U$ and

$$mg_0\left(\frac{x}{m},y\right) = mng_0\left(\frac{x}{nm},y\right) = ng_0\left(\frac{x}{n},y\right).$$

Moreover, the function $g: C \times D \to Z$ defined above is biadditive. Indeed, let $x \in C$, $y \in C$, $n \in \mathbb{N}$ be a number so large that $\frac{x}{n}, \frac{y}{n}, \frac{x+y}{n} \in U$. Then

$$g(x+y,z) = ng_0\left(\frac{x+y}{n},z\right) = ng_0\left(\frac{x}{n},z\right) + ng_0\left(\frac{y}{n},z\right) = g(x,z) + g(y,z).$$

Lastly, the function g is a selection of F. If $x \in C$, $y \in D$, $n \in \mathbb{N}$ and $\frac{x}{n} \in U$, then

$$g(x,y) = ng_0\left(\frac{x}{n},y\right) \in nF\left(\frac{x}{n},y\right) \subseteq F\left(\frac{x}{n},y\right) + \ldots + F\left(\frac{x}{n},y\right) = F(x,y).$$

To end the proof we have to show that g is a unique selection of F passing through the point $((x_0, y_0), p)$. So, assume that there exists $g_1 : C \times D \to Z$ biadditive selection of F such that $g_1(x_0, y_0) = p$. Fix any $a \in U$. Then

$$p = g_1(x_0, y_0) = g_1(a, y_0) + g_1(x_0 - a, y_0).$$

Since $g_1(a, y_0) \in F(a, y_0)$ and $g_1(x_0-a, y_0) \in F(x_0-a, y_0)$, by the uniqueness of representation (1.1), we have that

$$g_1(a, y_0) = p_a = f_a(y_0) = g(a, y_0).$$

Thus $g_1(a, y_0) = g(a, y_0)$ for $a \in U$. Since $g_1(a, \cdot)$, f_a are additive selections of $F(a, \cdot)$ and $g_1(a, y_0) = p_a = f_a(y_0)$, we deduce that

$$g_1(a, y) = f_a(y) = g(a, y)$$
 for $y \in D$, $a \in U$

(because the selection is unique). If $a \in C$, $n \in \mathbb{N}$ and $\frac{a}{n} \in U$ then

$$g_1(a,y) = ng_1\left(\frac{a}{n},y\right) = ng\left(\frac{a}{n},y\right) = g(a,y)$$
 for $a \in C, y \in D$.

Hence $g = g_1$ on the set $C \times D$. This completes the proof.

REMARK 1. The last proof implies that

$$f(x,y) \in \text{ Ext } F(x,y) \quad \text{for } (x,y) \in C \times D,$$

whenever $F: C \times D \to \operatorname{conv}(Z)$, where $\operatorname{conv}(Z)$ denotes the set of nonempty convex subsets of Z. Indeed, if $x \in U$ and $y \in D$, then $g_0(x, y) \in \operatorname{Ext} F(x, y)$. Fix $x \in C$, $y \in D$, $n \in \mathbb{N}$ such that $\frac{x}{n} \in U$. Then

$$g(x,y) = ng_0\left(\frac{x}{n},y\right) \in n\operatorname{Ext} F\left(\frac{x}{n},y\right) \subseteq \operatorname{Ext} \left(nF\left(\frac{x}{n},y\right)\right) \subseteq \operatorname{Ext} F(x,y).$$

THEOREM 2. Let X, Y, Z be real vector spaces, and C, D convex cones in X, Y, respectively. Assume that $F: C \times D \to \text{conv}(Z)$ is a biadditive s.v. function and $x_0 \in \text{core} C, y_0 \in \text{core} D$ and $p \in \text{conv}[\text{Ext} F(x_0, y_0)]$. Then there exists a biadditive function $f: C \times D \to Z$ such that $f(x_0, y_0) = p$ and

$$f(x,y) \in \text{conv}[\text{Ext}F(x,y)]$$
 for $(x,y) \in C \times D$.

PROOF. The point p belongs to $\operatorname{conv}[\operatorname{Ext} F(x_0, y_0)]$, so there exist a number $n \in \mathbb{N}$, points $p_1, \ldots, p_n \in \operatorname{Ext} F(x_0, y_0)$ and nonnegative numbers $\lambda_1, \ldots, \lambda_n$ such that $\sum_{i=1}^n \lambda_i = 1$ and $p = \sum_{i=1}^n \lambda_i p_i$. By Theorem 1, there exist biadditive functions $f_i: C \times D \to Z$ for which $f_i(x_0, y_0) = p_i$ and

$$f_i(x,y) \in \text{ Ext } F(x,y)$$
 . for $(x,y) \in C \times D$, $i = 1, ..., n$.

It is easy to check that the function $f: C \times D \to Z$ given by formula

$$f(x,y) := \sum_{i=1}^{n} \lambda_i f_i(x,y)$$
 for $(x,y) \in C \times D$

is biadditive, $f(x_0, y_0) = \sum_{i=1}^n \lambda_i p_i = p$ and $f(x, y) \in \text{conv}[\text{Ext} F(x, y)]$ for all $(x, y) \in C \times D$.

DEFINITION 5. Assume that X, Y are topological vector spaces and C is an open subset of X. We say that a s.v. function $F: C \to \mathfrak{n}(Y)$ is lower semicontinuous (l.s.c.) at a point $x_0 \in C$ iff for any neighbourhood V of zero in Y, there exists a neighbourhood U of zero in X such that

(5.1)
$$F(x_0) \subseteq F(x) + V \quad \text{for} \quad x \in x_0 + U.$$

We say that F is upper semicontinuous (u.s.c.) at $x_0 \in C$ iff for every neighbourhood V of zero in Y there exists a neighbourhood U of zero in X such that

(5.2)
$$F(x) \subseteq F(x_0) + V \quad \text{for} \quad x \in x_0 + U.$$

F is called *continuous at* $x_0 \in C$ iff it is both l.s.c. and u.s.c. at x_0 .

THEOREM 3. Let X,Y,Z be topological vector spaces and Z be locally convex, C,D open convex cones in X,Y, respectively. A s.v. function $A:C\times D\to \operatorname{cc}(Z)$ is biadditive if and only if there exist a biadditive continuous s.v. function $L:C\times D\to \operatorname{cc}(Z)$ and a biadditive function $a:C\times D\to Z$ such that

$$A(x,y) = a(x,y) + L(x,y)$$
 for $(x,y) \in C \times D$.

PROOF. By Theorem 1, there exists a biadditive selection $a: C \times D \to Z$ of A. Let us define an s.v. function $L: C \times D \to \operatorname{cc}(Z)$ as follows:

$$L(x,y) := A(x,y) - a(x,y)$$
 for $(x,y) \in C \times D$.

Obviously $0 \in L(x, y)$ for all $(x, y) \in C \times D$. Fix any $(x_0, y_0) \in C \times D$. Let W be a neighbourhood of zero in Z. $L(x_0, y_0)$ is bounded, so there is a positive integer $n \geq 3$ such that

$$\frac{2}{n}L(x_0,y_0)\subseteq W.$$

There exist a balanced neighbourhood U of 0 in X such that $\frac{1}{n}x_0 + u \in C$, $x_0 + u \in C$ for all $u \in U$ and a neighbourhood V of 0 in Y such that $\frac{1}{n}y_0 + v \in D$, $y_0 + v \in D$ for $v \in V$. Then

$$L(x_0, y_0) = L(\frac{n-2}{n}x_0, y_0) + \frac{2}{n}L(x_0, y_0)$$

$$\subseteq L(\frac{n-2}{n}x_0, y_0) + L(\frac{1}{n}x_0 + \frac{n-1}{n}u, y_0) + W$$

$$= L(\frac{n-1}{n}x_0 + \frac{n-1}{n}u, y_0) + W = L(x_0 + u, \frac{n-1}{n}y_0) + W$$

$$\subseteq L(x_0 + u, \frac{n-1}{n}y_0) + L(x_0 + u, \frac{1}{n}y_0 + v) + W$$

$$= L(x_0 + u, y_0 + v) + W,$$

where $(u, v) \in U \times V$. So, $L(x_0, y_0) \subseteq L(x, y) + W$ for $(x, y) \in (x_0, y_0) + U \times V$. Hence the function L is lower semicontinuous at (x_0, y_0) and L is l.s.c. in $C \times D$.

Since $(\frac{1}{n}x_0, \frac{1}{n}y_0) \in C \times D$ and $C \times D$ is open, there exist a balanced neighbourhood U of 0 in X and a balanced neighbourhood V of 0 in Y such that $\frac{1}{n}x_0 - u \in C$, $x_0 + u \in C$ for $u \in U$, $\frac{1}{n}y_0 - \frac{n+1}{n}v \in D$, $y_0 + v \in D$ for

 $v \in V$. Let $(u, v) \in U \times V$. Then

$$L(x_0 + u, y_0 + v) \subseteq L(x_0 + u, y_0 + v) + L\left(\frac{1}{n}x_0 - u, y_0 + v\right)$$

$$= L\left(\frac{n+1}{n}x_0, y_0 + v\right) = L\left(x_0, \frac{n+1}{n}y_0 + \frac{n+1}{n}v\right)$$

$$\subseteq L\left(x_0, \frac{n+1}{n}y_0 + \frac{n+1}{n}v\right) + L\left(x_0, \frac{1}{n}y_0 - \frac{n+1}{n}v\right)$$

$$= L\left(x_0, \frac{n+2}{n}y_0\right) = L(x_0, y_0) + \frac{2}{n}L(x_0, y_0)$$

$$\subseteq L(x_0, y_0) + W.$$

So, $L(x_0 + u, y_0 + v) \subseteq L(x_0, y_0) + W$ for $(u, v) \in U \times V$. Hence L is upper semicontinuous at (x_0, y_0) . By the first part of the proof L is continuous in $C \times D$.

For the next theorem we need some Banach-Steinhaus-type theorems for a bilinear function, which are probably known, however we will give them here for convenience of readers.

DEFINITION 6. Let X,Y,Z be real normed spaces. A bilinear map $T:X\times Y\to Z$ is called bounded iff there exists a real number M>0 such that

$$||T(x,y)|| \le M ||x|| \cdot ||y||$$
 for $(x,y) \in X \times Y$.

The norm of a bilinear bounded map T is defined by the formula

$$||T|| = \sup_{\|x\| \le 1, \|y\| \le 1} ||T(x, y)||.$$

A bilinear map is bounded if and only if it is continuous.

THEOREM 4. Let X,Y be Banach spaces and Z be a normed space. Assume that bilinear maps $T_n: X \times Y \to Z$ are continuous, $n \in \mathbb{N}$. If the sequence $\{T_n(x,y)\}_{n\in\mathbb{N}}$ is bounded for all $(x,y)\in X\times Y$, then the sequence $\{\parallel T_n\parallel\}_{n\in\mathbb{N}}$ is bounded.

PROOF. Let $A_k:=\{(x,y)\in X\times Y: \|T_n(x,y)\|\leq k,\ n\in\mathbb{N}\}\,,\ k\in\mathbb{N}.$ It is easy to verify that

$$X\times Y=\bigcup_{k\in\mathbb{N}}A_k.$$

The continuity of the maps T_n and the norm implies that sets A_k are closed, $k \in \mathbb{N}$. Since X, Y are Banach spaces, we deduce by Baire's theorem that

 $X \times Y$ is the second category set; this means that there exists a number $k_0 \in \mathbb{N}$ such that A_{k_0} is not a nowhere dense set; in other words $\operatorname{Int} A_{k_0} \neq \emptyset$, so there exist real numbers $r_1 > 0, r_2 > 0$ such that

$$\operatorname{cl} K_1(x_0, r_1) \times \operatorname{cl} K_2(y_0, r_2) \subseteq A_{k_0}$$

(where K_1 is a ball in X, K_2 is a ball in Y). If $||x-x_0|| \le r_1$ and $||y-y_0|| \le r_2$, then $||T_n(x,y)|| \le k_0$ for all $n \in \mathbb{N}$. Fix $(x,y) \in X \times Y$ such that $x \ne 0$ and $y \ne 0$. Since $||\left(\frac{x}{||x||}r_1 + x_0\right) - x_0|| = r_1$ and $||\left(\frac{y}{||y||}r_2 + y_0\right) - y_0|| = r_2$ one has

 $||T_n\left(\frac{x}{||x||}r_1+x_0,\frac{y}{||y||}r_2+y_0\right)|| \le k_0$

and

$$||T_{n}(x,y)|| = ||T_{n}\left(\frac{x}{||x||}r_{1},y\right)|| \cdot \frac{||x||}{r_{1}}$$

$$= \frac{||x||}{r_{1}} ||T_{n}\left(\frac{x}{||x||}r_{1} + x_{0},y\right) - T_{n}(x_{0},y)||$$

$$\leq \frac{||x||}{r_{1}} \left(||T_{n}\left(\frac{x}{||x||}r_{1} + x_{0},y\right)|| + ||T_{n}(x_{0},y)||\right)$$

$$= \frac{||x||}{r_{1}} \left\{\frac{||y||}{r_{2}} ||T_{n}\left(\frac{x}{||x||}r_{1} + x_{0},\frac{y}{||y||}r_{2} + y_{0}\right)\right\}$$

$$-T_{n}\left(\frac{x}{||x||}r_{1} + x_{0},y_{0}\right)||$$

$$+ \frac{||y||}{r_{2}} ||T_{n}\left(x_{0},\frac{y}{||y||}r_{2} + y_{0}\right) - T_{n}(x_{0},y_{0})||$$

$$\leq \frac{4k_{0}}{r_{1} \cdot r_{2}} ||x|| \cdot ||y||$$

for $(x, y) \in X \times Y$ such that $x \neq 0, y \neq 0$. Hence

$$||T_n|| = \sup_{\|x\| = \|y\| = 1} ||T_n(x, y)|| \le \frac{4k_0}{r_1 r_2}$$
 for $n \in \mathbb{N}$.

DEFINITION 7. A subset A of a normed space X is called *linearly dense* in X iff the set

$$\left\{\sum_{i=1}^n \lambda_i a_i; \quad a_i \in A, \quad \lambda_i \in \mathbb{R}, \quad i = 1, ..., n; \quad n \in \mathbb{N}\right\}$$

is dense in X.

THEOREM 5. Let X,Y,Z be Banach spaces and A_1,A_2 be linearly dense sets in X,Y, respectively. Assume that $T_n: X\times Y\to Z, n\in \mathbb{N}$ is a sequence of bilinear and continuous maps. The sequence $\{T_n(x,y)\}_{n\in\mathbb{N}}$ is convergent for all $(x,y)\in X\times Y$ iff $\{T_n(x,y)\}_{n\in\mathbb{N}}$ is convergent for all $(x,y)\in A_1\times A_2$ and the sequence $\{\|T_n\|\}_{n\in\mathbb{N}}$ is bounded.

PROOF. If the sequence $\{T_n(x,y)\}_{n\in\mathbb{N}}$ is convergent in $X\times Y$ then it is in $A_1\times A_2$. Since $\{T_n(x,y)\}_{n\in\mathbb{N}}$ is convergent, the sequence $\{\parallel T_n(x,y)\parallel\}_{n\in\mathbb{N}}$ is bounded for any $(x,y)\in X\times Y$. Hence, by Theorem 4, the sequence $\{\parallel T_n\parallel\}_{n\in\mathbb{N}}$ is bounded.

Now we assume that $\{T_n(x,y)\}_{n\in\mathbb{N}}$ is convergent in $A_1\times A_2$ and $\{\parallel T_n\parallel\}_{n\in\mathbb{N}}$ is bounded by M. Fix any pair $(x_0,y_0)\in X\times Y$ and let a be an element of the set A_1 . Then the map $F_n:Y\to Z$, given by the formula $F_n(y):=T_n(a,y)$ for $y\in Y$, is linear and continuous in Y. Moreover, the sequence $\{F_n(y)\}_{n\in\mathbb{N}}$ is convergent for any $y\in A_2$ and $\{\parallel F_n\parallel\}_{n\in\mathbb{N}}$ is bounded. Indeed,

$$|| F_n || = \sup_{\|y\|=1} || F_n(y) || = \sup_{\|y\|=1} || T_n(a, y) ||$$

$$\leq \sup_{\|y\|=1} || T_n || || a || || y || = M \cdot || a ||, \quad n \in \mathbb{N}.$$

So, by Theorem 16.8 ([3] p.156), we get the convergence of the sequence $\{F_n(y)\}_{n\in\mathbb{N}}$ for all $y\in Y$. Hence, in particular, $\{F_n(y_0)\}_{n\in\mathbb{N}}$ is convergent. Since $a\in A_1$ is arbitrary, the sequence $\{T_n(a,y_0)\}_{n\in\mathbb{N}}$ is convergent for any $a\in A_1$.

Let us define maps $G_n: X \to Z$ as follows:

$$G_n(x) := T_n(x, y_0)$$
 for $x \in X$, $n \in \mathbb{N}$.

 G_n are linear and continuous maps and the sequence $\{G_n(x)\}_{n\in\mathbb{N}}$ is convergent for any $x\in A_1$. Moreover,

$$||G_n|| = \sup_{\|x\|=1} ||G_n(x)|| \le M \cdot ||y_0||, \quad n \in \mathbb{N}.$$

Hence, by the same theorem, the sequence $\{G_n(x)\}_n \in \mathbb{N}$ is convergent for any $x \in X_1$, in particular for $x = x_0$. Consequently $\{T_n(x_0, y_0)\}_{n \in \mathbb{N}}$ is convergent.

THEOREM 6. Let X,Y,Z,A_1,A_2 be just like in the last theorem. If a sequence $T_n: X \times Y \to Z$ of bilinear and continuous maps is convergent in $A_1 \times A_2$ and the sequence $\{\parallel T_n \parallel\}_{n \in \mathbb{N}}$ is bounded then the function $T: X \times Y \to Z$ given by

$$T(x,y) := \lim_{n \to \infty} T_n(x,y)$$
 for $(x,y) \in X \times Y$

is a bilinear as well as continuous map and

$$||T|| \leq \sup_{n \in \mathbb{N}} ||T_n||$$
.

PROOF. Theorem 5 implies the convergence of the sequence $\{T_n(x,y)\}_{n\in\mathbb{N}}$ for all $(x,y)\in X\times Y$ and hence, the correctness of definition of the map T. Its bilinearity and continuity follow from the Theorem 48.4 ([1] p.139).

Let $x \in X$, $y \in Y$ and $||x|| \le 1$, $||y|| \le 1$. Then

$$|| T(x,y) || \le || T(x,y) - T_n(x,y) || + || T_n(x,y) ||$$

$$\le || T(x,y) - T_n(x,y) || + M || x || || y ||$$

$$\le || T(x,y) - T_n(x,y) || + M$$

for $n \in \mathbb{N}$, where $M = \sup_{n \in \mathbb{N}} \| T_n \|$. By letting $n \to \infty$, we obtain $\| T(x,y) \| \le M$ for $(x,y) \in X \times Y$, $\| x \| \le 1$, $\| y \| \le 1$. Thus

$$||T|| = \sup_{\|x\| \le 1, \|y\| \le 1} ||T(x, y)|| \le M = \sup_{n \in \mathbb{N}} ||T_n||.$$

LEMMA 1. Let X,Y,Z be real vector spaces, C,D convex cones in X,Y, respectively. Let $f:C\times D\to Z$ be a biadditive function. Then there exists a biadditive function $\bar f:X\times Y\to Z$ such that $\bar f(x,y)=f(x,y)$ for $(x,y)\in C\times D$. If C,D are open then

$$\bar{f}(x,y) := f(x_1,y_1) - f(x_2,y_1) - f(x_1,y_2) + f(x_2,y_2).$$

where $x = x_1 - x_2$, $y = y_1 - y_2$, $x_1, x_2 \in C$, $y_1, y_2 \in D$.

PROOF. If C, D are cones then $(C \times D) - (C \times D) = (C - C) \times (D - D)$ is a subspace of $X \times Y$. Let us define a function f_0 on $(C - C) \times (D - D)$ as follows:

$$f_0(x,y) := f(x_1,y_1) - f(x_2,y_1) - f(x_1,y_2) + f(x_2,y_2),$$

where $x = x_1 - x_2$, $y = y_1 - y_2$, $x_1, x_2 \in C$, $y_1, y_2 \in D$.

At first we shall show that the definition of f_0 is correct. Assume that $x = x_1 - x_2 = z_1 - z_2$ and $y = y_1 - y_2$ where $x_1, x_2, z_1, z_2 \in C$ and $y_1, y_2 \in D$. Then $x_1 + z_2 = z_1 + x_2$ and

$$\begin{split} & [f(x_1,y_1) - f(x_1,y_2) - f(x_2,y_1) + f(x_2,y_2)] \\ & - [f(z_1,y_1) - f(z_1,y_2) - f(z_2,y_1) + f(z_2,y_2)] \\ & = f(x_1 + z_2,y_1) + f(x_2 + z_1,y_2) - f(x_2 + z_1,y_1) - f(x_1 + z_2,y_2) \\ & = [f(x_1 + z_2,y_1) - f(x_2 + z_1,y_1)] + [f(x_2 + z_1,y_2) - f(x_1 + z_2,y_2)] = 0. \end{split}$$

The case when $x = x_1 - x_2$ and $y = y_1 - y_2 = u_1 - u_2$, $(x_1, x_2 \in C, y_1, y_2, u_1, u_2 \in D)$ is similar.

We shall check that f_0 is a biadditive map on $(C-C)\times(D-D)$ to Z and $f_0(x,y)=f(x,y)$ for $(x,y)\in C\times D$. Indeed, let $x,z\in C-C$ and $y\in D-D$. Then there exist $x_1,x_2,z_1,z_2\in C$ and $y_1,y_2\in D$ such that $x=x_1-x_2,\ y=y_1-y_2,\ z=z_1-z_2$. By defintion of f_0

$$\begin{split} f_0(x+z,y) &= f_0((x_1+z_1)-(x_2+z_2),y_1-y_2) \\ &= f(x_1+z_1,y_1)-f(x_1+z_1,y_2) \\ &-f(x_2+z_2,y_1)+f(x_2+z_2,y_2) \\ &= [f(x_1,y_1)-f(x_1,y_2)-f(x_2,y_1)+f(x_2,y_2)] \\ &+[f(z_1,y_1)-f(z_1,y_2)-f(z_2,y_1)+f(z_2,y_2)] \\ &= f_0(x,y)+f_0(z,y). \end{split}$$

In the same way we can prove the addivity of f_0 with respect to the second variable. Finally, we shall check that f_0 is an extension of f. Let $(x,y) \in C \times D$. Then (x,y) = (2x,2y) - (x,y) and

$$f_0(x,y) = f(2x,2y) - f(x,2y) - f(2x,y) + f(x,y)$$

= $f(x,2y) - [f(2x,y) - f(x,y)] = f(x,2y) - f(x,y) = f(x,y).$

Let X_1 be a subspace of X, and Y_1 be a subspace of Y such that $(C-C) \oplus X_1 = X$ and $(D-D) \oplus Y_1 = Y$. So, if $(x,y) \in X \times Y$ then

$$(x,y)=(x_1+x_2,y_1+y_2), \text{ where } x_1\in C-C, x_2\in X_1,y_1\in D-D,y_2\in Y_2.$$

Let us define a function $\bar{f}: X \times Y \to Z$ as follows:

$$\bar{f}(x,y)=f_0(x_1,y_1).$$

It is easy to check that \bar{f} is properly defined biadditive extension of f. \square

REMARK 2. With respect to the above lemma we may assert in Theorem 3 that the biadditive function a is given on $X \times Y$. Similarly in the next theorem.

Now, we shall prove the following theorem, analogue to Theorem 2 from [6].

THEOREM 7. Let X,Y be real separable Banach spaces, C,D be open, convex cones in X,Y, respectively, and let Z be a real Banach space. Assume that $F:C\times D\to \mathrm{cc}(Z)$ is a biadditive s.v. function, $x_0\in C,\ y_0\in D$ and

 $p \in F(x_0, y_0)$. Then there exists a biadditive selection $f: C \times D \to Z$ of F such that $f(x_0, y_0) = p$. Moreover, if F is lower semicontinuous, then f is continuous.

PROOF. Since F is compact and convex valued in Z, by the Krein-Milman Theorem ([5])

$$p \in F(x_0, y_0) = \operatorname{cl}[\operatorname{convExt} F(x_0, y_0)].$$

Then for each $n \in \mathbb{N}$ there is an element $p_n \in \text{convExt} F(x_0, y_0)$ such that

$$||p_n-p||<\frac{1}{n}.$$

Theorem 2 guarantees the existence of biadditive functions $f_n: C \times D \to Z$ such that

$$f_n(x_0, y_0) = p_n$$

and

$$f_n(x,y) \in \text{convExt } F(x,y) \subseteq F(x,y) \text{ for } (x,y) \in C \times D.$$

The set $C \times D$ is an open cone in $X \times Y$ and the set $(C \times D) - (C \times D)$ is an open subspace of $X \times Y$, whence

$$(C \times D) - (C \times D) = \lim_{N \to \infty} (C \times D) = (C - C) \times (D - D) = X \times Y.$$

By Lemma 1

$$\bar{f}_n(x,y) := f_n(x_1,y_1) - f_n(x_2,y_1) - f_n(x_1,y_2) + f_n(x_2,y_2),$$

where $x = x_1 - x_2$, $y = y_1 - y_2$, $x_1, x_2 \in C$, $y_1, y_2 \in D$, is a biadditive map from $X \times Y$ to Z and $\bar{f}_n(x, y) = f_n(x, y)$ for $(x, y) \in C \times D$.

Now, we assume that F is a lower semicontinuous s.v.function. For a fixed $x \in C$ a function $y \to F(x,y)$ is additive and \mathbb{Q}_+ -homogeneous on D (see Lemma 5.1 in [4]). There exists a constant M(x) > 0 such that $||F(x,y)|| \le M(x) ||y||$, where $||F(x,y)|| = \sup\{||u||; u \in F(x,y)\}$ for $y \in D$ (see Theorem 4 in [7]). Then, for each $x \in C$, the set

$$F(x,\Sigma) = \bigcup_{y \in \Sigma} F(x,y),$$

where $\Sigma = \{y \in D; \parallel y \parallel \leq 1\}$ is bounded. By Smajdor's theorem from [7] there exists a constant M such that

$$\sup_{y \in \Sigma} || F(x, y) || \le M || x || \quad \text{for } x \in C.$$

Let us take a point $y \in D$ and let $\{r_n\}_{n \in \mathbb{N}}$ be a sequence of rational numbers such that $\lim_{n \to \infty} r_n = \parallel y \parallel$ and $\parallel y \parallel < r_n$ for $n \in \mathbb{N}$. Since $\frac{y}{r_n} \in \Sigma$, $\parallel F(x, \frac{y}{r_n}) \parallel \le M \parallel x \parallel$ for all $n \in \mathbb{N}$, $x \in C$. Hence $\parallel F(x, y) \parallel \le M r_n \parallel x \parallel$. Passing to the limit with $n \to \infty$, we get

(7.1)
$$|| F(x,y) || \le M || x || || y ||$$
 for $(x,y) \in C \times D$.

Hence and by the relation $f_n(x,y) \in F(x,y)$ we deduce that

(7.2)
$$||f_n(x,y)|| \le M ||x|| ||y||$$
 for $(x,y) \in C \times D$, $n \in \mathbb{N}$.

For every $x \in X$, the function $\bar{f}_n(x,\cdot): Y \to Z$ is additive in Y and bounded in some neighbourhood of any point of D, so by the Mehdi theorem (Theorem 4 in [2]) $\bar{f}_n(x,\cdot)$ is continuous. Similarly, we get continuity of $\bar{f}_n(\cdot,y)$ for any $y \in Y$. Thus \bar{f}_n is a bilinear and continuous map on $X \times Y$.

Now, we shall show that the sequence $\{\|\bar{f}_n\|\}_{n\in\mathbb{N}}$ is bounded. Let us fix $(x,y)\in X\times Y$ and $x_1,x_2\in C,y_1,y_2\in D$ such that $x=x_1-x_2,\ y=y_1-y_2$. Then

$$\| \bar{f}_n(x,y) \| = \| f_n(x_1,y_1) - f_n(x_1,y_2) - f_n(x_2,y_1) + f_n(x_2,y_2) \|$$

$$\leq \| f_n(x_1,y_1) \| + \| f_n(x_1,y_2) \|$$

$$+ \| f_n(x_2,y_1) \| + \| f_n(x_2,y_2) \|,$$

whence and by (7.2) we get

$$\parallel \bar{f}_n(x,y) \parallel \leq M(\parallel x_1 \parallel \parallel y_1 \parallel + \parallel x_1 \parallel \parallel y_2 \parallel + \parallel x_2 \parallel \parallel y_1 \parallel + \parallel x_2 \parallel \parallel y_2 \parallel).$$

Thus, by Theorem 4 the sequence $\{\|\bar{f}_n\|\}_{n\in\mathbb{N}}$ is bounded.

Let sets A and B be dense and countable in C and D, respectively. The set

$$S := A \times B = \{(x_1, y_1), (x_2, y_2), ...\}$$

is dense in $C \times D$ and linearly dense in $X \times Y$. We choose a subsequence $\{\bar{f}_{\lambda_n}\}_{n \in \mathbb{N}}$ of the sequence $\{\bar{f}_n\}_{n \in \mathbb{N}}$ convergent to the point (x_1, y_1) . We are able to do it because $\{\bar{f}_n(x_1, y_1)\}_{n \in \mathbb{N}}$ is a sequence of elements of the compact set $F(x_1, y_1)$. Next, we choose a subsequence of $\{\bar{f}_{\lambda_n}\}_{n \in \mathbb{N}}$ convergent to (x_2, y_2) , etc. Using the diagonal method we get the subsequence $\{\bar{f}_{n_k}\}_{k \in \mathbb{N}}$ of $\{\bar{f}_n\}_{n \in \mathbb{N}}$ convergent on S. The sequence $\{\bar{f}_{n_k}\}_{k \in \mathbb{N}}$ is convergent on the lineary dense in $X \times Y$ set S and the sequence $\{\|\bar{f}_{n_k}\|\}_{k \in \mathbb{N}}$ is bounded, so by Theorem 5 it converges to some bilinear and continuous map $\bar{f}: X \times Y \to Z$. For any $(x,y) \in C \times D$ we have

$$\bar{f}(x,y) \in \operatorname{cl}[\operatorname{convExt} F(x,y)] = F(x,y).$$

Therefore $f := \bar{f}|_{C \times D}$ is a selection of F on the cone $C \times D$.

If $F: C \times D \to \mathrm{cc}(Z)$ is a biadditive s.v.function, then there exist a biadditive function $a: X \times Y \to Z$ and a biadditive continuous s.v.function $L: C \times D \to \mathrm{cc}(Y)$ such that

$$F(x,y) = a(x,y) + L(x,y)$$
 for $(x,y) \in C \times D$

(cf. Theorem 3 and Remark 2). By the first part of the proof there exists a bilinear and continuous function $f: X \times Y \to Z$ such that $f|_{C \times D}$ is a selection of L on the cone $C \times D$ and

$$f(x_0, y_0) = p - a(x_0, y_0).$$

Then the function $f_1: X \times Y \to Z$ given by

$$f_1(x,y) := a(x,y) + f(x,y)$$
 for $(x,y) \in X \times Y$,

restricted to $C \times D$, is a biadditive selection of F satisfying the condition

$$f_1(x_0, y_0) = a(x_0, y_0) + f(x_0, y_0) = p.$$

This completes the proof.

REFERENCES

- [1] W. Kolodziej, Wybrane rozdziały analizy matematycznej, PWN, Warszawa 1982.
- [2] M. R. Mehdi, On convex functions, J. London Math. Soc. 39 (1964), 321-326.
- [3] J. Musielak, Wstęp do analizy funkcjonalnej, PWN, Warszawa 1989.
- [4] K. Nikodem, K-convex and K-concave set valued functions, Zeszyty Naukowe Politechniki Lódzkiej, Mat.559, Rozprawy Naukowe 114, 1989.
- [5] H. H. Schaefer, Topological vector spaces, New York and London, 1966.
- [6] A. Smajdor, Additive selections of a composition of additive set-valued functions, (to appear).
- [7] W. Smajdor, Superadditive set-valued functions and Banach-Steinhaus theorem, Radovi Mat. 3 (1987), 203-214.

Institute of Mathematics Pedagogical University Podchorazych 2 PL-30-084 Kraków, Poland