ONE-ONE AND ONE-ONE ONTO CHOICE FUNCTIONS

Roman Wituea

Abstract

The existence of one-one and one-one onto choice functions on a family of subsets of a given nonempty set is studied.

Let \mathcal{T} be a nonempty family of nonempty sets. The aim of this paper is to investigate the supplemental conditions imposed on \mathcal{T} and the elements of \mathcal{T} which, together with the Axiom of Choice (or one of its equivalents) imply the existence of an one-one choice function $\psi: \mathcal{T} \rightarrow \bigcup \mathcal{T}$, or stronger, the existence of an one-one choice function from \mathcal{T} onto $\bigcup \mathcal{T}$.

It will be assumed throughout all the paper that the Axiom of Choice (and consequently each of its equivalents) proves true. Moreover, a given sequence (also a transfinite sequence) of sets or elements of a set will be often identified with its set of values.

Theorem 1. Let $\mathbb{Y}=\left\{Y_{x}: x \in X\right\}$ be a family of nonempty subsets of some infinite set X. If card $Y_{x}=\operatorname{card} X, \quad x \in X$, then there exists an one-one choice function on \mathbb{Y}.

Proof. It is sufficient to prove that there exist pairwise disjoint sets $Z_{x} \subseteq Y_{x}, \quad x \in X$, such that card $Z_{x}=\operatorname{card} X, x \in X$. To do this let us denote by $<$ a minimal order on the set X, i.e. a well order on X satisfying the following condition:

$$
(\forall x \in X)(I(x):=\{y: y \in X \quad \text { and } \quad y<x\} \Rightarrow \operatorname{card} I(x)<\operatorname{card} X) .
$$

[^0]Let 0 be the minimal element of the ordered set $(X,<)$. By transfinite induction we construct an one-one sequence $\left\{y_{u, v}: u, v \in X\right\}$ of elements of X such that

$$
Z_{u}:=\left\{y_{u, v}: v \in X\right\} \subseteq Y_{u}
$$

for every $u \in X$.
Let $y_{0,0}$ be the minimal element of Y_{0}. Assume now that for some $w \in X$, the one-one sequence $S_{w}=\left\{y_{u, v}: u, v \in I(w)\right\}$ has been already defined. Moreover, assume that $\left\{y_{u, v}: v \in I(w)\right\} \subset Y_{u}$, for every $u \in I(w)$. By transfinite induction with respect to $u \in I(w)$ we will construct the elements $y_{u, w}$, with $u \in I(w)$. First note that

$$
\operatorname{card} S_{w}=\operatorname{card}(I(w) \times I(w))=\operatorname{card} I(w)<\operatorname{card} X
$$

whenever $I(w)$ is infinite, and therefore $Y_{0} \backslash S_{w} \neq \emptyset$. Let $y_{0, w}$ denote the minimal element of the set $Y_{0} \backslash S_{w}$. If for some $t<w$ the elements $y_{u, w}$ with $u<t$ are already defined then

$$
\operatorname{card}\left(S_{w} \cup\left\{y_{u, w}: u<t\right\}\right) \leq \operatorname{card} I(w)<\operatorname{card} X .
$$

Hence $Y_{t} \backslash\left(S_{w} \cup\left\{y_{u, w}: u<t\right\}\right) \neq \emptyset$ and we define $y_{t, w}$ to be the minimal element of this set. Thus, all elements $y_{u, w}$ with $u \in I(w)$ have been already defined.

In a similar way as above we can define the elements $y_{\boldsymbol{v}, \boldsymbol{u}} \in Y_{w}$, $u \in I(w+1)$. Consequently, we may assume that the one-one sequence $\left\{y_{u, v}: u, v \in I(w+1)\right\}$ such that $\left\{y_{u, v}: v \in I(w+1)\right\} \subset Y_{u}$ for every $u \in I(w+1)$ is constructed.

Finally, by the principle of transfinite induction, the elements $y_{u, v}$ are defined for all $u, v \in X$.

Corollary 1.1. Let \mathcal{T} be a nonempty family of subsets of some infinite set X. Suppose that the following two conditions are fulfilled:
(1) $\quad \operatorname{card} \mathcal{T} \leq \operatorname{card} X$,
(2) $\quad(\forall Y)(Y \in \mathcal{T} \Rightarrow \operatorname{card}(X \backslash Y)<\operatorname{card} X)$.

Then there exists an one-one choice function on \mathcal{T}.
An alternative (and more compact) proof of Corollary 1.1. will be given below.

Proof of Corollary 1.1. Let f be an arbitrary one-one function from $X \times X$ onto X. Define $A_{x}=f(\{x\} \times X), x \in X$. Then the family $\left\{A_{x}: x \in X\right\}$ is a partition of X and card $A_{x}=\operatorname{card} X, x \in X$. Hence, combining (1) with the equality $X \backslash Y=\bigcup_{x \in X}\left(A_{x} \backslash Y\right), Y \in \mathcal{T}$, we can assert
that the families $B_{Y}:=\left\{A_{x}: x \in X\right.$ and $\left.A_{x} \subset Y\right\}, Y \in \mathcal{T}$, are nonempty and, more precisely, that card $B_{Y}=$ card X for every $Y \in \mathcal{T}$.

Let F be a choice function on the family $\left\{B_{Y}: Y \in \mathcal{T}\right\}$ and let ϱ be the equivalence relation on \mathcal{T} defined as follows: $Y \varrho Z \Leftrightarrow F\left(B_{Y}\right)=F\left(B_{Z}\right)$. We see that for every $\mathcal{E} \in \mathcal{T} / \varrho$ the following inclusion is fulfilled:

$$
F\left(B_{Y}\right) \subset \bigcap\{Z: Z \in \mathcal{E}\}, \quad Y \in \mathcal{E}
$$

Fix an choice function G on \mathcal{T} / ϱ. Then we have

$$
(\forall \mathcal{D} \in \mathcal{T} / \varrho)(\forall \mathcal{E} \in \mathcal{T} / \varrho)\left(\mathcal{D} \neq \mathcal{E} \Rightarrow F\left(B_{G(\mathcal{D})}\right) \cap F\left(B_{G(\mathcal{E})}\right)=\emptyset\right) .
$$

Applying (2) we get card $\mathcal{E} \leq$ card $F\left(B_{G(\mathcal{E})}\right)$ for every $\mathcal{E} \in \mathcal{T} / \varrho$. Therefore for every $\mathcal{E} \in \mathcal{T} / \varrho$ there exists an one-one function $g_{\mathcal{E}}: \mathcal{E} \rightarrow F\left(B_{G(\mathcal{E})}\right)$. We are now in a position to define an one-one choice function $g: \mathcal{T} \rightarrow X$, by $g(Y)=g_{\mathcal{E}}(Y)$ for every $Y \in \mathcal{E}$ and $\mathcal{E} \in \mathcal{T} / \varrho$.

Theorem 2. Let $\left\{X_{\beta}\right\}_{\beta<\alpha}$ be a transfinite sequence of sets satisfying the following two conditions:
(1) $(\forall \beta)\left(\beta<\alpha \Rightarrow \operatorname{card} X_{\beta}>\operatorname{card} \beta\right)$,
(2) $(\forall \beta, \delta)\left(\beta<\delta<\alpha \Rightarrow X_{\beta} \subseteq X_{\delta}\right)$.

Then there exists an one-one choice function on $\left\{X_{\beta}\right\}_{\beta<\alpha}$.
Proof. By the transfinite induction, we deduce that there exists an ordinal number $\widetilde{\alpha} \leq \alpha$ and an increasing function $f: \mathcal{Z}(\widetilde{\alpha}) \rightarrow \mathcal{Z}(\alpha)$, where $\mathcal{Z}(\beta)$ denotes the set of all ordinal numbers smaller then β for every ordinal number β, such that
(3) the sets $\mathcal{Z}(\widetilde{\alpha})$ and $f(\mathcal{Z}(\widetilde{\alpha}))$ are similar, $f(0)=0$ and $f(\widetilde{\alpha})=\alpha$,
(4) for every isolated ordinal $\beta<\widetilde{\alpha}, \quad \beta=\gamma+1$, we have $\operatorname{card}\left(X_{f(\beta)} \backslash X_{f(\gamma)}\right)=\operatorname{card} X_{f(\beta)}$
and
$(\forall \delta)\left(\delta \in \mathcal{Z}(\alpha)\right.$ and $\left.f(\gamma)<\delta<f(\beta) \Rightarrow \operatorname{card}\left(X_{f(\beta)} \backslash X_{\delta}\right)<\operatorname{card} X_{f(\beta)}\right)$,
(5) for every limit ordinal number $\beta<\widetilde{\alpha}$ two following conditions are satisfied:
$(\forall \gamma)\left(\gamma<\widetilde{\alpha}\right.$ and $\left.\gamma<\beta \Rightarrow \operatorname{card}\left(X_{f(\beta)} \backslash X_{f(\gamma)}\right)=\operatorname{card} X_{f(\beta)}\right)$
and if $\delta \in \mathcal{Z}(f(\beta))$ and $\delta>f(\gamma)$ for every $\gamma<\beta$, then card $\left(X_{f(\beta)} \backslash X_{\delta}\right)<\operatorname{card} X_{f(\beta)}$.
An one-one choice function $g:\left\{X_{\beta}\right\}_{\beta<\alpha} \rightarrow \bigcup_{\beta<\alpha} X_{\beta}$ will be constructed below by the transfinite induction with respect on $\gamma \in \mathcal{Z}(\widetilde{\alpha})$.

By (1), an one-one choice function g on all sets X_{β}, with β finite, could be easily defined. In the sequel, g could be defined on all finite sets X_{β}. Assume now that g is an one-one choice function defined on all X_{β} with $\beta \leq f(\gamma)$ for some $\gamma<\tilde{\gamma}$, where $\tilde{\gamma} \in \mathcal{Z}(\tilde{\alpha})$ is arbitrary fixed. There is no loss of generality in assuming that the cardinality of $f(\widetilde{\gamma})$ is infinite. If $\tilde{\gamma}$ is an isolated ordinal number then $\widetilde{\gamma}=\gamma+1$ for some $\gamma<\widetilde{\alpha}$. By (1) we obtain

$$
\operatorname{card} X_{f(\gamma)}>\operatorname{card} \operatorname{Im}(g)
$$

where $\operatorname{Im}(g)$ denotes the image of g. Hence, by (4), we deduce that

$$
\begin{aligned}
& (\forall \delta)(\delta \in \mathcal{Z}(\alpha) \text { and } f(\gamma)<\delta<f(\widetilde{\gamma}) \Rightarrow \\
& \quad \text { card }\left[\left(X_{f(\tilde{\gamma})} \backslash \operatorname{Im}(g)\right) \backslash\left(X_{\delta} \backslash \operatorname{Im}(g)\right)\right] \\
& \left.\quad<\operatorname{card}\left[X_{f(\tilde{\gamma})} \backslash \operatorname{Im}(g)\right]\right) .
\end{aligned}
$$

Therefore, if the set $\left(X_{f(\tilde{\gamma})} \backslash \operatorname{Im}(g)\right)$ is infinite then, in virtue of Corollary 1.1, there exists an one-one choice function on the family $\left\{X_{\delta} \backslash \operatorname{Im}(g): f(\gamma)<\right.$ $\delta<f(\widetilde{\gamma})\}$. Thus the definition of g can be extended on the sets X_{δ} with $\delta \in \mathcal{Z}(\alpha)$ and $f(\gamma)<\delta<f(\tilde{\gamma})$. In the case when the set $\left(X_{f(\tilde{\gamma})} \backslash \operatorname{Im}(g)\right)$ is finite then by the equality

$$
\operatorname{card}\left(X_{f(\bar{\gamma})} \backslash \operatorname{Im}(g)\right)=\operatorname{card} X_{f(\bar{\gamma})}
$$

we obtain that the set $X_{f(\bar{\gamma})}$ is also finite, which was excluded above. If $\tilde{\gamma}$ is a limit ordinal number then applying the condition (5) we can extand the definition of g on the sets X_{δ} with $\delta>f(\gamma)$ for every $\gamma<\widetilde{\gamma}$ and $\delta \leq f(\widetilde{\gamma})$.

Lemma 3. Let $\left\{Y_{x}: x \in(0,1]\right\}$ be a family of sets such that card $Y_{x} \geq \mathfrak{c}, x \in(0,1]$ and $Y_{x} \subseteq Y_{z}$ for $x, z \in(0,1], x \leq z$. Then there exists an one-one choice function

$$
\psi:\left\{Y_{x}: x \in(0,1]\right\} \rightarrow Y_{1} .
$$

Proof. First assume that card $\bigcap_{0<x \leq 1} Y_{x} \geq c$. Let g be an one-one function from the interval $(0,1]$ into the set $\bigcap_{0<x \leq 1} Y_{x}$. Then the mapping $Y_{x} \mapsto g(x), x \in(0,1]$, is the desired choice function.

In the case when card $\bigcap_{0<x \leq 1} Y_{x}<\mathfrak{c}$, it is easy to show that the following condition is sastisfied:
(1) $\quad(\forall x \in(0,1))(\exists z \in(0,1))\left(z<x\right.$ and $\left.\quad \operatorname{card}\left(Y_{x} \backslash Y_{z}\right) \geq \mathfrak{c}\right)$.

Indeed, if there exists $x \in(0,1)$ such that for any $z \in(0,1)$ we have card $\left(Y_{x} \backslash Y_{z}\right)<\mathfrak{c}$ then

$$
\bigcap_{0<z \leq x} Y_{z}=Y_{x} \backslash\left(\bigcup_{0<z \leq x}\left(Y_{x} \backslash Y_{z}\right)\right)=Y_{x} \backslash\left(\bigcup_{n=1}^{\infty}\left(Y_{x} \backslash Y_{x / n}\right)\right) .
$$

Hence, it follows immediately that card $\bigcap_{0<z \leq x} Y_{z} \geq \mathfrak{c}$, which contradicts our assumption. By (1), we can choose a decreasing sequence $\{x(n): n \in \mathbb{N}\} \subset$ $(0,1)$ convergent to zero such that $\operatorname{card}\left(Y_{x(n)} \backslash Y_{x(n+1)}\right) \geq \mathrm{c}$ for every $n \in \mathbb{N}$. Let g_{n} denotes an one-one function which maps the interval ($x(n), x(n-1)$] into the set $Y_{x(n)} \backslash Y_{x(n+1)}, n \in \mathbb{N}$, where $x(0)=1$. Then the function $g\left(Y_{x}\right):=g_{n}(x)$ for $x \in(x(n), x(n-1)], n \in \mathbb{N}$, is the desired choice function.

Theorem 4. Let $\left\{Y_{x}: x \in(0,1)\right\}$ be a family of subsets of the interval $(0,1)$ and let the following condition be fulfilled. There exists a sequence $\left\{X_{n}: n \in \mathbb{N}\right\}$ of mutually disjoint nonempty subintervals of the unit interval such that for every $x \in(0,1)$ there exists an index $n(x) \in \mathbb{N}$ such that $X_{n(x)} \subseteq Y_{x}$. Then we are able to define an one-one choice function $\psi:\left\{Y_{x}: x \in(0,1)\right\} \rightarrow \bigcup_{n \in \mathbb{N}} X_{n}$ effectively.

Proof. It is well known that we can construct an one-one function ϕ from (0,1) onto a Sierpiński's family \mathcal{S} of increasing sequences of positive integers with almost disjoint sets of values effectively. From now on we assume that the family $\left\{Y_{x}: x \in(0,1)\right\}$ is indexed by elements $s \in \mathcal{S}$ i.e. we have $\left\{Y_{x}: x \in(0,1)\right\}=\left\{Y_{s}: s \in \mathcal{S}\right\}$.

For every $s \in \mathcal{S}$ we denote by $k(s)$ the minimal positive integer such that $X_{k(s)} \subseteq Y_{s}$. Moreover, let $\left(a_{n}, b_{n}\right)=\operatorname{int} X_{n}, n \in \mathbb{N}$, and let the functions $f_{n}:(0,1) \rightarrow\left(a_{n}, b_{n}\right), \quad n \in \mathbb{N}$, be defined as follows $f_{n}(x)=\left(b_{n}-a_{n}\right) x+$ $a_{n}, x \in(0,1)$. Then a trivial verification shows that the following mapping is the desired choice function:

$$
Y_{s} \mapsto f_{k(s)}\left(\sum_{t=1}^{\infty} 2^{-L(s, t)}\right)
$$

where $s \in \mathcal{S}, \quad s=\left\{s_{i}: i \in \mathbb{N}\right\}, L(s, t)=\sum_{i=1}^{i} l_{i}, t \in \mathbb{N}$, and the sequence $l=\left\{l_{i}: i \in \mathbb{N}\right\}$ is defined in the following way: $l_{s_{i}}=2 i-1, i \in \mathbb{N}$, and the restriction to the complement of the set s to \mathbb{N} of l is the increasing sequence of all even positive integers.

Lemma 5. Let \mathcal{H} be a Hilbert space over $\mathbb{K}=\mathbb{R}$ or \mathbb{C}. Let $\left\{\mathcal{H}_{\alpha}: \alpha \in A\right\}$ be a family of nonempty, closed and convex subsets of \mathcal{H}. Then, by the countable Axiom of Choice, there exists a choice function

$$
\psi:\left\{\mathcal{H}_{\alpha}: \alpha \in A\right\} \rightarrow \bigcup_{\alpha \in A} \mathcal{H}_{\alpha}
$$

Moreover, if one of the following two conditions is satisfied: either the sets $\mathcal{H}_{\alpha}, \alpha \in A$, are mutually disjoint, or $i_{\alpha} \neq i_{\beta}$ for any two $\alpha, \beta \in A, \alpha \neq \beta$, where $i_{\alpha}=\inf \left\{\|h\|: h \in \mathcal{H}_{\alpha}\right\}$, then we can additionally assume that ψ is one-one.

Proof. It is sufficient to note that, in virtue of the countable Axiom of Choice, each set $\mathcal{H}_{\alpha}, \alpha \in A$, contains precisely one element with minimal norm (cf [3], Theorem 2.3.1).

Remark. Since for every $z \in \mathcal{H}$ and for every $\alpha \in A$ there exists precisely one element $z_{\alpha} \in \mathcal{H}_{\alpha}$ such that $\left\|z-z_{\alpha}\right\|=\operatorname{dist}\left(z, \mathcal{H}_{\alpha}\right)$, we may suppose that there exist, in general case, many different choice functions discussed in the above Lemma.

Theorem 6. Let \mathcal{T} be a family of subsets of some infinite set X such that
(1) $\quad(\forall x)(x \in X \Rightarrow \quad \operatorname{card}\{Y: Y \in \mathcal{T}$ and $\quad x \in Y\}=\operatorname{card} X)$.

Then there exists a choice function ψ from \mathcal{T} onto X. Additionally, if the following two conditions are fulfilled:

$$
\begin{equation*}
\operatorname{card} \mathcal{T}=\operatorname{card} X \tag{2}
\end{equation*}
$$

and

$$
\begin{equation*}
(\forall Y)(Y \in \mathcal{T} \Rightarrow \operatorname{card} Y=\operatorname{card} X) \tag{3}
\end{equation*}
$$

then there exists an one-one onto choice function $\psi: \mathcal{T} \rightarrow X$.
Proof. Suppose that δ and δ^{\prime} are minimal ordinal numbers such that $\operatorname{card} \delta=\operatorname{card} X$ and card $\delta^{\prime}=\operatorname{card} \mathcal{T}$. Let $\left\{x_{\alpha}: \alpha<\delta\right\}$ and $\left\{Y_{\alpha}: \alpha<\delta^{\prime}\right\}$ be two one-one transfinite sequences containing all elements of the sets X and \mathcal{T}, respectively. Define, by transfinite induction, an one-one function g from $\{\alpha: \alpha<\delta\}$ into $\left\{\alpha: \alpha<\delta^{\prime}\right\}$ as follows:

$$
\begin{gathered}
g(0)=\min \left\{\alpha: \alpha<\delta^{\prime} \text { and } x_{0} \in Y_{\alpha}\right\}, \\
g(\beta)=\min \left\{\alpha: \alpha<\delta^{\prime} \quad \text { and } \alpha \notin\{g(\gamma): \gamma<\beta\} \text { and } x_{\beta} \in Y_{\alpha}\right\}
\end{gathered}
$$

for every $\beta<\delta$. We note that by (1) this definition is correct. Obviously, then g is one-one and $x_{\beta} \in Y_{g(\beta)}$ for every $\beta<\delta$.

Now we prove that if the conditions (2) and (3) hold true then g is onto $\{\alpha: \alpha<\delta\}$, because then $\delta^{\prime}=\delta$. To this aim assume that there exists $\beta<\delta$ such that $\beta \notin g(\{\alpha: \alpha<\delta\})$. It follows from (3) that card $g\left(\left\{\alpha: \alpha<\delta\right.\right.$ and $\left.\left.x_{\alpha} \in Y_{\beta}\right\}\right)=$ card X. On the other hand, by the definition of g, the following implication holds true:

$$
(\forall \alpha)\left(\alpha<\delta \text { and } x_{\alpha} \in Y_{\beta} \Rightarrow \text { either } g(\alpha)<\beta \text { or } \beta \in\{g(\gamma): \gamma<\alpha\}\right)
$$

The condition $\beta \in\{g(\nu): \nu<\alpha\}$ is excluded from our discussion. Therefore card $g\left(\left\{\alpha: \alpha<\delta\right.\right.$ and $\left.\left.x_{\alpha} \in Y_{\beta}\right\}\right) \leq \operatorname{card} \beta$ which contradicts the inequality $\operatorname{card} \beta<\operatorname{card} X$. Accordingly, g is onto $\{\alpha: \alpha<\delta\}$ as claimed. Then it follows immediately that $h\left(Y_{g(\beta)}\right):=x_{\beta}, \beta<\delta$, is the desired choice function on \mathcal{T}.

In the case when only the condition (1) is satisfied and the set

$$
\mathcal{T}^{\prime}:=\left(\mathcal{T} \backslash\left\{Y_{g(\beta)}: \beta<\delta\right\}\right)
$$

is nonempty, then h should be extended arbitrarily onto \mathcal{T}^{\prime}.
Corollary 6.1. Let X be an infinite set and let

$$
\mathcal{T}:=\{Y: Y \subset X \quad \text { and } \quad \operatorname{card}(X \backslash Y)<\operatorname{card} X\}
$$

If card $\mathcal{T}=$ card X then there exists an one-one choice function from \mathcal{T} onto X.

Corollary 6.2. Let \mathcal{T} be the family of all open intervals of the real line. Then there exists an one-one onto choice function $f: \mathcal{T} \rightarrow \mathbb{R}$.

Let ρ be the relation on \mathbb{R} defined as follows: $(\forall x, y \in \mathbb{R})(x \rho y \Leftrightarrow x-y \in$ Q). The relation ρ is obviously an equivalence. We denote by \mathbb{R} / ρ the corresponding family of equivalence classes. Our next result is a consequence of the existence of a choice function $\psi: \mathbb{R} / \rho \rightarrow \mathbb{R}$.

Lemma 7. Let $\left\{Q_{n}\right\}_{n=1}^{\infty}$ be a sequence of nontrivial intervals of \mathbb{R} satisfying the following conditions:
(1) $(\forall i)\left(i \in \mathbb{N}\right.$ and $\left.i<n \Rightarrow Q_{i} \cap Q_{n} \neq Q_{i}\right)$,
and
(2) for every real number x there exist infinite many intervals Q_{i} which contain x.
If $\mathcal{F}_{n}, n \in \mathbb{N}$, are nonempty families of subsets of \mathbb{R} such that
(3) $(\forall n, m)\left(n, m \in \mathbb{N}\right.$ and $\left.n \neq m \Rightarrow \mathcal{F}_{n} \cap \mathcal{F}_{m}=\emptyset\right)$
and
(4) $(\forall n)(\forall F)\left(n \in \mathbb{N}\right.$ and $\left.F \in \mathcal{F}_{n} \Rightarrow Q_{n} \subset F\right)$
then there exists an one-one choice function $\psi: \bigcup_{n \in \mathbb{N}} \mathcal{F}_{n} \rightarrow \mathbb{R}$.

- If, additionally, the following condition is fulfilled:
(5) $(\forall n)\left(n \in \mathbb{N} \Rightarrow \operatorname{card} \mathcal{F}_{n}=\mathfrak{c}\right)$
then there exists an one-one onto choice function $\psi: \bigcup_{n \in \mathbb{N}} \mathcal{F}_{n} \rightarrow \mathbb{R}$.
Proof. For every $E \in \mathbb{R} / \rho$ we denote by $\left\{x_{n}(E)\right\}_{n=1}^{\infty}$ an one-one sequence of all elements of the set E. More precisely, if $\left\{q_{n}\right\}_{n=1}^{\infty}$ is an one-one sequence of all rational numbers and $\psi: \mathbb{R} / \rho \rightarrow \mathbb{R}$ is a choice function then we could set $x_{n}(E)=\psi(E)+q_{n}$ for every $n \in \mathbb{N}$.

Now, by induction on n, we define auxiliary sequences of indices

$$
\{s(n, E)\}_{n=1}^{\infty}, E \in \mathbb{R} / \rho
$$

First, we define $s(1, E)$ to be the smallest positive integer with the property that $x_{s(1, E)} \in Q_{1}$ for every $E \in \mathbb{R} / \rho$. Let for some $n \in \mathbb{N}, n \geq 2$, the indices $s(i, E), i=1, \ldots, n-1, E \in \mathbb{R} / \rho$, are already defined. Then for every $E \in \mathbb{R} / \rho$ the index $s(n, E)$ is the smallest positive integer satisfying: $s(n, E) \neq s(i, E)$ for every $i=1, \ldots, n-1$, and $x_{s(n, E)} \in Q_{n}$. We note that, by (2), the following implication holds true:

$$
(\forall E)(E \in \mathbb{R} / \rho \Rightarrow\{s(n, E): n \in \mathbb{N}\}=\mathbb{N})
$$

Let f_{n} denotes an one-one function from \mathcal{F}_{n} into (onto, resp., whenever the condition (5) holds true) the set $\left\{x_{s(n, E)}: E \in \mathbb{R} / \rho\right\}$ for every $n \in \mathbb{N}$. Then the function $f(T):=f_{n}(T)$ for $T \in \mathcal{F}_{n}$ and $n \in \mathbb{N}$, is the desired choice function.

REMARK 7.1. Let $\left\{Q_{n}\right\}_{n=1}^{\infty}$ be the sequence built from all elements of the succesive finite sequences of the following intervals of \mathbb{R} :

$$
\left(\left(i-3^{-1}\right) 2^{-n},\left(i+1+3^{-1}\right) 2^{-n}\right),-n 2^{n} \leq i<n 2^{n}
$$

for every $n \in \mathbb{N}$.
Then $[-n, n] \subset \bigcup_{i=k(n)}^{k(n+1)} Q_{i}$, for every $n \in \mathbb{N}$, where $k(n):=n(n+1), n \in \mathbb{N}$. Hence the condition (2) of Lemma 7 is fulfilled. It can be readily checked that the condition (1) of Lemma 7 is also satisfied.

Corollary 7.1. Note that Corollary 6.2 also follows from Lemma 7. For the proof of this fact it is sufficient to define families $\mathcal{F}_{n}, n \in \mathbb{N}$, in the following way. Let \mathcal{F}_{1} be the set of all intervals $(a, b) \subseteq \mathbb{R}$ such that $Q_{1} \subseteq(a, b)$. If for some $n \in \mathbb{N}, n \geq 2$, the pairwise disjoint sets $\mathcal{F}_{1}, \ldots, \mathcal{F}_{n-1}$ are defined, then we set \mathcal{F}_{n} to be the family of all intervals $(a, b) \subseteq \mathbb{R}$ such that $Q_{n} \subseteq(a, b) \notin \bigcup_{i=1}^{n-1} \mathcal{F}_{i}$. We note that by (1) the condition (5) is satisfied.

Corollary 7.2. Let us define by \mathcal{T} the family of all open intervals (a, b) of the real line such that $(b-a) \in Q$. Then there exists an one-one onto choice function $\phi: \mathcal{T} \rightarrow \mathbb{R}$: We note that then \mathcal{T} is equal to the family of all intervals $I(q, \psi(E))$ with endpoints: q and $q+\psi(E)$ for $q \in Q, E \in \mathbb{R} / \rho$, where ψ and ρ are defined in the same way as in the proof of Lemma 7 . Hence we may put $\phi(I(q, \psi(E)))=\frac{1}{2} q+\psi(E)$.

Acknowledgements. I would like to express my thanks to Professor Jerzy Mioduszewski for his encouragement and valuable suggestions in order to improve the manuscript. I am also grateful to drs W. Dzik and J. Włodarz for helpful and stimulating discussions.

References

[1] J. Barwise, Handbook of Mathematical Logic, 1977, Amsterdam, New York, Oxford.
[2] Th. Jech, The Axiom of Choice, North-Holland, 1973, Amsterdam, London, New York.
[3] W. Mlak, Hilbert Spaces and Operator Theory, Kluwer Academic Publishers, Dordrecht, Boston, London, 1989.
[4] H. Rubin and J. E. Rubin, Equivalents of the Axiom of Choice, II, North-Holland, 1985, Amsterdam, New York, Oxford.
[5] W. Sierpiński, Cardinal and Ordinal Numbers, PWN, 1958, Warszawa.
[6] W. Sierpiński, Sur un probleme conduisant a un ensemble non mesurable, ne contenant aucun sous-ensemble parfait, Fund. Math., 14 (1929), 229-230.

Instytut Matematyczny
Politechnika Ślaska
Ul. Kaszubska 23
44-100 Gliwice

[^0]: Received June 4, 1993.
 AMS (1991) subject classification: Primary 03E25. Secondary 04A25.

