ON A BOUNDARY VALUE PROBLEM

Józef Kalinowski

Abstract

The equation $x^{\prime \prime}(t)=f\left(t, x(\alpha(t)), x^{\prime}(\beta(t))\right)$ for $t \in[a, b]$, where the functions α, β deviated argument of type $[a, b] \longrightarrow[a, b]$ is considered.

A sufficient condition for existence of the end b of the interval $[a, b]$, such that there exists the solution x of the above equation on $[a, b]$ fulfilling the boundary value conditions $x(a)=A, x(b)=B$ and $\left\|x^{\prime}(a)\right\|=v>0$, where the constants a, v and vectors A, B are given, is proved.

Let $D:=[a, b]$ be an interval and $d:=b-a$ denote length of this interval. Let the symbol $\|\cdot\|$ denote a norm in the space \mathbb{R}^{n}.

Consider a system of ordinary differential equations of the second order with a deviating argument of the form

$$
\begin{equation*}
x^{\prime \prime}(t)=f\left(t, x(\alpha(t)), x^{\prime}(\beta(t))\right), \quad t \in D \tag{1}
\end{equation*}
$$

Let us denote $D_{1}:=D \times \mathbb{R}^{n} \times \mathbb{R}^{n}$. We assume that the function $f: D_{1} \rightarrow \mathbb{R}^{n}$ is a continuous real function and fulfils the Lipschitz condition of the form
(2) $\|f(t, x, y)-f(t, \bar{x}, \bar{y})\| \leq p\|x-\bar{x}\|+q\|y-\bar{y}\| \quad$ for $\quad t \in D$,
where $p, q \geq 0$ are constants. The function f is bounded on the domain D_{1}, i.e.

$$
\begin{equation*}
\|f(\cdot, \cdot, \cdot)\| \leq K \tag{3}
\end{equation*}
$$

Received December 11, 1990.
AMS (1991) subject classification: Primary 34K10. Secondary 34B15.
$\alpha, \beta: D \rightarrow D$, functions of deviation of the argument, are continuous and $a \leq \alpha(t) \leq t, a \leq \beta(t) \leq t$.

We consider boundary value conditions for the system (1)

$$
\begin{equation*}
x(a)=A, \quad x(b)=B \tag{4}
\end{equation*}
$$

and

$$
\begin{equation*}
\left\|x^{\prime}(a)\right\|=v \tag{5}
\end{equation*}
$$

where vectors $A, B \in \mathbb{R}^{n}$ and the constant $v>0$ are given. The right end b of the interval D is unknown.

In this paper the existence of the right end b of the interval D and the solution x of the problem (1), (4), (5) on D will be proved.

In particular case, for equation

$$
x^{\prime \prime}(t)=g(x(t)), \quad t \in D
$$

the similar problem was consider in the paper [3].
We will prove the following theorem:
Theorem. Let the function f satisfy assumptions (2) and (3). Let us assume that

$$
v>\left\{\begin{array}{lll}
h\left(d_{1}\right) & \text { for } & d_{1}<d_{2} \\
h\left(d_{2}\right) & \text { for } & d_{1} \geq d_{2}
\end{array}\right.
$$

where

$$
h(d):=\frac{1}{d}\|B-A\|+\frac{K}{2} \cdot d, \quad d>0
$$

and

$$
\begin{aligned}
d_{1} & :=\sqrt{\frac{2\|B-A\|}{K}}, \\
d_{2} & :=\frac{\sqrt{q^{2}+2 p}-q}{p}
\end{aligned}
$$

and

$$
\begin{equation*}
\frac{1}{2} d^{2} p+d q<1 \tag{7}
\end{equation*}
$$

If the vectors A and B satisfy the relation

$$
\begin{equation*}
A \neq B \tag{8}
\end{equation*}
$$

then there exists the interval D and the solution x of the problem (1), (4), (5) on D.

Proof. From the results of the papers [1], [2] and the assumptions (2) and (7) we obtain existence and uniqueness of the solution of the problem (1), (4) on D, where $b>a$ and b is a parameter. From uniqueness of the solution it follows that the formula of the solution may be presented in the form

$$
\begin{equation*}
x(t)=\int_{a}^{t}\left[\int_{a}^{s} f\left(z, x(\alpha(z)), x^{\prime}(\beta(z))\right) d z\right] d s+M_{b} \cdot(t-a)+A \tag{9}
\end{equation*}
$$

for $t \in D$. From (9) it follows for $t=b$ that the vector $M_{b} \in \mathbb{R}^{n}$ is defined by formula

$$
\begin{equation*}
M_{b}=\frac{1}{d}\left\{(B-A)-\int_{a}^{b}\left[\int_{a}^{s} f\left(z, x(\alpha(z)), x^{\prime}(\beta(z))\right) d z\right]\right\} \tag{10}
\end{equation*}
$$

Differentiating each side of the equation (9) with respect to the variable t we obtain

$$
\begin{equation*}
x^{\prime}(t)=\int_{a}^{t} f\left(z, x(\alpha(z)), x^{\prime}(\beta(z))\right) d z+M_{b}, \quad t \in D \tag{11}
\end{equation*}
$$

Using (10), the triangle inequality, the assumption (3) and properties of integrals we obtain

$$
\begin{aligned}
\left\|M_{b}\right\| & \leq \frac{1}{d}\left\{\|B-A\|+\int_{a}^{b}\left[\int_{a}^{s}\left\|f\left(z, x(\alpha(z)), x^{\prime}(\beta(z))\right)\right\| d z\right] d s\right\} \\
& \leq \frac{1}{d}\left\{\|B-A\|+\int_{a}^{b}\left[\int_{a}^{s} K d z\right] d s\right\}=h(d)
\end{aligned}
$$

i.e.

$$
\begin{equation*}
\left\|M_{b}\right\| \leq h(d) \quad \text { for } \quad d>0 \tag{12}
\end{equation*}
$$

From the definition (10) there exists

$$
\begin{equation*}
\lim _{d \rightarrow 0+}\left\|M_{b}\right\|=+\infty \tag{13}
\end{equation*}
$$

It follows from the definition of the function h that

$$
\lim _{d \rightarrow 0+} h(d)=+\infty
$$

and formulas (12), (13) are not in contradiction with themselves.
From continuity of the function M_{b} for $d>0$, from (12) and (13), under (8) the norm $\left\|M_{b}\right\|$ is greather then $\min _{d>0} h(d)$. But for satisfying the inequality (7) the argument d must fulfill the inequality $d \leq d_{2}$. Let us consider two possible cases:
$\left(1^{o}\right) d_{1}<d_{2}$.
From the definition of the function h

$$
\min _{0 \leq d \leq d_{2}} h(d)=h\left(d_{1}\right) .
$$

$\left(2^{o}\right) \quad d_{1} \geq d_{2}$.
Then

$$
\min _{0 \leq d \leq d_{2}} h(d)=h\left(d_{2}\right)
$$

From uniqueness of the solution x and from (5) and (11) it follows that the equality

$$
\begin{equation*}
\left\|M_{b}\right\|=v \tag{14}
\end{equation*}
$$

holds. The existence of b follows from (13) and continuity of $\left\|M_{b}\right\|$. Then for v, satisfying the inequality (6) there exist M_{b} defined by (10) and solution x of the form (9) of the problem (1), (4), (5).

This is the end of the proof.
Remark 1. Theorem is not true without the assumption (8).

Proof. For the problem

$$
x^{\prime \prime}(t)=0, \quad x(a)=x(b)=0, \quad t \in D
$$

there exists the unique constant solution $x(t)=0, t \in D$. For all $v>0$ the condition (5) is not fulfilled.

Remark 2. The analogous theorem is true for the equation (1) with more than two deviations of the argument.

References

[1] J. Kalinowski, Two point boundary value problem for a system of ordinary differential equations of second order with deviating argument, Ann. Polon. Math. 30 (1974), (in Russian) 71-76.
[2] J. Kalinowski, On the convergence of an iterative sequence to the solution of a system of ordinary differential equations with deviated arguments, Demonstratio Math. 9 No 1 (1976), 77-93.
[3] C. A. Vavilov, Solvability a class of boundary value problems, Dokl. Akad. Nauk SSSR 305 No 2 (1989), (in Russian) 268-270.

Uniwersytet Ślaski
Instytut Matematyki
ul. Bankowa 14
40-007 Katowice

