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ON THE NUMBER OF SOLUTIONS OF
THE NEUMANN PROBLEM FOR THE ORDINARY
SECOND ORDER DIFFERENTIAL EQUATION

IRENA RACHUNKOVA

Abstract. We have found conditions for the nonlinearity f which are suffi-
cient for the existence of at least two solutions to the Neumann problem for
the equation u” + f(¢,u,u’') = s. '

1. Introduction
Consider the second order differential equation
(l.ls) ' u" + f(t,u,u') = s,

where s € R is a parameter, I = [a,b] C R and f € C(I x R?). We seek
results concerning the number of solutions to (1.1s), satisfying the Neumann
conditions

(1.2) u'(a) =0, '(b)=0.

Qur method of proofs makes use of a relation between strict upper and lower
solutions and the coincidence topological degree and is close to that of [1].
The number of solutions (2, 1 or 0) of (1.1s), (1.2) is a function of parameter
s. Such multiplicity results of Ambrosetti-Prodi type are obtained in [1]
and [4] for periodic and four—point problems, respectively, provided f sat-
isfies the Berstein—-Nagumo growth conditions. However they were proved
under the assumption that for fixed s; € R the set of all solutions to {(Lls),
s < 81}, satisfying the boundary conditions, is bounded above. In contrast
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to that, our results are proved under assumptions imposed on f directly.
Moreover no growth conditions (like Bernstein-N agumo) are required here
(see (3.1),(3.2)). A

Other multiplicity results (one nonnegative and one nonpositive solution)
for Neumann problem

(1.3) v = f(t,u), ¢(0)=4(1)=0

have been proved by M. N. Nkashama and J. Santanilla in [2] for a Cara-
théodory function f bounded below by a Lebesgue integrable function and
fulfilling e.g. conditions:

lim f(t,u) > 0 for a.e. t € [0,1] with strict inequality on a subset
lu]—o0
of positive measure,

f(t,u)<ayu forae. t€[0,1] andall u>0,
f(t,u) < —alu forae. te€[0,1] andall u<0,
where ay € (0,00), a_ €(0,%).
We can see that the theorems of [2] cannot be used for functions f rapidly
growing in their second variable.

Now, let us remind that functions 07,0, € C*(I) are called lower and
upper solutions for (1.1s), (1.2), respectively, if they fulfil (1.2) and

(1.3) (0" + f(t,04,0") = s)(=1)' <0 foreach tel, i=1,2.
The lower and upper solutions are said to be strict, if the inequalities in (1.3)
are strict for all t € I.

For r1 € (0,+00) we shall write

D(-r1)={z € C*(I): z(t) > —r; foreach te I},
D(r1) ={z € C*(I): z(t) <7, foreach te¢ I}.

2. Lemmas
Let us consider the auxiliary equation
(2.1) u" = g(t,u,u'),

where g € C(I x R?).



81

"LEMMA 1. Let o; be a lower solution and o2 an upper solution to (2.1),
(1.2) with a1(t) < oa(t) for each t € I. Further, let there exist k € (0, 00)
such that for eacht € I, z,y € R, where 01(t) < & < 03(t), the inequality

(2.2) lg(t,z,9)l < k

is fulfilled.
“Then problem (2.1), (1.2) has a solution u satisfying

(2.3) o1(t) < u(t) < o9(t) foreach tel.

ProoF. This known fact can be proved for example in the same way as
in [3]. a

LEMMA 2. Suppose s € R. Let oy be a lower solution and oy an upper
solution to (1.1s), (1.2) with a1(t) < 03(t) for each t € I.
Further, let there exist m € R such that

(24) m< f(t,z,y) foreach t€l, z,y€R, where 01(t) < o2(2).

Then problem (1.1s), (1.2) has a solution u fulfilling (2.3).

PROOF. Let us choose s € R and suppose that u is a solution of (1.1s),
(1.2) satisfying (2.3). We shall find an a priori estimate for 4’. From (1.1s),
(2.4) it follows u"(t) + m < s for each t € I. Using (1.2) and integrating the
last inequality on (a,t), t € I, we get v'(t) < |s—m|(b— a) on I. Similarly,
by integration on (t,b), t € I, we have u'(t) > —|s — m|(b— a) on I. So if
we put ¢ = |s — m|(b — a) + max{|o1(t)| + |o2(t)| : t € I}, we have

(25) max{u/(t)] : te I} <p
and

max{f(t,z,y): t€l, o1(t) <z < oy(t), —e<y<o}=MER.
So, we can define a function g

f(t,z,y) for tel, z€R, ye[-o,0
f(t,z,0.signy)  for tel, z€eR, |y >op,

9(t,z,y) = {

which fulfils the condition of Lemma 1 for k¥ = max{|m| + |s|, |M|+ |s|}
and the same upper and lower solutions and hence problem (2.1), (1.2) has
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a solution u fulfilling (23) _Then v’ satisfies (2.5) and according to (2.6) u
is a solution to (1.1s), (1.2) as well. m|

3. Multiplicity results

Using Lemma 2 and the coincidence degree theory we get multiplicity
results of Ambrosetti-Prodi type. '

TuEOREM 1. Let f € C(I x R?) and there exist ry € (0,00), m,s; € R
such that the irequalities

(3.1) f(t,=r1,0) > 81 > f(1,0,0) foreach te I,

(3.2) m S\ f(t,z,y) foreach tel, ze(-r,o), yeR

are satisfied. Then there exists sp € [m, 81) such that

(a) for s < 3o, problem (1.1s), (1.2) has no solution in D(—ry),
(b) for s = sg, problem (1.1s), (1.2) has at least one solution in D(-my),
(c) for s € (s0, $1], problem (1.Is), (1.2) has at least two solutions in D(—7y).

ProOF. Put

f(t,z,y)  for z>-n
f(t,—r,y) for z<-n

(3.3) h(t,@,y) = {

and for s € R consider the equation
(3.4s) ‘ Cou +h(tu,u’) = s,
Proving Theorem 1 we shall need several auxiliary propositions.

PROPOSITION 1. If s € (~00, 31], then any solution of (3.4s), (1.2) belongs
to D(—r4). '

PROOF OF PROPOSITION]. Let u be a solution of (3.4s), (1.2) for some
s < s1. Suppose that min{u(t) : ¢t € I} = u(to) < —r;. Then, by (1.2),
w/(to) = 0, u"(t) > 0. On the other hand from (3.1), (3.3) it follows
u''(to) = s — f(to,~71,0) < 0, a contradiction. ' ‘0

~ PROPOSITION 2. There exists so € [m,s;) such that for s < sg problem
(3.4s), (1.2) has no solution.
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ProoF OF PROPOSITION 2. Suppose that (3.4s), (1.2) has a solu-
tion u for some s € R. Then, integrating (3.4s) on (a, b), we get

b
m(b — a) < [ h(r,u(r),u'(7))dr = s(b - a), thus m < 5, and we can take

(3.5) sp = inf{s € [m,00): (3.4s),(1.2) has a solution}.

Let us show that the set in (3.5) is nonempty. Put

s* = max{h(t,0,0): te€ I}
Then 0 is an upper solution and —r; a lower solution of (3.4s*), (1.2). Thus,
by Lemma 2, problem (3.4s*), (1.2) has a solution u* with —r; < u*(t) <0
on I. Clearly sg < s* < s1. O

PropPoOsSITION 3. For any s € (so,81} problem (3.4s), (1.2) has at least
one solution.

PROOF OF PROPOSITION 3. Let 5 € (sp,$1) and u be a solution of (3.453),
(1.2). By Proposition 1, 4 € D(—ry). Let us choose o € [3,51]. Then % is
an upper solution and —~r; is a lower solution of (3.40), (1.2). Therefore,
by Lemma 2, (3.40), (1.2) has at least one solution. Since ¢ is an arbitrary
number of [3, 51, problem (3.4s), (1.2) has a solution for any s € [3, 5], and
according to (3.5) for any s € (s, s1]. O

From now on, let § € (g, s1) be arbitrary but fixed and let u denote a
solution of (3.43), (1.2). Further, let us put forallt €I, z,y€R

-7 for z<-n
a(z)={ = for -1 <z <u(t)
u(t) for =z > u(t)

and
(3.6) g(t,z,y) = f(t,a(z),y) — z + a(z).
We shall consider the equation

(3.7s) u' +g(t,u,u') = s.

PROPOSITION 4. For each s € (8, ;] any solution u of problem (3.7s),
(1.2) satisfies
-ry <u(t)<u(t) forall tel.

6*
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PROOF OF PROPOSITION 4. Let s € (3,s1] and u be a solution of (3.7s),
(1.2). Suppose that for some ¢ € I wu(t) > %(t). Then there exists t; € I
such that u(o) > u(to), u'(to) = @W(to), u"(to) < @'(tr). But from (3.6)
we can get u"(to) > u"(t), which is a contradiction. The inequality —r; < u
can be proved by similar arguments. a

Now, for s € (—00, 81], let us consider the class of equations
(3.8s1) u' — (1= ANu+Ag(t,u,u')~s]=0, Ae]o,1].
PROPOSITION 5. There exist R,p € (0,00) such that for any s € [s0,81]
and any A € 1),1] each solution u of (3.8s)), (1.2) satisfies

lu(t)] < R, |u'(t)|<e forall tel.

PRrROOF OF PROPOSITION 5. Let us denote

r=max{u(t): te€l}, m=max{f(t,z,0): tel, z¢el[-r7}
Let us choose a real number R with
(3.9) R>max{ri+s—-m, T+m-s}.
Suppose that for some s € [sp,s1] and A € [0, 1] there exists a solution u
of (3.8s)), (1.2) with max{u(t) : t € I} = u(ty) > R. Then, in view of
(1.2), v'(to) = 0, u"(to) < 0 and by (3.8s)), (1.2), (3.9) we get u"(ty) =
(1= MNu(to) + Als — g(to, u(to), u'(t0))] > (1 — A)R+ A[so — i+ R — 7] > 0,
a contradiction.

Similarly, if u(tg) < —R, we get

0<u"(tg) S —(1= AR+ A[s; —m—R+1r] <0,

a contradiction. Thus

lu(t)) < R forall tel.

Further, v = (1- A)u-}— Als— f(t, a(u),u') +u—a(u)] < R+ A[sy —m+r],
hence u'(t) < K for all t € I, where K = R+ |s;| + |m| + r. Therefore

lu'(t) < p| forall tel, where o= K(b— a).
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Let us put dom L = {u € C¥(I): u'(a)=0, w'(b)=0}, L:dom L —
c(I),u—u", Ny: CY(I) - C(I), u— h(-,u(-),%'(-)) — s. Then problem
(3.4s), (1.2) can be written in the form

(3.10s) (L+ Ns)u=0.
Let us consider two open bounded sets in C*(I):
Q={ueC(I): - <u(t) <ut), |W'(t))<e rmforall te I},
and
Q ={ueCl): |lu(t) <R, [W(t)<p forall tel},

where % is the above fixed solution of (3.45), (1.2) and R, g are the constants
of Proposition 5. In the same way as in [4] we can prove that d (L +Ns, Q)=
+1 and dp(L + N,, 4 — Q) = F1, for any s € (3, s1]. This implies that for
s € (3, s1] problem (3.10s) has at least one solution in {2 and at least another
one in ; — Q. Using Proposition 1 and the fact that 5 is a fixed but
arbitrary number in (so,s1), we get the assertion (c) of Theorem 1. Now,
using Arzela-Ascoli Theorem and Proposition 5, we can find a solution of
(3.10s0) as a limit of a sequence of solutions u, of (3.10sy,) for s, — so.
Finally, the assertion (a) of Theorem 1 follows from (3.3) and Propositions
1,2. Theorem is proved. O

Replacing f by —f and z by —z, a dual version of Theorem 1 can be
given.

THEOREM 2. Let f € C(I X R?) and there exists 11 € (0,00), m,s1 € R
such that the inequalities

(3.11) f(t,0,0) > s1 > f(t,71,0) for each tel,

(3.12) ft,z,y) <m foreach tel, z€(—-o0,71), YER

are satisfied.
Then there exists so € (s1, m] such that

(a) for s > so problem (1.1s), (1.2) has no solution in D(r1),

(b) for s = sy problem (1.1s), (1.2) has at least one solution in D(ry),
(c) for s € [s1,0) problem (1.1s), (i.2) has at least two solutions in D(r1).

The proof of Proposition 2 implies the following criterion of nonexistence.
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THEOREM 3. Let f € C(I x R?).
(a) If f is bounded below, i.e.

inf {f(t,2,9): (t,2,9) € IaR*} = m; € R,

then for s < my problem (1.1s), (1.2) has no solution.
(b) If f is bounded above, i.e.

sup {f(t,z,y): (t,z,y9) € I x R*} =m, € R,

then for s > my problem (1.1s), (1.2) has no solution.

4. Examples
EXAMPLE 1. Let us consider the equation
(4.1s) ' w' + clu'|* + u?* 4 B(1) = s,

where ¢ € C(I), c€[0,00], k,m €N, s€R. The function

F(t,z,y) = cly|™ + 2% + ¢(t)
satisfies the assumptions of Theorem 1 with m = min{¢(t) : t € I} and
arbitrary s; > max{¢(t) : ¢ € I}. We can see that f also fulfils (a) of
Theorem 3, where m = m;. On the other hand, for ¢ > 0, n>2, fdoes
not fulfil the conditions of the theorems in [1], [4], and for ¢ = 0 f does not
satisfy the growth conditions of [2].

EXAMPLE 2. Let us show that Theorem 1 can be applied on the equation
(4.2s) u +e(e +1) - arctg u = s,

where ¢,s € R.

Let ¢ > 0. Then the function f(t,z,y) = c(e? + 1) — arctg = satis-
fies conditions (3.1), (3.2) of Theorem 1 with m = —~% + ¢ and arbitrary
81 € (2¢,2c+ ¥). Since m = m,, Theorem 3 implies that for s < m problem
(4.2s), (1.2) has no solution.

Let ¢ < 0. Then f satisfies (3.11), (3.12) of Theorem 2 with m = F+c
and s; € (2¢— 7,2c). By Theorem 3, for s > m our problem has no solutjon.

But if ¢ # 0, we cannot use theorems of [1], [4] and if ¢ = 0, theorems of
[2] cannot be applied as well.

ExampLE 3. Consider the equation

(4.3s) u’ +c(w)** +2sin u— sint=s,
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where k € N, ¢,s€ R, I=][0,7].

If ¢ > 0, then the function f(t,z,y) = cy?¥ +2 sin = — sin ¢ satisfies (3.1),
(3.2) with m = —3 and s € (0,1). For ¢ < 0, f satisfies (3.11), (3.12) with
m =2 and s; € (-2,-1).

Ifc>0, s<—-3o0rc<0, s>2,problem (4. 3s), (1.2) has no solution.

But for ¢ # 0 f does not fulfil the growth conditions of [1] and moreover
the function g(¢,z) = 2 sin z — sin ¢ fulfils neither conditions of [2] nor
hypothese (H4) of [1].
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