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BOUNDARY VALUE PROBLEMS FOR ONE-PARAMETER
SECOND-ORDER DIFFERENTIAL EQUATIONS

SVATOSLAV STANEK

Abstract. The paper establishes sufficient conditions for the existence of
solutions of a one-parameter differential equation z" = f(t,z, z', \) satisfying
some of the following boundary conditions:

v(z) =0, zl(a') = II(b) =0,

'(a)=2'(b)=0, =z(c)—~z(d)=0

and
z'(a) = 2'(t,) = ' (b) = 0.

Here v is a functional. The application is given for a class of one-parameter
functional boundary value problems.

1. Introduction

Consider the differential equation
(1) z" = f(t,z,z',A)

depending on the parameter A. Here f € C° ({a,b) x R2 X (4,B) ), —o0 <
a<b<oo, —00<A<B< .

‘Let X be the Banach spare of C%—functions on (a,b) with the norm
lzll = max{|z(t)[; @ <t < b}. Let ¥ : X — R be a continuous increasing
(ie. z,y € X, z(t) < y(t) fort € (a,b) = 7(z) < 7(y)) functional, y(0) = 0.

Let a < c<d< b, a<ty<hb Consider the functional boundary
condition

(2) Y(z)=0, z'(a)=2'(b)=0
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and the boundary conditions

@) z'(a) =2'(b) =0, =z(c)—z(d)=0,

4)  d(@)=2(t) = () = 0.

The considered problem is to determine sufficient conditions on f guaran-
teeing that it is possible to choose the parameter A such that the boundary
value problem (BVP for short) (1), (2) or (1), (3) or (1), (4) has a solution.
The uniqueness’ of solutions of BVP (1), (2) is discussed too. We observe
that BVPs (1), (3) and (1), (4) are at a resonance. The proofs of results
make use of the coincidence degree theory (see Theorem 2.2. [8]) and the
maximum principle arguments. An application of our result for BVP (1),
(2) with y(z) = z(a) is given for the functional differential equation

n_ "t
z' = F(t,z,zq, 2" 24, A)

depending on the parameter A.

Sufficient conditions for the two-parameter differential equation z” +
(q(t, A\, 1) + 7(t))z = 0 having a nontrivial solution z(t) satisfying z(a) =
z(tp) = z(b) = O are stated in [1] and [2]. Using a surjective mapping
in R, BVP (1), 2'(0) = A, z(1) = B, z(2) = C was studied in [6]. Some
boundary value problems for differential and functional differential equations
depending on the parameter were considered in [3}-[5] using the Schauder
linearization technique and the Schauder fixed point theorem. We observe
that the boundary value problem z" — ¢(t)z = h(t,z:, A), z(t1) = z(t2) =
z(t3) =0 (—o0 <t <ty < t3 < 00), was studied in [7].

2. Lemmas

The function z € C?({a,b)) is said to be a solution of BVP (1), (2) or (1),
(3) or (1), (4) if there exists a A9 € (A, B) such that z is a solution of (1)
for A = )¢ satisfying (2) or (3) or (4), respectively.

In the following we shall assume there exist constants K, L, K < L, such
that f satisfies the following assumptions:

(H:) f(t,K,0,B)<0< f(t,L,0,A)for t € (a,b);
(Ha) 17z, 0] < p(ly]) Tor (1, 2,9, A) € (a,8) X (K, L) x B x (4, B),
where p : (0,00) — (0,00) is a nondecreasing function such that
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with a positive constant T,

(H3) f(t,.,y,A) is increasing on (K, L) for each fixed (t,y,A) € (a,b) x
("TaT> X (A’ B>;

(Hy) f(t,z,y,.) is increasing on (A, B) for each fixed (t,z,y) € (a,b)x
(K,L) x (-T,T).

LEMMA 1. Let assumptions (II, )-(Hy) be fulfilled with constants K < L
and let p € (A, B). Then equation (1) for A = p has a unique solution z(t)
satisfying

(5) z'(a) =2'() =0
and
(6) K<z(t)<L for te(ab), |'||<T.

ProoF. With respect to assumptions (H;)-(H4) the existence of a so-
lution z(t) of (1) for A = p satisfying (5) and (6) follows from Theorem
2.2 [8] and its proof. This theorem is proved using the results of coin-
cidence degree theory. To show the uniqueness we assume on the con-
trary that z; and z, are two different solutions of (1) for A = p satis-
fying (5) and (6) with ¢ = z; (§j = 1,2). Set w = z; — =3 and let
w(a) > 0. If w has a negative local minimum at a point ?; € (a,b), then
w(ty) < 0, w'(t1) =0, w"(ty) > 0 which contradicts (cf. (H3)) w"(t) =
ft1,za(t ), "1 (1), 1) = f(t1,z2(t1),2'1(t1), p) < 0. We can similarly check
that w has not a positive local maximum at an inner point of (a,b). If
w(a) > 0, then w"(a) = f(a,z1(a),0,u) - f(a,z2(a),0, 1) > 0, hence w(t) >
0, w'(t) > 0 on an interval (a,t;) (C (a,b)) while w'(t;) = 0, and con-
sequently w'5(t) € 0 which contradicts w"(t2) = f(t2,21(t2),2'1(22), 1) —
f(t2,a(t2), z'1(t2), ) > 0. Let w(a) = 0. Since w is either nondecreasing
or nonincreasing on (a,b) and w(b) # 0 we may withought loss of gen-
erality assume w is nondecreasing on (a,b), w(b) > 0. Then w"(b) =
f(b,z1(b),0,u) — f(b,z2(b),0,p) > 0 which is impossible. Hence the lemma
is proved. 0

REMARK 1. Let assumptions (H;)-(H4) be fulfilled with constants
K < L. For each A € (A, B) we will denote by z(t, A) the unique solution of
(1) satisfying (5) and (6). The existence and uniqueness of this solution is
ensured by Lemma 1.

LEMMA 2. Let assumptions (Hy )-(Hy) be fulfilled with constants K < L
and let A < Ay < Ay < B. Then

(L >) z(t, A1) > z(t, h) (> K) for t € (a,b).
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ProoF. Set u;(t) = z(¢,A;) for t € (a,b), j=1,2, andlet w =
Uy — Uy.

(i) Let w(a) < 0. Then w"(a) = f(a,u1(a),0, ) — f(a,uz(a),0,A) < 0,
hence w(t) < 0, w'(t) < 0 for t € (a,£), w'(£) = 0 with a £ € (a,b).
Consequently w"(€¢) > 0 which contradicts w(¢) = F(&ua(8),u'1(€), M) —

F(€, u2(€),u"1(£), A2) < 0.

(i) Let w(t) > 0 for ¢ € (a,v), w(v) = 0 with a v € (a,b). If w'(v) = 0,
then w"(v) = f(v,w1(v),u'1(v), \1) = f(v,u1(v),u'1(¥),As) < 0, a contra-
diction. If w'(v) < 0, then w(t) < 0, w'(¢) < 0 on an interval (v, 7) (C (v, b))
while w'(7) = 0, which (see the case (i)) is impossible. Consequently
w(t) > 0 on (a, b). a

LEMMA 3. Let assumptions (Hy )-(Hy) be satisfied with constants K < L.
If {A} C (A, B) is a convergent sequence, lim \, = p, then
n-—0o

(7) ' nlingo x(i)(t’ An) = x(i)(ta n) i=0,1,

uniformly on (a,b).
Proor. Let {A\,} C (A4, B) be a convergent sequence, lim A, = p. Since
n—oo

lz(t, An)|| < max{|K|,|L|} (:= V), |l&'(t, A\n)|| < T forn € N (by Lemma 1),
we have [|z"(2,A,)|| < § for n € N with § = max{|f(¢,2,y,))|; (t,z,y,A\) €
(a,b) X (=V,V) x (=T,T) x (A, B)}. Let {),} be a subsequence of {),}.
Using the Arzela-Ascoli theorem we can select a subsequence {x(, A, )} of
{z(t, An)} such that {z()(¢,X;,)} uniformly convergent on (a,b) fori = 0,1.
Setting u(t) = nleréoz(t,:\-kn) for t € (a,b), then v'(a) = u'(b) = 0, and
taking the limit in the equalities

i
&'t ) = / £(5,5(5, Xk, ), 2'(5, %, ), R s, £ € (a,b), mEN

as n — oo, we get

(1) = / f(s,u(s),w'(s), m)ds, ¢ € (a,b).

Therefore u is a solution of (1) for A = p satisfying (5) and (6) with
z = u, and consequently u(t) = z(¢, ) by Lemma 1. Thus nh—{%o (¢, A,) =

z(t, p) uniformly on (a,b), i=0,1. O
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LEMMA 4. Let assumptions (Hy)-(Hy) be fulfilled with constants
K <0< L. If assumption
(Hs) f(t,0,0,A).f(t,0,0,B) <0 fort € (a,b)
is satisfied, then

(8) z(t,B) < 0 < z(t,A) for t¢€ (a,b).

Proor. Let (Hjs) be satisfied and set u(t) = z(t,A), t € (a,b). If
u(a) < 0, then v"(a) = f(a,u(a),0,4) < f(a,0,0,A) < 0 hence u(t) <
0, '(t) < 0 on an interval (a,€) (C (a,b)) while u'(¢) = 0 which contradicts
u"(e) = f(e,u(e),0,A) < f(£,0,0,4) < 0, and consequently u(a) > 0. If
there exists a £ € (a,b) such that u(t) > 0 on (a,£) while u(€) = 0, then
u'(€) < 0 since in the case of v/'(§) = 0 we have uv"'(£) = f(£,0,0,4) < 0, a
contradiction. Thus u(t) < 0 on an interval (¢,v) (C (§,b)) while u'(v) = 0.
This is impossible because of u"(v) = f(v,u(v),0,4) < f(»,0,0,A4) < 0.
Therefore u(t) > 0 on (a,b). The proof of (¢, B) < 0 on (a,b) is evidently
analogous to the proof of z(t, A) > 0 on (a,b) and therefore it is omitted. O

LEMMA 5. Let assumptions (Hy)-(Hs) be fulfilled with constants
K < 0 < L. Assume moreover that the following assumptions are satis-
fied:

(Hs) If f(t1,a1,0,A) > 0 for some t; € (a,b) and 0 < ay < L, then

f(t,a1,y,A) > 0 for all (t,y) € (t1,b) X (0,T);

(H7) If f(t1,51,0,B) <0 for some t € (a,b) and K < by <0, then
f(t,b1,y,B) <0 for all (t,y) € {t1,b) x (=T,0).

Then

z'(t,A) <0, z'(t,B) >0 for te€ (a,b).

ProoF. Let assumptions (H;) = (Hy) be satisfied. Set u;(t) = z(¢t, A)
uz(t) = z(t,B) for t € (a,b) and ¢; = min{u;(t); a < t < b}, d; =
max{u;(t); a <t <b}, j=1,2. Then K < ¢ <dy <0< ¢y <dy <Lby
Lemma 4. Assume ¢; < dy and w'1(t1) > 0forat; € (a,b). Then there exists
a T € (a,t;) such that uy(7) > ¢; >0, u'(r) =0, u{(¢) > 0on (7,¢) and
u"1(7) 2 0. Hence (u"1(7) =) f(r,u1(7),0,A) > 0 and f(t,u1(7),y,A) >0
for (t,y) € (,b) x (0,T) by (Hs). Consequently u"1(¢) > 0 on (r,b) and
u'y1(t) > u'1(t1) > 0 for ¢ € (t1,b) which contradicts u'y(b) = 0. This proves
u'1(t) < 0 on (a,b). Using assumption (H7) we can verify u'5(t;) < 0 for a
t1 € (a,b) is impossible and therefore u'5(t) > 0 for ¢t € (a,b). O
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3. Existence and uniqueness theorems

THEOREM 1. Let assumptions (Hy)-(Hs) be fulfilled with constants
K < 0 < L. Then there exists a unique solution z(t) of BVP (1), (2)
satisfying (6).

ProoF. Let z(t, A) be a unique solution af (1) satisfying (6) and z'(a, ) =
z'(b,\) = 0 (see Lemma 1) and set h(A) = y(z(t,A)) for A € (A, B). Then
h is continuous (by Lemma 3) decreasing (by Lemma 2) on (A, B) and
h(A) > 0 > h(B) (by Lemma 4). Therefore there exists a unique x € (A4, B)
such that h(u) = 0. Setting z(t) = z(t,p) for t € (a,b), then z is a unique
solution of BVP (1), (2) satisfying (6). a

THEOREM 2. Let assumptions (Hy)-(Hz) be fulfilled with constants
K < 0 < L. Then there exists a solution of BVP (1), (3) satisfying (6).

PROOF. Let z(t,A) be as in the proof of Theorem 1 and set k()\) =
z(e,\)—z(d, ) for A € (A, B). Then k is continuous on (A, B) (by Lemma 3)
and k(A) > 0, k(B) < 0 (by Lemma 5). Therefore there exists a u € (A, B)
such that k(u) = 0. Setting z(t) = z(t, ), then z(t) is a solution of BVP
(1), (3) satisfying (6). a

THEOREM 3. Let assumptions (Hy)-(H;) be fulfilled with constants
K < 0 < L. Then there exists a solutions z(t) of BVP (1), (4) satisfy-

ing (6). :

Proor. Let z(t,A) be as in proof of Theorem 1 and set 7(A) = z'(tg, A)
for A € (A, B). Then r is continuous on (A, B) (by Lemma 3) and r(A) <
0, »(B).> 0 (by Lemma 5). Therefore there exists a p € (A, B) such that
r(pn) = 0. Setting z(t) = z(t,p), then z(t) is a solution of BVP (1), (4)
satisfying (6). a

ExaMmPLE 1. Consider the differential equation
9) 2" =23 fexp(tz — 2) + (2/2)|2'| + (2-t)A, t€(0,1).
Assumptions (H;)-(H7) are fulfilled with the constants K = -2, L = 2,
A= -4, B =3 and T = 21. Consequently there exists a unique solution
z(t) of (9) such that
(10) 1(2)=0, 2'(0)=2'1)=0, Jlzll<2, [l'll<21

(that is, there exists a unique p € (—4,3) such that (9) for A = p has a
solution z(t) satisfying (10) and, moreover, this solution is unique). For
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example we can set 7(z) = z(t;) (0 < t; < 1) or v(z) = max{z(t); 0 <
t < 1} or y(z) = min{z(t); 0 <t < 1} or y(z) = f(a:(s))”“ds (n €N).

Next, there exist solutions z1(t) and z2(t) of BVPs (1), (3) and (1), (4),
respectively, ||z;|| < 2, ||l=';l} <21 (5 =1,2).

4. An application

Let h > 0 be given. Let C be the Banach space of C’-functions on
(a—h, a) with the norm ||z||o = max{|z(t)|; a—h <t < a}, D be the Banach
space of C1-functions on {(a—h,a) with the norm ||z||; = ||z|lo+||z'|lo and let °
Do = {z; z € D, z(a) = 2'(a) = 0}. Foreach U,V HER, U<V, H>0
we define sets Cyy and Cyg by Cyyv = {z; z € C, U < z(t) < V for
te{a—h,a)}and Cy={z; € C, ||z|jo < H}.

For any continuous function z : {(a — h,b) —» R and each t € (a,b), we
denote by z; the element of C defined by

z(s)=z(t+s—a), s€{a—h,a).
Consider the functional differential equation
(11) ' = F(t,z, 2,2’ 2’4, )

depending on the parameter A\. Here F': (a,b)xRx C XRx C x(A4,B) — R
is a continuous locally bounded operator.

Consider boundary condition (2) with y(z) = z(a) for 2 € X, that is, the
boundary condition

(12) z(a) = z'(a) = z'(b) = 0.

We say that z is a solution of BVP (11), (12) with an initial value ¢ € Dy
at the point ¢ = a if:
a) z € C'({a— h,b)) and z" is continuous on {a, b),
b) there exists a Ag € (A, B) such that z is a solution of (11) for
A=A,
¢) z satisfies boundary condition (12),
d) z,=¢.

THEOREM 4. Assume there exist constants T > 0, K < 0, L > 0 such
that F satisfies the following assumptions:
(1) F(t,K,u,0,v,B) <0< F(t,L,u,0,v, A) for (t,u,v) € (a,b)x Ck, X
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CT’
(S2) |F(t,z,u,y,v,A) < r(|y]) for (t,2,u,y,v,)) € (a,b) x (K, L)x Ck, X
Rx Cr X (A, B), where r : (0,00) — (0,00) is a nondecreasing function

such that
’ d
sds
/-T—E > L - K,
0
(Ss) F(t,.,u,y,v,]) is increasing on (K, L) for each fixed (t,u,y,v, A) €
<a,b>X CK,L X (-—T,T)X Cr x (A,B),
(S4) F(t,z,u,y,v,.) is increasing on (A, B) for each fixed (t,z,u,y,v) €
(a,b) X (I(,L)X CK,L X <—T,T>X Cr,
(Ss) F(t,0,,0,v,A).F(t,0,u,0,v,B) < 0 for (t,u,v) € (a,b)x Ck,LX
Cr.
Let ¢ € DoN Cg 1, ¢' € Cr. Then BVP (11), (12) with the initial value
¢ at the point t = a has a solution z satisfying (6).

PROOF. Let Y be the Banach space of C'-functions on (a — h,b) with
the norm ||z|ly = max{|z()(t)|; t € (a - h,b), i=10,1}. Let ¢ € Don
Ck,L, ¢ €Cr.Set Ky, ={2; 2€Y, 2,=¢, K<z(t)<L, |¢'{t)|<T
for ¢ € (a,b)}. K, is a convex closed bunded subset of Y. Let & € K,,.
Then the function f : (a,b) x R? X (A, B) — R defined by ft,z,y,A) =
F(t,z,a¢,y,0't,A) is continuous and satisfies assumptions (H;)-(Hs). By
Theorem 1 there exists a unique solution z, of BVP (1), (12), K < 24(t) <
L, |2'4(t)] < T en (a,b). If we define T, : (a — h,b) — R by

Taa =@, Talt)=zq(t) for te(a,b),

then Z € K. Setting V(a) = %, we obtain an operator V: K, — K, and

to prove of our theorem it is sufficient to show that V has a fixed point. Let

{zn} C K, be a convergent sequence, lim z, = z. Set V(z,) = z,, V(z) =
n—r00

z. Then a sequence {A,} C (A, B) and a Ag € (A, B) exist such that

2" (t) = F(t, 20 (1), Tn,t, 2'n(t), 2'n 5 An),
Z'(t) = F(t, 2(t), x4, 2'(£),2"1, Xo)
for t € (a,b), n €N, and
zn(a) = 2'5(a) = 25 () =0, 2(a) = #'(a) = 2/(b) = 0,
Tna =P Za= ¢
for n € N. Next, we have

K<z(t)< L, [Zn)|<T, [Z"w(®)) <M mmfor te(a,b), neN,
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where M := sup{lF(t,z,u,y,v,/\)h (ta mauyy’v,)‘) € (a,b)X(I(,L)X CK,LX
(-T,T)x Cr x (A,B)} (< o0). R

Let {Z,} be a subsequence of {z,} and let {A,} and {Z,} be the corre-
sponding subsequences of {\;} and {z,}, respectively. Going if necessary

to a subsequence (cf. the Ascoli-Arzela theorem), we can assume that {zn}
and {/\n} are convergent and let nhngo Zn =W, hnéO A = to. Thus, taking
the limit in the equalities

Za(t) = //F(s zn(s),zn ,,zn(s), ns, n)dsdﬂ, t € {(a,b), n €N,

as n — 0o we have

t 8
“w(t) = / / F(s,w(s), @9, w(s), 35, pio)dsdB, 1t € (a,b),

a a

and consequently w is a solution (on (a, b)) of the equation v" = g(t,u,u’, A)
for A = po satisfying (12) with z = w. Here g(¢,4,v,1) = F(t,u,4,v,2 t,/\)
for (t,u,v,A) € (a,b) X R? X {a,b). By Theorem 1 a unique solution of the
above BVP exists and therefore w = z and pp = Ag. This proves that {z,}
is convergent and ,,1520 Zy = z, that is, V is a continuous operator.

Since V (K,) C {z; z € K,, z" is continuous on (a,b), |z"(t)] < M for
t € (a,b)} =: L and £ is a'compact subset of Y, V (K,,) is relative compact
in Y. Therefore by the Schauder fixed point theorem there exists a fixed
point of V in K.

ExaMPLE 2. Consider the functional differential equation
z(t) =z*(t)(e' + |2(t - 1)2'(2)])
(sint)? t 3
We see that (13) is of the form (11) with F(¢,z,u,y,v,A) = z3(et+
sin t)?

lu(=1)9D) + msteaay + (1+ (f(=t/2)l/2)})A and h = 1.

Assumptions (S;)-(Ss) are satisfied for a = 0, b = 1, K = -2,
L=2,A=-2, B=2and T = 64. Thus for each ¢ € DoN C_32, ¢’ €Cs4

there exists a solution = of BVP (12), (13) with the initial value ¢ at the
point ¢ = 0 satisfying

lz(t)] < 2, [2'(t)] <64 for te€(0,1).

7 ~ Annales...
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