BOUNDARY VALUE PROBLEMS FOR ONE-PARAMETER SECOND-ORDER DIFFERENTIAL EQUATIONS

Svatoslav Staněk

$$
\begin{aligned}
& \text { Abstract. The paper establishes sufficient conditions for the existence of } \\
& \text { solutions of a one-parameter differential equation } x^{\prime \prime}=f\left(t, x, x^{\prime}, \lambda\right) \text { satisfying } \\
& \text { some of the following boundary conditions: } \\
& \qquad \gamma(x)=0, \quad x^{\prime}(a)=x^{\prime}(b)=0 \\
& x^{\prime}(a)=x^{\prime}(b)=0, \quad x(c)-x(d)=0
\end{aligned}
$$

and

$$
x^{\prime}(a)=x^{\prime}\left(t_{o}\right)=x^{\prime}(b)=0 .
$$

Here γ is a functional. The application is given for a class of one-parameter functional boundary value problems.

1. Introduction

Consider the differential equation

$$
\begin{equation*}
x^{\prime \prime}=f\left(t, x, x^{\prime}, \lambda\right) \tag{1}
\end{equation*}
$$

depending on the parameter λ. Here $f \in C^{0}\left(\langle a, b\rangle \times \mathbb{R}^{2} \times\langle A, B\rangle\right),-\infty<$ $a<b<\infty,-\infty<A<B<\infty$.

Let X be the Banach spare of C^{0}-functions on $\langle a, b\rangle$ with the norm $\|x\|=\max \{|x(t)| ; a \leq t \leq b\}$. Let $\gamma: X \rightarrow \mathbb{R}$ be a continuous increasing (i.e. $x, y \in X, x(t)<y(t)$ for $t \in\langle a, b\rangle \Rightarrow \gamma(x)<\gamma(y))$ functional, $\gamma(0)=0$.

Let $a \leq c<d \leq b, a<t_{0}<b$. Consider the functional boundary condition

$$
\begin{equation*}
\gamma(x)=0, \quad x^{\prime}(a)=x^{\prime}(b)=0 \tag{2}
\end{equation*}
$$

Received January 13, 1993.
AMS (1991) subject classification: 34B10, 34B15.
and the boundary conditions

$$
\begin{gather*}
x^{\prime}(a)=x^{\prime}(b)=0, \quad x(c)-x(d)=0 \tag{3}\\
x^{\prime}(a)=x^{\prime}\left(t_{0}\right)=x^{\prime}(b)=0
\end{gather*}
$$

The considered problem is to determine sufficient conditions on f guaranteeing that it is possible to choose the parameter λ such that the boundary value problem (BVP for short) (1), (2) or (1), (3) or (1), (4) has a solution. The uniqueness of solutions of BVP (1), (2) is discussed too. We observe that BVPs (1), (3) and (1), (4) are at a resonance. The proofs of results make use of the coincidence degree theory (see Theorem 2.2. [8]) and the maximum principle arguments. An application of our result for BVP (1), (2) with $\gamma(x)=x(a)$ is given for the functional differential equation

$$
x^{\prime \prime}=F\left(t, x, x_{t}, x^{\prime}, x_{t}^{\prime}, \lambda\right)
$$

depending on the parameter λ.
Sufficient conditions for the two-parameter differential equation $x^{\prime \prime}+$ $(q(t, \lambda, \mu)+r(t)) x=0$ having a nontrivial solution $x(t)$ satisfying $x(a)=$ $x\left(t_{0}\right)=x(b)=\theta$ are stated in [1] and [2]. Using a surjective mapping in $\mathbb{R}^{n}, \operatorname{BVP}(1), x^{\prime}(0)=A, x(1)=B, x(2)=C$ was studied in [6]. Some boundary value problems for differential and functional differential equations depending on the parameter were considered in [3]-[5] using the Schauder linearization technique and the Schauder fixed point theorem. We observe that the boundary value problem $x^{\prime \prime}-q(t) x=h\left(t, x_{t}, \lambda\right), x\left(t_{1}\right)=x\left(t_{2}\right)=$ $x\left(t_{3}\right)=0\left(-\infty<t_{1}<t_{2}<t_{3}<\infty\right)$, was studied in [7].

2. Lemmas

The function $x \in C^{2}(\langle a, b\rangle)$ is said to be a solution of BVP (1), (2) or (1); (3) or (1), (4) if there exists a $\lambda_{0} \in\langle A, B\rangle$ such that x is a solution of (1) for $\lambda=\lambda_{0}$ satisfying (2) or (3) or (4), respectively.

In the following we shall assume there exist constants $K, L, K<L$, such that f satisfies the following assumptions:
$\left(\mathrm{H}_{1}\right) f(t, K, 0, B)<0<f(t, L, 0, A)$ for $t \in\langle a, b\rangle$;
$\left(\mathrm{H}_{2}\right) \quad|f(t, x, y, \lambda)| \leq p(|y|)$ for $(t, x, y, \lambda) \in\langle a, b\rangle \times\langle K, L\rangle \times \mathbb{R} \times\langle A, B\rangle$, where $p:\langle 0, \infty) \rightarrow(0, \infty)$ is a nondecreasing function such that

$$
\int_{a}^{T} \frac{s d s}{p(s)}>L-K
$$

with a positive constant T;
$\left(\mathrm{H}_{3}\right) f(t, ., y, \lambda)$ is increasing on $\langle K, L\rangle$ for each fixed $(t, y, \lambda) \in\langle a, b\rangle \times$ $\langle-T, T\rangle \times\langle A, B\rangle ;$
$\left(\mathrm{H}_{4}\right) f(t, x, y,$.$) is increasing on \langle A, B\rangle$ for each fixed $(t, x, y) \in\langle a, b\rangle \times$ $\langle K, L\rangle \times\langle-T, T\rangle$.
Lemma 1. Let assumptions $\left(I_{1}\right)-\left(H_{4}\right)$ be fulfilled with constants $K<L$ and let $\mu \in\langle A, B\rangle$. Then equation (1) for $\lambda=\mu$ has a unique solution $x(t)$ satisfying

$$
\begin{equation*}
x^{\prime}(a)=x^{\prime}(b)=0 \tag{5}
\end{equation*}
$$

and

$$
\begin{equation*}
K<x(t)<L \quad \text { for } \quad t \in\langle a, b\rangle, \quad\left\|x^{\prime}\right\|<T . \tag{6}
\end{equation*}
$$

Proof. With respect to assumptions $\left(\mathrm{H}_{1}\right)-\left(\mathrm{H}_{4}\right)$ the existence of a solution $x(t)$ of (1) for $\lambda=\mu$ satisfying (5) and (6) follows from Theorem 2.2 [8] and its proof. This theorem is proved using the results of coincidence degree theory. To show the uniqueness we assume on the contrary that x_{1} and x_{2} are two different solutions of (1) for $\lambda=\mu$ satisfying (5) and (6) with $x=x_{j} \quad(j=1,2)$. Set $w=x_{1}-x_{2}$ and let $w(a) \geq 0$. If w has a negative local minimum at a point $t_{1} \in(a, b)$, then $w\left(t_{1}\right)<0, \quad w^{\prime}\left(t_{1}\right)=0, \quad w^{\prime \prime}\left(t_{1}\right) \geq 0$ which contradicts (cf. (H $\left.\left.H_{3}\right)\right) w^{\prime \prime}\left(t_{1}\right)=$ $f\left(t_{1}, x_{1}\left(t_{1}\right), x^{\prime}{ }_{1}\left(t_{1}\right), \mu\right)-f\left(t_{1}, x_{2}\left(t_{1}\right), x^{\prime}{ }_{1}\left(t_{1}\right), \mu\right)<0$. We can similarly check that w has not a positive local maximum at an inner point of $\langle a, b\rangle$. If $w(a)>0$, then $w^{\prime \prime}(a)=f\left(a, x_{1}(a), 0, \mu\right)-f\left(a, x_{2}(a), 0, \mu\right)>0$, hence $w(t)>$ $0, \quad w^{\prime}(t)>0$ on an interval $\left(a, t_{2}\right)(\subset(a, b\rangle)$ while $w^{\prime}\left(t_{2}\right)=0$, and consequently $w^{\prime \prime}{ }_{2}(t) \leq 0$ which contradicts $w^{\prime \prime}\left(t_{2}\right)=f\left(t_{2}, x_{1}\left(t_{2}\right), x^{\prime}{ }_{1}\left(t_{2}\right), \mu\right)-$ $f\left(t_{2}, x_{2}\left(t_{2}\right), x^{\prime}{ }_{1}\left(t_{2}\right), \mu\right)>0$. Let $w(a)=0$. Since w is either nondecreasing or nonincreasing on $\langle a, b\rangle$ and $w(b) \neq 0$ we may withought loss of generality assume w is nondecreasing on $\langle a, b\rangle, w(b)>0$. Then $w^{\prime \prime}(b)=$ $f\left(b, x_{1}(b), 0, \mu\right)-f\left(b, x_{2}(b), 0, \mu\right)>0$ which is impossible. Hence the lemma is proved.

Remark 1. Let assumptions $\left(\mathrm{H}_{1}\right)-\left(\mathrm{H}_{4}\right)$ be fulfilled with constants $K<L$. For each $\lambda \in\langle A, B\rangle$ we will denote by $x(t, \lambda)$ the unique solution of (1) satisfying (5) and (6). The existence and uniqueness of this solution is ensured by Lemma 1.

Lemma 2. Let assumptions (H_{1})-(H_{4}) be fulfilled with constants $K<L$ and let $A \leq \lambda_{1}<\lambda_{1} \leq B$. Then

$$
(L>) x\left(t, \lambda_{1}\right)>x\left(t, \lambda_{2}\right)(>K) \quad \text { for } \quad t \in\langle a, b\rangle
$$

Proof. Set $u_{j}(t)=x\left(t, \lambda_{j}\right)$ for $t \in\langle a, b\rangle, \quad j=1,2$, and let $w=$ $u_{1}-u_{2}$.
(i) Let $w(a) \leq 0$. Then $w^{\prime \prime}(a)=f\left(a, u_{1}(a), 0, \lambda_{1}\right)-f\left(a, u_{2}(a), 0, \lambda_{2}\right)<0$, hence $w(t)<0, w^{\prime}(t)<0$ for $t \in(a, \xi), w^{\prime}(\xi)=0$ with a $\xi \in(a, b\rangle$. Consequently $w^{\prime \prime}(\xi) \geq 0$ which contradicts $w^{\prime \prime}(\xi)=f\left(\xi, u_{1}(\xi), u_{1}^{\prime}(\xi), \lambda_{1}\right)-$ $f\left(\xi, u_{2}(\xi), u^{\prime}{ }_{1}(\xi), \lambda_{2}\right)<0$.
(ii) Let $w(t)>0$ for $t \in\langle a, \nu), w(\nu)=0$ with a $\nu \in(a, b\rangle$. If $w^{\prime}(\nu)=0$, then $w^{\prime \prime}(\nu)=f\left(\nu, u_{1}(\nu), u^{\prime}{ }_{1}(\nu), \lambda_{1}\right)-f\left(\nu, u_{1}(\nu), u^{\prime}{ }_{1}(\nu), \lambda_{2}\right)<0$, a contradiction. If $w^{\prime}(\nu)<0$, then $w(t)<0, w^{\prime}(t)<0$ on an interval $(\nu, \tau)(\subset(\nu, b\rangle)$ while $w^{\prime}(\tau)=0$, which (see the case (i)) is impossible. Consequently $w(t)>0$ on $\langle a, b\rangle$.

Lemma 3. Let assumptions $\left(H_{1}\right)-\left(H_{4}\right)$ be satisfied with constants $K<L$. If $\left\{\lambda_{n}\right\} \subset\langle A, B\rangle$ is a convergent sequence, $\lim _{n \rightarrow \infty} \lambda_{n}=\mu$, then

$$
\begin{equation*}
\lim _{n \rightarrow \infty} x^{(i)}\left(t, \lambda_{n}\right)=x^{(i)}(t, \mu), \quad i=0,1 \tag{7}
\end{equation*}
$$

uniformly on $\langle a, b\rangle$.
Proof. Let $\left\{\lambda_{n}\right\} \subset\langle A, B\rangle$ be a convergent sequence, $\lim _{n \rightarrow \infty} \lambda_{n}=\mu$. Since $\left\|x\left(t, \lambda_{n}\right)\right\|<\max \{|K|,|L|\}(:=V),\left\|x^{\prime}\left(t, \lambda_{n}\right)\right\|<T$ for $n \in \mathbb{N}($ by Lemma 1$)$, we have $\left\|x^{\prime \prime}\left(t, \lambda_{n}\right)\right\| \leq S$ for $n \in \mathbb{N}$ with $S=\max \{|f(t, x, y, \lambda)| ;(t, x, y, \lambda) \in$ $\langle a, b\rangle \times\langle-V, V\rangle \times\langle-T, T\rangle \times\langle A, B\rangle\}$. Let $\left\{\bar{\lambda}_{n}\right\}$ be a subsequence of $\left\{\lambda_{n}\right\}$. Using the Arzela-Ascoli theorem we can select a subsequence $\left\{x\left(t, \bar{\lambda}_{k_{n}}\right)\right\}$ of $\left\{x\left(t, \bar{\lambda}_{n}\right)\right\}$ such that $\left\{x^{(i)}\left(t, \bar{\lambda}_{k_{n}}\right)\right\}$ uniformly convergent on $\langle a, b\rangle$ for $i=0,1$. Setting $u(t)=\lim _{n \rightarrow \infty} x\left(t, \bar{\lambda}_{k_{n}}\right)$ for $t \in\langle a, b\rangle$, then $u^{\prime}(a)=u^{\prime}(b)=0$, and taking the limit in the equalities

$$
x^{\prime}\left(t, \bar{\lambda}_{k_{n}}\right)=\int_{a}^{t} f\left(s, x\left(s, \bar{\lambda}_{k_{n}}\right), x^{\prime}\left(s, \bar{\lambda}_{k_{n}}\right), \bar{\lambda}_{k_{n}}\right) d s, \quad t \in\langle a, b\rangle, \quad n \in \mathbb{N}
$$

as $n \rightarrow \infty$, we get

$$
u^{\prime}(t)=\int_{a}^{t} f\left(s, u(s), u^{\prime}(s), \mu\right) d s, \quad t \in\langle a, b\rangle
$$

Therefore u is a solution of (1) for $\lambda=\mu$ satisfying (5) and (6) with $x=u$, and consequently $u(t)=x(t, \mu)$ by Lemma 1 . Thus $\lim _{n \rightarrow \infty} x^{(i)}\left(t, \lambda_{n}\right)=$ $x^{(i)}(t, \mu)$ uniformly on $\langle a, b\rangle, \quad i=0,1$.

Lemma 4. Let assumptions (H_{1})-(H_{4}) be fulfilled with constants $K<0<L$. If assumption
$\left(H_{5}\right) f(t, 0,0, A) \cdot f(t, 0,0, B)<0$ for $t \in\langle a, b\rangle$
is satisfied, then

$$
\begin{equation*}
x(t, B)<0<x(t, A) \text { for } t \in\langle a, b\rangle . \tag{8}
\end{equation*}
$$

Proof. Let $\left(\mathrm{H}_{5}\right)$ be satisfied and set $u(t)=x(t, A), t \in\langle a, b\rangle$. If $u(a) \leq 0$, then $u^{\prime \prime}(a)=f(a, u(a), 0, A) \leq f(a, 0,0, A)<0$ hence $u(t)<$ $0, u^{\prime}(t)<0$ on an interval $(a, \varepsilon)(\subset(a, b\rangle)$ while $u^{\prime}(\varepsilon)=0$ which contradicts $u^{\prime \prime}(\varepsilon)=f(\varepsilon, u(\varepsilon), 0, A)<f(\varepsilon, 0,0, A)<0$, and consequently $u(a)>0$. If there exists a $\xi \in(a, b\rangle$ such that $u(t)>0$ on $\langle a, \xi)$ while $u(\xi)=0$, then $u^{\prime}(\xi)<0$ since in the case of $u^{\prime}(\xi)=0$ we have $u^{\prime \prime}(\xi)=f(\xi, 0,0, A)<0$, a contradiction. Thus $u(t)<0$ on an interval $(\xi, \nu)(\subset(\xi, b\rangle)$ while $u^{\prime}(\nu)=0$. This is impossible because of $u^{\prime \prime}(\nu)=f(\nu, u(\nu), 0, A)<f(\nu, 0,0, A)<0$. Therefore $u(t)>0$ on $\langle a, b\rangle$. The proof of $x(t, B)<0$ on $\langle a, b\rangle$ is evidently analogous to the proof of $x(t, A)>0$ on $\langle a, b\rangle$ and therefore it is omitted.

Lemma 5. Let assumptions $\left(H_{1}\right)-\left(H_{5}\right)$ be fulfilled with constants $K<0<L$. Assume moreover that the following assumptions are satisfied:
(H_{6}) If $f\left(t_{1}, a_{1}, 0, A\right) \geq 0$ for some $t_{1} \in\langle a, b)$ and $0<a_{1}<L$, then $f\left(t, a_{1}, y, A\right) \geq 0$ for all $(t, y) \in\left\langle t_{1}, b\right\rangle \times\langle 0, T\rangle$;
(H_{7}) If $f\left(t_{1}, b_{1}, 0, B\right) \leq 0$ for some $t \in\langle a, b)$ and $K<b_{1}<0$, then $f\left(t, b_{1}, y, B\right) \leq 0$ for all $(t, y) \in\left\langle t_{1}, b\right\rangle \times\langle-T, 0\rangle$.
Then

$$
x^{\prime}(t, A) \leq 0, \quad x^{\prime}(t, B) \geq 0 \quad \text { for } \quad t \in\langle a, b\rangle .
$$

Proof. Let assumptions $\left(\mathrm{H}_{1}\right)=\left(\mathrm{H}_{7}\right)$ be satisfied. Set $u_{1}(t)=x(t, A)$ $u_{2}(t)=x(t, B)$ for $t \in\langle a, b\rangle$ and $c_{j}=\min \left\{u_{j}(t) ; a \leq t \leq b\right\}, d_{j}=$ $\max \left\{u_{j}(t) ; a \leq \dot{t} \leq b\right\}, j=1,2$. Then $K<c_{2} \leq d_{2}<0<c_{1} \leq d_{1}<L$ by Lemma 4. Assume $c_{1}<d_{1}$ and $u^{\prime}{ }_{1}\left(t_{1}\right)>0$ for a $t_{1} \in(a, b)$. Then there exists a $\tau \in\left\langle a, t_{1}\right)$ such that $u_{1}(\tau) \geq c_{1}>0, u_{1}^{\prime}(\tau)=0, u_{1}^{\prime}(t)>0$ on $\left(\tau, t_{1}\right\rangle$ and $u^{\prime \prime}{ }_{1}(\tau) \geq 0$. Hence $\left(u^{\prime \prime}{ }_{1}(\tau)=\right) f\left(\tau, u_{1}(\tau), 0, A\right) \geq 0$ and $f\left(t, u_{1}(\tau), y, A\right) \geq 0$ for $(t, y) \in\langle\tau, b\rangle \times\langle 0, T\rangle$ by $\left(\mathrm{H}_{6}\right)$. Consequently $u^{\prime \prime}{ }_{1}(t) \geq 0$ on $\langle\tau, b\rangle$ and $u^{\prime}{ }_{1}(t) \geq u^{\prime}{ }_{1}\left(t_{1}\right)>0$ for $t \in\left\langle t_{1}, b\right\rangle$ which contradicts $u^{\prime}{ }_{1}(b)=0$. This proves $u^{\prime}{ }_{1}(t) \leq 0$ on $\langle a, b\rangle$. Using assumption (H_{7}) we can verify $u^{\prime}{ }_{2}\left(t_{1}\right)<0$ for a $t_{1} \in(a, b)$ is impossible and therefore $u^{\prime}{ }_{2}(t) \geq 0$ for $t \in\langle a, b\rangle$.

3. Existence and uniqueness theorems

Theorem 1. Let assumptions $\left(H_{1}\right)$-(H_{5}) be fulfilled with constants $K<0<L$. Then there exists a unique solution $x(t)$ of $B V P$ (1), (2) satisfying (6).

Proof. Let $x(t, \lambda)$ be a unique solution af (1) satisfying (6) and $x^{\prime}(a, \lambda)=$ $x^{\prime}(b, \lambda)=0$ (see Lemma 1) and set $h(\lambda)=\gamma(x(t, \lambda))$ for $\lambda \in\langle A, B\rangle$. Then h is continuous (by Lemma 3) decreasing (by Lemma 2) on $\langle A, B\rangle$ and $h(A)>0>h(B)$ (by Lemma 4). Therefore there exists a unique $\mu \in(A, B)$ such that $h(\mu)=0$. Setting $x(t)=x(t, \mu)$ for $t \in\langle a, b\rangle$, then x is a unique solution of BVP (1), (2) satisfying (6).

Theorem 2. Let assumptions $\left(H_{1}\right)-\left(H_{7}\right)$ be fulfilled with constants $K<0<L$. Then there exists a solution of BVP (1), (3) satisfying (6).

Proof. Let $x(t, \lambda)$ be as in the proof of Theorem 1 and set $k(\lambda)=$ $x(c, \lambda)-x(d, \lambda)$ for $\lambda \in\langle A, B\rangle$. Then k is continuous on $\langle A, B\rangle$ (by Lemma 3) and $k(A) \geq 0, k(B) \leq 0$ (by Lemma 5). Therefore there exists a $\mu \in\langle A, B\rangle$ such that $k(\mu)=0$. Setting $x(t)=x(t, \mu)$, then $x(t)$ is a solution of BVP (1), (3) satisfying (6).

Theorem 3. Let assumptions $\left(H_{1}\right)-\left(H_{7}\right)$ be fulfilled with constants $K<0<L$. Then there exists a solutions $x(t)$ of $B V P$ (1), (4) satisfying (6).

Proof. Let $x(t, \lambda)$ be as in proof of Theorem 1 and set $r(\lambda)=x^{\prime}\left(t_{0}, \lambda\right)$ for $\lambda \in\langle A, B\rangle$. Then r is continuous on $\langle A, B\rangle$ (by Lemma 3) and $r(A) \leq$ $0, r(B) . \geq 0$ (by Lemma 5). Therefore there exists a $\mu \in\langle A, B\rangle$ such that $r(\mu)=0$. Setting $x(t)=x(t, \mu)$, then $x(t)$ is a solution of BVP (1), (4) satisfying (6).

Example 1. Consider the differential equation

$$
\begin{equation*}
x^{\prime \prime}=x^{3}+\exp (t x-2)+(x / 2)\left|x^{\prime}\right|+(2-t) \lambda, \quad t \in\langle 0,1\rangle . \tag{9}
\end{equation*}
$$

Assumptions $\left(\mathrm{H}_{1}\right)-\left(\mathrm{H}_{7}\right)$ are fulfilled with the constants $K=-2, L=2$, $A=-4, B=3$ and $T=21$. Consequently there exists a unique solution $x(t)$ of (9) such that

$$
\begin{equation*}
\gamma(x)=0, \quad x^{\prime}(0)=x^{\prime}(1)=0, \quad\|x\|<2, \quad\left\|x^{\prime}\right\|<21 \tag{10}
\end{equation*}
$$

(that is, there exists a unique $\mu \in\langle-4,3\rangle$ such that (9) for $\lambda=\mu$ has a solution $x(t)$ satisfying (10) and, moreover, this solution is unique). For
example we can set $\gamma(x)=x\left(t_{1}\right)\left(0<t_{1}<1\right)$ or $\gamma(x)=\max \{x(t) ; 0 \leq$ $t \leq 1\}$ or $\gamma(x)=\min \{x(t) ; 0 \leq t \leq 1\}$ or $\gamma(x)=\int_{0}^{1}(x(s))^{2 n+1} d s \quad(n \in \mathbb{N})$.

Next, there exist solutions $x_{1}(t)$ and $x_{2}(t)$ of BVPs (1), (3) and (1), (4), respectively, $\left\|x_{j}\right\|<2, \quad\left\|x^{\prime}{ }_{j}\right\|<21 \quad(j=1,2)$.

4. An application

Let $h>0$ be given. Let \mathbf{C} be the Banach space of $\mathrm{C}^{0}-$ functions on $\langle a-h, a\rangle$ with the norm $\|x\|_{0}=\max \{|x(t)| ; a-h \leq t \leq a\}, \mathbf{D}$ be the Banach space of C^{1}-functions on $\langle a-h, a\rangle$ with the norm $\|x\|_{1}=\|x\|_{0}+\left\|x^{\prime}\right\|_{0}$ and let $\mathbf{D}_{0}=\left\{x ; x \in \mathbf{D}, x(a)=x^{\prime}(a)=0\right\}$. For each $U, V, H \in \mathbb{R}, U<V, H>0$ we define sets $\mathbf{C}_{U, V}$ and \mathbf{C}_{H} by $\mathbf{C}_{U, V}=\{x ; x \in \mathbf{C}, U \leq x(t) \leq V$ for $t \in\langle a-h, a\rangle\}$ and $\mathbf{C}_{H}=\left\{x ; x \in \mathbf{C},\|x\|_{0} \leq H\right\}$.

For any continuous function $x:\langle a-h, b\rangle \rightarrow \mathbb{R}$ and each $t \in\langle a, b\rangle$, we denote by x_{t} the element of \mathbf{C} defined by

$$
x_{t}(s)=x(t+s-a), \quad s \in\langle a-h, a\rangle .
$$

Consider the functional differential equation

$$
\begin{equation*}
x^{\prime \prime}=F\left(t, x, x_{t}, x^{\prime}, x_{t}^{\prime}, \lambda\right) \tag{11}
\end{equation*}
$$

depending on the parameter λ. Here $F:\langle a, b\rangle \times \mathbb{R} \times \mathbf{C} \times \mathbb{R} \times \mathbf{C} \times\langle A, B\rangle \rightarrow \mathbb{R}$ is a continuous locally bounded operator.

Consider boundary condition (2) with $\gamma(x)=x(a)$ for $x \in X$, that is, the boundary condition

$$
\begin{equation*}
x(a)=x^{\prime}(a)=x^{\prime}(b)=0 . \tag{12}
\end{equation*}
$$

We say that x is a solution of BVP (11), (12) with an initial value $\varphi \in \mathbf{D}_{0}$ at the point $t=a$ if:
a) $x \in C^{1}(\langle a-h, b\rangle)$ and $x^{\prime \prime}$ is continuous on $\langle a, b\rangle$,
b) there exists a $\lambda_{0} \in\langle A, B\rangle$ such that x is a solution of (11) for $\lambda=\lambda_{0}$,
c) \dot{x} satisfies boundary condition (12),
d) $x_{a}=\varphi$.

Theorem 4. Assume there exist constants $T>0, K<0, L>0$ such that F satisfies the following assumptions:
(S_{1}) $F(t, K, u, 0, v, B)<0<F(t, L, u, 0, v, A)$ for $(t, u, v) \in\langle a, b) \times \mathbf{C}_{K, L} \times$
$\mathrm{C}_{\boldsymbol{T}}$,
$\left(S_{2}\right) \mid F(t, x, u, y, v, \lambda) \leq r(|y|)$ for $(t, x, u, y, v, \lambda) \in\langle a, b) \times\langle K, L\rangle \times \mathbf{C}_{K, L} \times$ $\mathbb{R} \times \mathbf{C}_{T} \times\langle A, \underline{B}\rangle$, where $r:\langle 0, \infty) \rightarrow(0, \infty)$ is a nondecreasing function such that

$$
\int_{0}^{T} \frac{s d s}{r(s)}>L-K
$$

$\left(S_{3}\right) F(t, ., u, y, v, \lambda)$ is increasing on $\langle K, L\rangle$ for each fixed $(t, u, y, v, \lambda) \in$ $\langle a, b\rangle \times \mathbf{C}_{K, L} \times\langle-T, T\rangle \times \mathbf{C}_{T} \times\langle A, B\rangle$,
$\left(S_{4}\right) F(t, x, u, y, v,$.$) is increasing on \langle A, B\rangle$ for each fixed $(t, x, u, y, v) \in$ $\langle a, b\rangle \times\langle K, L\rangle \times \mathbf{C}_{K, L} \times\langle-T, T\rangle \times \mathbf{C}_{T}$,
(S_{5}) $F(t, 0, u, 0, v, A) \cdot F(t, 0, u, 0, v, B)<0$ for $(t, u, v) \in\langle a, b\rangle \times \mathbf{C}_{K, L} \times$ \mathbf{C}_{T}.
Let $\varphi \in D_{0} \cap \mathbf{C}_{K, L}, \varphi^{\prime} \in \mathbf{C}_{T}$. Then BVP (11), (12) with the initial value φ at the point $t=a$ has a solution x satisfying (6).

Proof. Let \mathbf{Y} be the Banach space of C^{1}-functions on $\langle a-h, b\rangle$ with the norm $\|x\|_{\mathbf{Y}}=\max \left\{\left|x^{(i)}(t)\right| ; \quad t \in\langle a-h, b\rangle, \quad i=0,1\right\}$. Let $\varphi \in \mathbf{D}_{0} \cap$ $\mathbf{C}_{K, L}, \varphi^{\prime} \in \mathbf{C}_{T}$. Set $\mathcal{K}_{\varphi}=\left\{x ; x \in \mathbf{Y}, x_{a}=\varphi, K \leq x(t) \leq L,\left|x^{\prime}(t)\right| \leq T\right.$ for $t \in\langle a, b\rangle\} . \mathcal{K}_{\varphi}$ is a convex closed bunded subset of \mathbf{Y}. Let $\alpha \in \mathcal{K}_{\varphi}$. Then the function $f:\langle a, b\rangle \times \mathbb{R}^{2} \times\langle A, B\rangle \rightarrow \mathbb{R}$ defined by $f(t, x, y, \lambda)=$ $F\left(t, x, \alpha_{t}, y, \alpha^{\prime}, \lambda\right)$ is continuous and satisfies assumptions $\left(\mathrm{H}_{1}\right)-\left(\mathrm{H}_{5}\right)$. By Theorem 1 there exists a unique solution x_{α} of BVP (1), (12), $K<x_{\alpha}(t)<$ $L,\left|x^{\prime}{ }_{\alpha}(t)\right|<T$ on $\langle a, b\rangle$. If we define $\widetilde{x}_{\alpha}:\langle a-h, b\rangle \rightarrow \mathbb{R}$ by

$$
\tilde{x}_{\alpha, a}=\varphi, \quad \tilde{x}_{\alpha}(t)=x_{\alpha}(t) \quad \text { for } \quad t \in\langle a, b\rangle,
$$

then $\widetilde{x}_{\alpha} \in \mathcal{K}_{\varphi}$. Setting $\mathbf{V}(\alpha)=\widetilde{x}_{\alpha}$ we obtain an operator $\mathbf{V}: \mathcal{K}_{\varphi} \rightarrow \mathcal{K}_{\varphi}$ and to prove of our theorem it is sufficient to show that V has a fixed point. Let $\left\{x_{n}\right\} \subset \mathcal{K}_{\varphi}$ be a convergent sequence, $\lim _{n \rightarrow \infty} x_{n}=x$. Set $\mathbf{V}\left(x_{n}\right)=z_{n}, \mathbf{V}(x)=$ z. Then a sequence $\left\{\lambda_{n}\right\} \subset\langle A, B\rangle$ and a $\lambda_{0} \in\langle A, B\rangle$ exist such that

$$
\begin{gathered}
z_{n}^{\prime \prime}(t)=F\left(t, z_{n}(t), x_{n, t}, z_{n}^{\prime}(t), x_{n, t}^{\prime}, \lambda_{n}\right), \\
z^{\prime \prime}(t)=F\left(t, z(t), x_{t}, z^{\prime}(t), x_{t}^{\prime}, \lambda_{0}\right)
\end{gathered}
$$

for $t \in\langle a, b\rangle, n \in \mathbb{N}$, and

$$
\begin{gathered}
z_{n}(a)=z_{n}^{\prime}(a)=z_{n}^{\prime}(b)=0, \quad z(a)=z^{\prime}(a)=z^{\prime}(b)=0, \\
z_{n, a}=\varphi, \quad z_{a}=\varphi
\end{gathered}
$$

for $n \in \mathbb{N}$. Next, we have
$K<z_{n}(t)<L, \quad\left|z_{n}^{\prime}(t)\right|<T, \quad\left|z^{\prime \prime}{ }_{n}(t)\right| \leq M \quad$ rm for $\quad t \in\langle a, b\rangle, \quad n \in \mathbb{N}$,
where $M:=\sup \left\{|F(t, x, u, y, v, \lambda)| ;(t, x, u, y, v, \lambda) \in\langle a, b\rangle \times\langle K, L\rangle \times \mathbf{C}_{K, L} \times\right.$ $\left.\langle-T, T\rangle \times \mathbf{C}_{T} \times\langle A, B\rangle\right\} \quad(<\infty)$.

Let $\left\{\widetilde{z}_{n}\right\}$ be a subsequence of $\left\{z_{n}\right\}$ and let $\left\{\widetilde{\lambda}_{n}\right\}$ and $\left\{\widetilde{x}_{n}\right\}$ be the corresponding subsequences of $\left\{\lambda_{n}\right\}$ and $\left\{x_{n}\right\}$, respectively. Going if necessary to a subsequence (cf. the Ascoli-Arzela theorem), we can assume that $\left\{\widetilde{z}_{n}\right\}$ and $\left\{\tilde{\lambda}_{n}\right\}$ are convergent and let $\lim _{n \rightarrow \infty} \widetilde{z}_{n}=w, \lim _{n \rightarrow \infty} \widetilde{\lambda}_{n}=\mu_{0}$. Thus, taking the limit in the equalities

$$
\widetilde{z}_{n}(t)=\int_{a}^{t} \int_{a}^{\beta} F\left(s, \tilde{z}_{n}(s), \widetilde{x}_{n, s}, \widetilde{z}_{n}^{\prime}(s), \widetilde{x}_{n, s}^{\prime}, \tilde{\lambda}_{n}\right) d s d \beta, \quad t \in\langle a, b\rangle, \quad n \in \mathbb{N}
$$

as $n \rightarrow \infty$ we have

$$
w(t)=\int_{a}^{t} \int_{a}^{\beta} F\left(s, w(s), x_{s}, w^{\prime}(s), x^{\prime}, \mu_{0}\right) d s d \beta, \quad t \in\langle a, b\rangle
$$

and consequently w is a solution (on $\langle a, b\rangle$) of the equation $u^{\prime \prime}=g\left(t, u, u^{\prime}, \lambda\right.$) for $\lambda=\mu_{0}$ satisfying (12) with $x=w$. Here $g(t, u, v, \lambda)=F\left(t, u, x_{t}, v, x_{t}^{\prime}, \lambda\right)$ for $(t, u, v, \lambda) \in\langle a, b\rangle \times \mathbb{R}^{2} \times\langle a, b\rangle$. By Theorem 1 a unique solution of the above BVP exists and therefore $w=z$ and $\mu_{0}=\lambda_{0}$. This proves that $\left\{z_{n}\right\}$ is convergent and $\lim _{n \rightarrow \infty} z_{n}=z$, that is, V is a continuous operator.

Since $\mathbf{V}\left(\mathcal{K}_{\varphi}\right) \subset\left\{x ; x \in \mathcal{K}_{\varphi}, x^{\prime \prime}\right.$ is continuous on $\langle a, b\rangle,\left|x^{\prime \prime}(t)\right| \leq M$ for $t \in\langle a, b\rangle\}=: \mathcal{L}$ and \mathcal{L} is a compact subset of $\mathbf{Y}, \mathrm{V}\left(\mathcal{K}_{\varphi}\right)$ is relative compact in Y. Therefore by the Schauder fixed point theorem there exists a fixed point of V in \mathcal{K}_{φ}.

Example 2. Consider the functional differential equation

$$
\begin{aligned}
x^{\prime \prime}(t)= & x^{3}(t)\left(e^{t}+\left|x(t-1) x^{\prime}(t)\right|\right) \\
& \left.+\frac{(\sin t)^{2}}{1+\left|x^{\prime}(t-1 / 2)\right|}+\left(\left.1+\left(\left\lvert\, x\left(t-\frac{t}{2}\right)\right.\right) \right\rvert\, / 2\right)^{\frac{1}{2}}\right) \lambda, \quad t \in\langle 0,1\rangle .
\end{aligned}
$$

We see that (13) is of the form (11) with $F(t, x, u, y, v, \lambda)=x^{3}\left(e^{t}+\right.$ $|u(-1) y|)+\frac{(\sin t)^{2}}{1+|v(-1 / 2)|}+\left(1+(|u(-t / 2)| / 2)^{\frac{1}{2}}\right) \lambda$ and $h=1$.

Assumptions (S_{1})-(S_{5}) are satisfied for $a=0, b=1, K=-2$, $L=2, A=-2, B=2$ and $T=64$. Thus for each $\varphi \in \mathrm{D}_{0} \cap \mathbf{C}_{-2,2}, \varphi^{\prime} \in \mathrm{C}_{64}$ there exists a solution x of BVP (12), (13) with the initial value φ at the point $t=0$ satisfying

$$
|x(t)|<2, \quad\left|x^{\prime}(t)\right|<64 \quad \text { for } \quad t \in\langle 0,1\rangle .
$$

References

[1] F. M Arscott, Two-parameter eigenvalue problems in differential equations, Proc. London Math. Soc. (3), 141964 459-470.
[2] M. Greguš, F. Neuman and F. M. Arscott, Three-point boundary value problems in differential equations, J. London Math. Soc. (2), 3 1971 429-436.
[3] S. Staněk, Three point boundary value problem for nonlinear second-order differentional equations with parametr, Czech. Math. J. 42 (117) 1992 241-256.
[4] S. Stanëk, Multi-point boundary value problem for a class of functional differential equations with parameter, Math. Slovaca, No. 1, 42 (1992) 85-96.
[5] S. Stanèk, On a class of five-point boundary value problems in second-order functional differential equations with parameter, Acta Math. Hungar. (to appear).
[6] S. Staněk, On certain three-point regular boundary value problems for nonlinear serond-order differential equations depending on the parameter, (1992), submitted for publication.
[7] S. Staněk, Three-point boundary value problem of retarded functional differential equation of the second order with parameter, Acta UPO, Fac. rer. nat. 97 Math. XXIX, 1990, 107-121.
[8] H. B. Thompson, Existence for a two point boundary value problem arising in electrodiffusion, Acta Math. Sinica 4, 8 (1988) 373-387.

Department of Mathematical Analysis
Faculty of Science, Palacký University
Tomkova 38, 77200 Olomouc.
The Czech Republic

