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Prace Naukowe Uniwersytetu Śląskiego nr 1399 

B O U N D A R Y V A L U E P R O B L E M S F O R O N E - P A R A M E T E R 

S E C O N D - O R D E R D I F F E R E N T I A L E Q U A T I O N S 

S V A T O S L A V S T A N Ě K 

Abstract. The paper establishes sufficient conditions for the existence of 
solutions of a one-parameter differential equation x" = f(t, x, x', A) satisfying 
some of the following boundary conditions: 

y(x) = 0, x'(a) = x'{b) = 0, 

»'(a) = x'(b) = 0, x(c)-x(d) = 0 

and 
x'(a) = x'(t0) = x'(6) = 0. 

Here 7 is a functional. The application is given for a class of one-parameter 
functional boundary value problems. 

1. Introduction 

Consider the differential equation 

(1) x" = f(t,x,x',\) 

depending on the parameter A. Here / 6 C° ((a, b) x R 2 x (A, B) ), —00 < 
o < b < 00 , —00 < A < B < 00. 

Let X be the Banach spare of C°-functions on (a, b) with the norm 
||a;|| = max{|a;(ź)|; a < t < b}. Let 7 : X —> R be a continuous increasing 
(i.e. x, y € X, x(t) < y(t) for t 6 (a, b) =>• 7 ( 1 ) < 7(2/)) functional, 7(0) = 0. 

Let a < c < d < b, a < to < b. Consider the functional boundary 
condition 

(2) 7(«) = 0, x'(a) = x'(b) = 0 
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and the boundary conditions 

(3) x'(a) = x'(b) = 0, x(c) - x(d) = 0, 

(4) x'(a) = x'{t0) = x'{b) = 0. 

The considered problem is to determine sufficient conditions on / guaran­
teeing that it is possible to choose the parameter A such that the boundary 
value problem ( B V P for short) (1), (2) or (1), (3) or (1), (4) has a solution. 
The uniqueness of solutions of B V P (1), (2) is discussed too. We observe 
that B V P s (1), (3) and (1), (4) are at a resonance. The proofs of results 
make use of the coincidence degree theory (see Theorem 2.2. [8]) and the 
maximum principle arguments. A n application of our result for B V P (1), 
(2) with 7(x) = x(a) is given for the functional differential equation 

x" = F(t, x, xt, x', xt', A) 

depending on the parameter A. 
Sufficient conditions for the two-parameter differential equation x" + 

(q(t, X,fi) + r(t))x = 0 having a nontrivial solution x(t) satisfying x(a) = 
x(to) = x(b) = 0 are stated in [1] and [2]. Using a surjective mapping 
in E " , B V P (1), x'(0) = A, x ( l ) = B, x(2) = C was studied in [6]. Some 
boundary value problems for differential and functional differential equations 
depending on the parameter were considered in [3]-[5] using the Schauder 
linearization technique and the Schauder fixed point theorem. We observe 
that the boundary value problem x" — q(t)x = h(t,xt,\), x(t\) = x(<2) = 
x ( i 3 ) = 0 (—oo < t\ < ti < Ź3 < oo), was studied in [7]. 

2. Lemmas 

The function x € C 2 ( ( a , 6)) is said to be a solution of B V P (1), (2) or (1); 
(3) or (1), (4) if there exists a Ao G (A,B) such that x is a solution of (1) 
for A = A 0 satisfying (2) or (3) or (4), respectively. 

In the following we shall assume there exist constants K, L, K < L, such 
that / satisfies the following assumptions: 
( H i J f(t,K,0,B) < 0 < f(t,L,0,A) for t 6 (a, 6); 
( H 2 ) \f(t,x,y,\)\ <p(\y\) for (t,x,y,\)e (a,b) x (K,L)x E x (A,B), 

where p : (0, oo) -*• (0, oo) is a nondecreasing function such that 
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with a positive constant T; 
(H3) f(t, .,y,X) is increasing on (K,L) for each fixed (t, y, A) € (a,b) x 

(-T,T)x(A,B); 
( H 4 ) f(t,x,y,.) is increasing on (A, 5 ) for each fixed (t,x,y) € {a,b)x 

(K,L) x(-T,T). 

L E M M A 1. Let assumptions (lI\)-(Ei) be fulfilled with constants K < L 
and let fj, € (A, B). Then equation (1) for A = fi has a unique solution x(t) 
satisfying 

(5) x'(o) = x'(b) = 0 

and 

( 6 ) K<x(t)<L for te{a,b), \\x'\\ < T. 

P R O O F . Wi th respect to assumptions (Hi)-(ILi) the existence of a so­
lution x(t) of (1) for A = fx satisfying (5) and (6) follows from Theorem 
2.2 [8] and its proof. This theorem is proved using the results of coin­
cidence degree theory. To show the uniqueness we assume on the con­
trary that x i and x-i are two different solutions of (1) for A = \i satis­
fying ( 5 ) and ( 6 ) with x = Xj (j = 1 ,2) . Set w = x\ — Xi and let 
w(a) > 0. If w has a negative local minimum at a point t\ 6 (a, b), then 

< 0, w'(h) = 0, w"(h) > 0 which contradicts (cf. (H 3 )) = 
f(ti,xi(ti),x'i(ti),iJ,) — f(h,X2(ti),x'i(ti),n) < 0. We can similarly check 
that w has not a positive local maximum at an inner point of {a, b). If 
w(a) > 0, then w"(a) = f(a, xi(a), 0, p) - / (a , £ 2 ( 0 ) , 0, p) > 0, hence w(t) > 
0, w'(t) > 0 on an interval (a,£2) (C (a,b}) while w'fa) = 0, and con­
sequently i<;"2(i) < 0 which contradicts to"(<2) = f(hiXi(t2)i%'i(t2),p) — 
f(h,£2(^2)5%'i(h),n) > 0. Let w(a) = 0. Since w is either nondecreasing 
or nonincreasing on (a, 6) and w(b) ^ 0 we may withought loss of gen­
erality assume w is nondecreasing on (a, b), w(b) > 0. Then w"(b) = 
f(b,xi(b),0,p) — f(b,X2(b),0,fi) > 0 which is impossible. Hence the lemma 
is proved. • 

R E M A R K 1. Let assumptions (Hi)-(H4) be fulfilled with constants 
K < L. For each A 6 {A,B) we will denote by x(t, A) the unique solution of 
(1) satisfying (5) and (6). The existence and uniqueness of this solution is 
ensured by Lemma 1. 

L E M M A 2 . Let assumptions (H\)-(Hi) be fulfilled with constants K < L 
and let A < A x < A x < B. Then 

{L>)x(t,\l)>x(t,\2)(>K) for te(a,b). 
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P R O O F . Set Uj(t) = x(t,Xj) for t G (a, 6), j = 1 ,2 , and let w = 
Ul — Ul-

(i) Let w(a) < 0. Then w"(a) = f(a,ux{a),Q,Xx) - f(a,u2(a),0,X2) < 0, 
hence w(t) < 0, w'(t) < 0 for i e (a,O, w'(0 = 0 with a £ G (a, 6). 
Consequently w"(£) > 0 which contradicts w"(C) = / ( £ , Mi(£), ^ i ) ~~ 
/ U , t »2 ( O , « ' l ( O ,A2 ) < 0 . 

(ii) Let w(ż) > 0 for t G (a,^), w(^) = 0 with a v G (a, 6). If w'(f) = 0, 
then w"{v) = /( i / , t t i ( i / ) ,u ' i ( i / ) , Ai) - f{v,u\{v),u\{v), A 2 ) < 0, a contra­
diction. If w'(^) < 0, then w(i) < 0, w'(ż) < 0 on an interval (i>, r ) ( c (^, b)) 
while U / ( T ) = 0, which (see the case (i)) is impossible. Consequently 
w{t) > 0 on (a, 6). • 

L E M M A 3. Let assumptions (H\)-(Ei) be satisfied with constants K < L. 
If { A n } C (A, B) is a convergent sequence, lim A„ = p., then 

n—»oo 

(7 ) Urn x^(t,Xn) = x(-i\t,p), * = 0 , 1 , 
n—• oo 

uniformly on (a, 6). 

P R O O F . Let {A n } C (̂ 4, B) be a convergent sequence, lim A n = /x. Since 
||x(t, A n ) | | < maxflff I, |L |} (:= V ) , ||x'(t, A„)|| < T for n G N (by Lemma 1) , 
we have ||x"(ź, A n ) | | < S for n G N with 5 = max{ | / ( ź ,x , j / , A)|; (t, x,y, A) G 
(a,6) x V) X ( - T , T ) x {A,B)}. Let {A n } be a subsequence of { A n } . 
Using the Arzela-Ascoli theorem we can select a subsequence {x(t, Xkn)} of 
{x(t, A n ) } such that {x^(t, Xk„)} uniformly convergent on (a, 6) for i = 0 , 1 . 
Setting u(t) — l im x(t, At ) for < G (a, 6), then u'(a) = «'(&) = 0, and 
taking the limit in the equalities 

t 

x'(.t,Xkn) = J f(s,x(s,Xkn),x'(s,Xkn),XkJds, te{a,b), n G N 
a 

as n —• oo, we get 

u'(t) = j f(s,u(s),u'(s),p)ds, f G ( a , 6 ) . 
a 

Therefore M is a solution of ( 1 ) for A = p. satisfying ( 5 ) and ( 6 ) with 
x = u, and consequently u(t) = x(t,p) by Lemma 1. Thus lim x^%\t, A„) = 

n—>oo 
uniformly on (a,6), i = 0 , 1 . • 
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L E M M A 4. Let assumptions (Hi)-(Hi) be fulfilled with constants 
K < 0 < L. If assumption 
(H5) f(t, 0,0, A).f(t, 0,0, B) < 0 for t G (a, b) 
is satisfied, then 

(8) x{t,B) < 0 < x(t, A) for t e (a,b). 

P R O O F . Let ( H 5 ) be satisfied and set u(t) = x(t, A), t G (a, b). If 
u(a) < 0, then u"(a) = / (a ,u(a) ,0 ,A) < f(a,0,0, A) < 0 hence u(t) < 
0, u'(t) < 0 on an interval (a,e) (C (a, &)) while u'(e) = 0 which contradicts 
u"(e) = f(e,u(e),0,A) < f(s,0,0, A) < 0, and consequently u(a) > 0. If 
there exists a £ G (a, 6) such that «(<) > 0 on (a, £) while •«(£) = 0, then 

< 0 since in the case of = 0 we have = / ( £ , 0 ,0 ,A) < 0, a 
contradiction. Thus < 0 on an interval (£, 1/) (C (£, b)) while «'(&>) = 0. 
This is impossible because of u"(v) = f(v,u(v),0,A) < f(v,0,0,A) < 0. 
Therefore u(t) > 0 on (a, b). The proof of x(t,B) < 0 on (a,b) is evidently 
analogous to the proof of x(t, A) > 0 on (a, b) and therefore it is omitted. • 

L E M M A 5 . Let assumptions (Hi)-(H&) be fulfilled with constants 
K < 0 < L. Assume moreover that the following assumptions are satis­
fied: 
(HQ) If f(t\, a\, 0, A) > 0 for some t\ G {a, b) and 0 < aj < L, then 

f(t,ai,y,A) > 0 for all (t,y) G (*i,6> X (0,T); 
(H7) If f(t\,h,0,B)<0 for some t G (a,b) and K < 61 < 0, then 

f(t,buy,B) < 0 for all (t,y) G <*i, 6> x ( - T ,0 ) . 
Then 

x'(t, A) < 0, x'(t, B) > 0 for t G <a, 6). 

P R O O F . Let assumptions (Hi) = (H7) be satisfied. Set u\(t) = x(t, A) 
U2(t) = x(t,B) for t G (a,b) and Cj = min{uj(t); a < t < b}, dj = 
max{uj(t); a < i < b}, j = 1,2. Then K < c2 < d2 < 0 < cx < dx < L by 
Lemma 4. Assume c\ < d\ and u ' i ( f i ) > 0 for a t\ G (a, 6). Then there exists 
a r G (<Mi) such that « i ( r ) > c\ > 0, « i ' ( r ) = 0, «i(ż) > 0 on (r,ti) and 
t*"i(r) > 0. Hence (u" i ( r ) =) / ( r ^ r ^ O , A) > 0 and f(t,ui(r),y,A) > 0 
for (t,y) G (r,6) x (0,T) by (H 6 ) . Consequently u'\{t) > 0 on (r,6) and 

> u ' i ( ^ i ) > 0 for ź G 6) which contradicts u'\(b) = 0. This proves 
< 0 on (a, 6). Using assumption (H7) we can verify «'2(*i) < 0 for a 

t\ G (a,b) is impossible and therefore uf2{t) > 0 for / G (a,b). • 
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3. Existence and uniqueness theorems 

T H E O R E M 1. Let assumptions (Hi)-(Hs) be fulfilled with constants 
K < 0 < L. Then there exists a unique solution x(t) of BVP (1), (2) 
satisfying (6). 

P R O O F . Let x(t, A) be a unique solution af ( 1 ) satisfying (6 ) and x'(a, A) = 
x'(b,X) = 0 (see Lemma 1) and set h(X) = 7(2(1, A)) for A G (A,B). Then 
h is continuous (by Lemma 3 ) decreasing (by Lemma 2 ) on (A, B) and 
h(A) > 0 > h(B) (by Lemma 4 ) . Therefore there exists a unique p G (A, B) 
such that h(p) = 0 . Setting x(t) = x(t,p) for t G (a, b), then x is a unique 
solution of B V P ( 1 ) , ( 2 ) satisfying ( 6 ) . • 

T H E O R E M 2 . Let assumptions (Hi)-(Hj) be fulfilled with constants 
K < 0 < L. Then there exists a solution of BVP (1), (3) satisfying (6). 

P R O O F . Let x(t, A) be as in the proof of Theorem 1 and set k(X) = 
x(c, X) — x(d, A) for A G (A, B). Then k is continuous on (A, B) (by Lemma 3 ) 
and k(A) > 0 , k(B) < 0 (by Lemma 5 ) . Therefore there exists a p G (A, B) 
such that k(p) = 0 . Setting x{i) = x(t,p), then x(t) is a solution of B V P 
( 1 ) , ( 3 ) satisfying ( 6 ) . • 

T H E O R E M 3 . Let assumptions (Hi)-(Hr) be fulfilled with constants 
K < 0 < L. Then there exists a solutions x(t) of BVP (1), (4) satisfy­
ing (6). 

P R O O F . Let x(t, A) be as in proof of Theorem 1 and set r(A) = x'(£o,A) 
for A G (A, B). Then r is continuous on (A, B) (by Lemma 3 ) and r(A) < 
0, r(B). > 0 (by Lemma 5 ) . Therefore there exists a / i € (A, B) such that 
r{p) — 0 . Setting x(t) = x(t,p), then x(t) is a solution of B V P ( 1 ) , ( 4 ) 
satisfying ( 6 ) . • 

E X A M P L E 1. Consider the differential equation 

( 9 ) x" = x3 + exp(tx - 2 ) + (x/2)\x'\ + (2 - t)X, t £ (0,1). 

Assumptions (Hi)-(H7) are fulfilled with the constants K = —2, L = 2 , 
A = —4, B = 3 and T = 2 1 . Consequently there exists a unique solution 
x(t) of ( 9 ) such that 

( 1 0 ) 70*0 = 0 , ;c'(0) = ar'(l) = 0 , | |x|| < 2 , | |x' | | < 2 1 

(that is, there exists a unique p G (—4,3) such that ( 9 ) for A = p has a 
solution x(t) satisfying ( 1 0 ) and, moreover, this solution is unique). For 
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example we can set 7(2) = x(ti) (0 < t\ < 1) or 7(2) = max{x(t); 0 < 
1 

t< 1} or 7 ( 3 ) = min{z(i); 0 < t < 1} or 7 ( 1 ) = / (x (s ) ) 2 n + 1 c te (n G N) . 
0 

Next, there exist solutions x\(t) and £ 2 ( 0 of B V P s (1), (3) and (1), (4), 
respectively, \\XJ|| < 2, < 21 ( j = l , 2 ) . 

4 . A n application 

Let ft > 0 be given. Let C be the Banach space of C°-functions on 
(a—h, a) with the norm ||a;||o = max{|a:(t)|; a—h <t< o}, D be the Banach 
space of C 1-functions on (a — h, a) with the norm = ||z||o + ||z'||o and let 
D 0 = {x; x G D , x(a) = x'(a) = 0}. For each U,V,H G R, U < V, H > 0 
we define sets Cu,v and CH by Cu,v = {x; x £ C, U < x(t) < V for 
t €{a- h,a}} and CH = {x; x G C , | |x | | 0 < H}. 

For any continuous function x : (a - ft, 6) —> E and each t G (a, b), we 
denote by z* the element of C defined by 

xt(s) = x(t + s — a), s £ (a - h, a). 

Consider the functional differential equation 

(11) x" = F(t,x,xt,x',x't,\) 

depending on the parameter A. Here F : (a, 6) x i x C x i x C x(A, B) -»• 1 
is a continuous locally bounded operator. 

Consider boundary condition (2) with j(x) = x(a) for x G X, that is, the 
boundary condition 

(12) x(a) = x'(a) = x'(b) = 0. 

We say that x is a solution of B V P (11), (12) with an initial value cp G Do 
at the point t = a if: 

a) x € C 1 ( ( a — h,b)) and x" is continuous on (a,b), 
b) there exists a Ao G (A,B) such that x is a solution of (11) for 

A = Ao, 
c) x satisfies boundary condition (12), 
d) xa = (p. 

T H E O R E M 4. Assume there exist constants T > 0, K < 0, L > 0 such 
that F satisfies the following assumptions: 
(Si) F(t,K,u,0,v,B) < 0 < F(t,L,u,0,v,A) for (t,u,v) G (a,6)x C ^ , L x 
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C T , 

(52) \F(t,x,u,y,v,X) < r(\y\) for (t,x,u,y,v,\) £ (a,b) X (K,L)x CK>Lx 
E x C T X (A,B), where r : (O, oo) —• (0, oo) is a nondecreasing function 

such that 

J r(s) 
o 

(53) F(t, .,u,y, v, A) is increasing on {K, L) for each fixed (/, u, y, v, A) £ 
(a,b)x CK,L x {-T,T)X CT X (A,B), 

(54) F(t, x, u,y, v,.) is increasing on (A, B) for each fixed (t, x, u,y, v) £ 
(a,b) x (K,L)x C K T L x {-T,T)x CT, 

(55) F(t, 0, u, 0, v, A).F(t, 0, u, 0, v, B) < 0 for (t, u, v) € (a, b) x C K i L x 
CT-

Let <p £ D0n C K ) L , <p' e CT. Then BVP (11), (12) with the initial value 
cp at the point t = a has a solution x satisfying (6). 

P R O O F . Let Y be the Banach space of C 1-functions on (a — h, b) with 
the norm | | x | | Y = max{ |x ( i ) ( ż ) | ; t £ (a - h,b), i = 0,1}. Let <p £ D 0 n 
C K , L , f' £ CT. Set = {x; x e Y , x a = <p, K < x(t) < L, \x'(t)\ < T 
for t £ (a, b)}. K^, is a convex closed bunded subset of Y . Let a £ K,v. 
Then the function / : (a, b) x E 2 X (A, B) -> E defined by f(t,x,y,\) = 
F(t,x,ctt,y,ct't,\) is continuous and satisfies assumptions (Hi)-(H5). By 
Theorem 1 there exists a unique solution xa of B V P (1), (12), K < xa(t) < 
L, \x'a(t)\ < T on (a,6). If we define xa : (a - h,b) -> E by 

x „ , a = ¥>, xa(t) - xa(t) for t £ (a,b), 

then xa £ Kip- Setting V ( a ) = xa we obtain an operator V : ICV -* / C v and 
to prove of our theorem it is sufficient to show that V has a fixed point. Let 
{ x n } C JCV be a convergent sequence, l im x n = x. Set V ( x „ ) = zn, V ( x ) = 
z. Then a sequence {A n } C {A, B) and a Ao £ (A,B) exist such that 

Zn"(t) = F(t,Zn(t),Xnj,z'n(t),x'nft,\n), 

z"(t) = F(t,z(t),xt,z'(t),x't,Xo) 

for t £ (a, 6), n £ N , and 

zn(a) = z'n(a) = z'n(b) = 0, z(a) = z'{a) = z'(b) = 0, 

Zn,a = <P, Za = If 

for n C H . Next, we have 

K<zn(t)<L, \z'n(t)\<T, \z"n(t)\<M rmfor t £ (a,b), n £ H , 
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where M := sup{|F(t,x,u,y,v, A)|; (t,x,u,y,v, A) G (a,6)x(/iL ',Z/)x C / ^ x 
( - T , r ) x C T x ( A , 5 ) } (<oo). 

Let {zn} be a subsequence of {zn} and let {A n } and {xn} be the corre­
sponding subsequences of {A*,} and {xn}, respectively. Going if necessary 
to a subsequence (cf. the Ascoli-Arzela theorem), we can assume that {zn} 
and { A n } are convergent and let l im zn = w, l im A n = HQ. Thus, taking 

n-+oo n-r+oo 

the limit in the equalities 

t P 

zn(t) = J J F(s,zn(s),xniS,z!n(s),x'ntS,Xn)dsdP, t£(a,b), n £ N , 
a a 

as n —• oo we have 
t P 

w(t) = J J F(s,w(s),xa,w'(s),x'3,fiQ)dsdp, t £ (a, 6), 
a a 

and consequently w is a solution (on (a, b)) of the equation u" = # ( t , « , u ' , A) 
for A = fi0 satisfying (12) with x = w. Here g(t,u,v,X) = F(t,u,xt,v,x't, A) 
for (tf,u, v, A) £ (a,b) x E 2 X (a, b). By Theorem 1 a unique solution of the 
above B V P exists and therefore w = z and /zo = Ao. This proves that {zn} 
is convergent and lim zn = z, that is, V is a continuous operator. 

71-+OO 

Since V (K.v) C {x; x £ ICV, x" is continuous on (a, 6), |x"(*)l < M for 
< € (a, 6)} =: £ and £ is a compact subset of Y , V (ICV) is relative compact 
in Y . Therefore by the Schauder fixed point theorem there exists a fixed 
point of V in /Cv. 

E X A M P L E 2. Consider the functional differential equation 

x"(t)=x3(t)(et + \x(t-l)z'(t)\) 

+ l + | % - a i / 2 ) | + ( 1 + « ' " 5 ) ) l / 2 ) ł ) A ' ' 6 <°' V-

We see that (13) is of the form (11) with F(t,x,u,y,v, Xs) — x^(e*-|-

\u{-l)y\) + + (1 + (K-*/2)|/2)*)A and h = 1. 
Assumptions (Si)-(Ss) are satisfied for o = 0, b = 1, /if = —2, 

I = 2, A = - 2 , 5 = 2 and T = 64. Thus for each <p £ D 0 D C _ 2 ) 2 , G C 6 4 

there exists a solution x of B V P (12), (13) with the initial value <p at the 
point t = 0 satisfying 

\x(t)\<2, |x'(*)|<64 for «G(0 ,1>. 

A n n & l e t . . . 
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