Prace Naukowe Uniwersytetu Śląskiego nr 1399

ASYMPTOTIC STABILITY OF MARKOV OPERATORS CORRESPONDING TO THE DYNAMICAL SYSTEMS WITH MULTIPLICATIVE PERTURBATIONS

KATARZYNA OCZKOWICZ

Abstract. We consider discret time dynamical systems with multiplicative perturbations. We give a sufficient condition for the asymptotic stability of Markov operators on measures generated by dynamical systems with multiplicative perturbations.

Introduction. In this paper we consider a stochastically perturbed discrete time dynamical system of the form $x_{n+1} = S(x_n)\xi_n$, n = 0, 1, 2, ...,where S is a given Borel measurable transformation, and ξ_n are random variables. The trajectories of our system are sequences of random variables x_n with values in \mathbb{R}^d . Systems of this type has been examined recently by K. Horbacz ([1], [2)). She considered the case when ξ_n are continuously distributed with a common density g. In this case x_n are also continuously distributed. K. Horbacz gave a sufficient condition for the convergence of the densities of x_n to a unique stationary density.

We study the same problem without assumption that the common distribution of ξ_n is continuous. In our case x_n are in general random vectors without density. Our aim is to found sufficient conditions for the weak convergence of the distributions of x_n to a stationary measure. The Proof of the main result is based on a theorem of A. Lasota and J.A. Yorke [5] concerning Markov operator on measures.

7*

Received November 20, 1993.

AMS (1991) subject classification: Primary 58F10. Secondary 47D07.

This research was supported by the State Committee for Scientific Research Grant No. 2 P301 026 05 .

Our paper is divided into two sections. Section 1 contains some notations and definitions. The main result is formulated in Section 2.

1. Formulation of the problem. Consider a stochastically perturbed discrete time dynamical system of the form

(1.0)
$$x_{n+1} = S(x_n)\xi_n$$
 for $n = 0, 1, 2, ...$

where S is a Borel measurable transformation of \mathbb{R}^d into itself, and ξ_n are independent random variables with values in \mathbb{R}_+ .

We assume the following conditions:

(i) The random variables ξ_0, ξ_1, \ldots are independent and have the same nontrivial distributions G i.e. G is not concertated on a single point.

(ii) S is a function which satisfies the Lipschitz condition:

$$|S(x) - S(z)| \le L|x - z|$$
 for $x, z \in \mathbb{R}^d$

where the symbol $|\cdot|$ denotes a norm in \mathbb{R}^d .

(iii) There is $\alpha_0 \in (0,1)$ such that

$$L^{\alpha_0}\int_{\mathbb{R}_+}y^{\alpha_0}G(dy)<1.$$

(iv) The vector x_0 , and variables ξ_i are independent for i = 0, 1, 2, ...

According to (1.0) the random vector x_n is function of x_0 and $\xi_0, \xi_1, \ldots, \xi_{n-1}$. From this and from condition (iv) it follows that x_n and ξ_n are independent. Using this fact we will derive a recurrence formula for the measures

(1.1)
$$\mu_n(A) = \operatorname{Prob}(x_n \in A), \quad A \in B(\mathbb{R}^d).$$

Let consider now a bounded Borel measurable function $h: \mathbb{R}^d \to \mathbb{R}$. The expectation $E(z_{n+1})$ of the random vector $z_{n+1} = h(x_{n+1})$, (where $n \ge 0$) is given by

(1.2)
$$E(z_{n+1}) = E(h(x_{n+1})) = \int_{\mathbb{R}^d} h(x)\mu_{n+1}(dx).$$

Since $z_{n+1} = h(S(x_n)\xi_n)$ this implies

(1.3)
$$E(z_{n+1}) = E(h(S(x_n)\xi_n)) = \int_{\mathbb{R}^d} \left[\int_{\mathbb{R}_+} h(S(x)y)G(dy) \right] \mu_n(dx).$$

Comparing (1.2) and (1.3) and setting $h = 1_A$ we obtain:

$$\mu_{n+1}(A) = \int_{\mathbb{R}^d} \left(\int_{\mathbb{R}_+} 1_A(S(x)y)G(dy) \right) \mu_n(dx) \quad \text{or} \quad \mu_{n+1}(A) = P\mu_n(A),$$

where

(1.4)
$$P\mu(A) = \int_{\mathbb{R}_+} \int_{\mathbb{R}^d} 1_A(S(x)y)\mu(dx)G(dy).$$

The operator P given by formula (1.4) maps the space M_1 , of all probabilistic measures on \mathbb{R}^d into itself and is called the *Markov operator corresponding to the dynamical system* (1.0).

The equation (1.4) can be rewritten in the form

(1.5)
$$P\mu(A) = \int_{\mathbb{R}^d} U \mathbf{1}_A \mu(dx)$$

where $U: C_0(\mathbb{R}^d) \to C(\mathbb{R}^d)$ is the operator adjoint to the Markov operator P. By $C_0(\mathbb{R}^d)$ is denoted the space of all real valued continuous functions with compact support, and by $C(\mathbb{R}^d)$ the space of all continuous functions.

The operator U satisfes the following equation:

(1.6)
$$Uf(x) = \int_{\mathbb{R}_+} f(S(x)y)G(dy).$$

Let us define a sequence of functions $T^n(x, y_1, \ldots, y_n)$ by setting:

$$T(x,y) = S(x)y, \ T^{n}(x,y_{1},\ldots,y_{n}) = T(T^{n-1}(x,y_{1},\ldots,y_{n-1}),y_{n}).$$

Using this notation we obtain

(1.7)
$$U^n f(x) = \int \cdots \int f(T^n(x, y_1, \dots, y_n)) G(dy_1) \cdots G(dy_n)$$

and

(1.8)
$$P^n\mu(A) = \int_{\mathbb{R}^d} U^n \mathbf{1}_A \mu(dx).$$

We introduce the class Φ of functions $\phi : \mathbb{R}_+ \to \mathbb{R}_+$ satisfying the following conditions:

1° ϕ is continuous and $\phi(0) = 0$;

 $2^{\circ} \phi$ is nondecreasing and concave, i.e.

$$\phi\left(\frac{t_1+t_2}{2}\right) \ge \frac{1}{2}(\phi(t_1)+\phi(t_2)) \text{ for } t_1, t_2 \in \mathbb{R}_+;$$

3° $\phi(t) > 0$ for t > 0 and $\phi(t) \to +\infty$ when $t \to +\infty$. We define the metric ρ_{ϕ} in \mathbb{R}^d by the formula:

$$\varrho_{\phi}(x,y) = \phi(\varrho(x,y)) \quad \text{for} \quad x,y \in \mathbb{R}^{d},$$

where ρ is Euclidean metric and in the space M_1 we define the distance between measures by:

(1.9)
$$\|\mu_1 - \mu_2\|_{\phi} = \sup_{F_{\phi}} |\int_{\mathbb{R}^d} f(x)\mu_1(dx) - \int_{\mathbb{R}^d} f(x)\mu_2(dx)|,$$

where F_{ϕ} is the set of functions such that $|f| \leq 1$ and $|f(x) - f(y)| \leq \rho_{\phi}(x, y) = \phi(\rho(x, y))$.

The space M_1 with the distance $\|\mu_1 - \mu_2\|_{\phi}$ is a complete metric space and

(1.10)
$$\lim_{n \to +\infty} \|\mu_n - \mu\|_{\phi} = 0 \quad \text{for} \quad \mu_n, \mu \in M_1$$

holds if and only if the sequence $\{\mu_n\}$ is weakly convergent to μ . The sequence of measures $\{\mu_n\}$ is convergent to μ in $\|\cdot\|_{\varphi}$ if and only if $\{\mu_n\}$ is convergent to μ in $\|\cdot\|_{id}$, where id (x) = x. Indeed, the identity function id belongs to the set Φ and the metrics ρ_{id} and ρ_{ϕ} define the same topology. From now, $\|\cdot\| = \|\cdot\|_{id}$.

2. Asymptotic stability. Let P be a Markov operator; a measure $\mu \in M_1$ is called stationary or invariant if $P\mu = \mu$. A Markov operator is called *asymptotically stable* if there exists a stationary distribution μ_* such that

(2.1)
$$\lim_{n \to +\infty} \|P^n \mu - \mu_*\| = 0 \text{ for } \mu \in M_1.$$

From now we consider \mathbb{R}^d with metric ϱ_{ϕ} .

102

We introduce the following definitions: A Markov operator P is called *nonexpansive* if

$$||P\mu_1 - P\mu_2||_{\phi} \le ||\mu_1 - \mu_2||_{\phi}$$
 for $\mu_1, \mu_2 \in M_1$.

A Markov operator $P: M_1 \to M_1$, satisfies the Prochorov condition if there exists a compact set $Y \subset \mathbb{R}^d$ and a number $\beta > 0$ such that

(2.3)
$$\lim_{n \to +\infty} \inf P^n \mu(Y) \ge \beta \quad \text{for} \quad \mu \in M_1.$$

From [5] it follows that, if P satisfies the Prochorov condition and P is nonexpansive then the Markov operator P has an invariant measure μ_* .

We can use the following theorem [5]:

THEOREM. Let P be a nonexpansive Markov operator Assume that for every $\varepsilon > 0$ there is a number $\lambda > 0$ having the following property: for every $\mu_1, \mu_2 \in M_1$ there exists a Borel set A with diam $A < \varepsilon$ and an integer n_0 such that

$$(2.4) P^{n_0}\mu_i(A) \ge \lambda \quad \text{for} \quad i=1,2.$$

Then P satisfies the following condition

(2.5)
$$\lim_{n \to +\infty} \|P^n(\mu_1 - \mu_2)\| = 0 \quad \text{for} \quad \mu_1, \mu_2 \in M_1.$$

Now we proof the following auxiliary lemma:

LEMMA 1. Assume that conditions (i), (ii), (iv) hold for equation (1.0). Suppose that the Markov operator P corresponding to the dynamical system (1.0) satisfies Prochorov condition and the following inequality holds:

(2.6)
$$L\left(\int_{\mathbb{B}_+} y^{\alpha} G(dy)\right)^{\frac{1}{\alpha}} \leq 1$$

for some $\alpha \in (0,1)$. Then the Markov operator defined by equation (1.4) is asymptotically stable.

PROOF. First, we prove that the operator P is nonexpansive i.e.

$$\sup_{f\in F_{\phi}}\left|\int_{\mathbb{R}_{+}} Uf(x)\mu_{1} - \int_{\mathbb{R}_{+}} Uf(x)\mu_{2}\right| \leq \sup_{f\in F_{\phi}}\left|\int_{\mathbb{R}_{+}} f(x)\mu_{1} - f(x)\mu_{2}\right|$$

104

for $\phi(t) = |t|^{\alpha}$. In order to check it we show that if $f \in F_{\phi}$ than $Uf \in F_{\phi}$. Indeed

$$\begin{split} |Uf(x) - Uf(z)| &\leq |\int (f(yS(x)) - f(yS(z)))G(dy)| \\ &\leq \int \phi(y|S(x) - S(z)|)G(dy) \\ &\leq \int y^{\alpha}|S(x) - S(z)|^{\alpha}G(dy) \\ &\leq |S(x) - S(z)|^{\alpha} \int y^{\alpha}G(dy) \\ &\leq L^{\alpha}|x - z|^{\alpha} \int y^{\alpha}G(dy) \\ &\leq |x - z|^{\alpha} = \phi(|x - z|). \end{split}$$

Since P is nonexpansive and P satisfies Prochorov condition, the operator P has an invariant measure μ_* .

Now we show that condition (2.4) holds. Fix an $\varepsilon > 0$. Then there exists an integer m such that

(2.7)
$$\phi(r^m \operatorname{diam}_{\varrho} Y) \leq \varepsilon$$

where 0 < r < 1, Y - compact set satisfying Prochorov condition. Notice that

Prob
$$\left(\xi_n < \left(\int\limits_{\mathbb{R}_+} y^{\alpha} G(dy)\right)^{\frac{1}{\alpha}}\right) > 0.$$

Thus there exists

(2.8)
$$c < (\int_{\mathbb{R}_+} y^{\alpha} G(dy))^{\frac{1}{\alpha}}$$

such that $\operatorname{Prob}(\xi_n \leq c) > 0$.

Fix $\tilde{y} \in [O, c]$. According to (ii) we have

$$\begin{aligned} |T(x,\widetilde{y}) - T(z,\widetilde{y})| &= |S(x)\widetilde{y} - S(z)\widetilde{y}| \\ &= \widetilde{y}|S(x) - S(z)| \le cL|x - z|. \end{aligned}$$

where $(\tilde{y}_1, \ldots, \tilde{y}_m) \in [O, c]^m$ is fixed. Condition (2.9) implies that

(2.10)
$$\operatorname{diam}_{\varrho}(T^m(Y,\widetilde{y}_1,\ldots,\widetilde{y}_m)) \leq r^m \operatorname{diam}_{\varrho}Y.$$

Define

(2.11)
$$A = T^m(Y, \tilde{y}_1, \dots, \tilde{y}_m).$$

Then

(2.12)
$$\operatorname{diam}_{\ell\phi}(A) \leq \phi(\operatorname{diam}_{\ell} A) \leq \phi(r^m \operatorname{diam}_{\ell} Y) < \varepsilon.$$

According to Prochorov condition there exists $\overline{n} = \overline{n}(\mu_i)$ such that

(2.13)
$$P^n \mu_i(Y) \ge \beta \quad \text{for} \quad n \ge \overline{n}, \quad i = 1, 2.$$

Set $n_0 = \overline{n} + m$, then

$$P^{n_{0}}\mu_{i}(A) = \int_{\mathbb{R}^{d}} \int \prod_{\substack{k=0 \\ m \neq 0}} \int 1_{A}(T^{n_{0}}(x, y_{1}, \dots, y_{n_{0}}))\mu_{i}(dx)G(dy_{1})\dots G(dy_{n_{0}})$$

$$\geq \int_{\mathbb{R}^{d}} \int \prod_{\substack{m = 1 \\ m \neq \infty}} \int 1_{A}(T^{m}(T^{\overline{n}}(x, y_{k_{1}}, \dots, y_{k_{\overline{n}}}), y_{k_{\overline{n}+1}}, \dots, y_{k_{n_{0}}}))\mu_{i}(dx)$$

$$\times G(dy_{k_{1}})\dots G(dy_{k_{n_{0}}}).$$

Define

$$T^{-m}_{(y_1,\ldots,y_m)}(A) = \{\omega \in \mathbb{R}^d : T^m(\omega, y_1,\ldots,y_m) \in A\}$$

and notice that condition

$$T^{m}(T^{\overline{n}}(x, y_{k_{1}}, \ldots, y_{k_{\overline{n}}}), y_{k_{\overline{n}+1}}, \ldots, y_{k_{n_{0}}}) \in A$$

gives

$$T^{\overline{n}}(x, y_{k_1}, \ldots, y_{k_{\overline{n}}}) \in T^{-m}_{(y_{k_{\overline{n}+1}}}, \ldots, y_{k_{n_0}})(A).$$

This implies:

$$P^{n_0}\mu_i(A)$$

$$\geq (G[O,c])^m \int_{\mathbb{R}^d} \int_{\mathbb{R}^{\frac{n}{4}}_+} 1_{T^{-m}_{[0,c]^m}(A)}(T^{\overline{n}}(x,y_{k_1},\ldots,y_{k_{\overline{n}}}))\mu_i(dx)$$

$$\times G(dy_{k_1})\cdots G(dy_{k_{\overline{n}}}),$$

where

$$T_{[0,c]^m}^{-m}(A)$$

= { $\omega \in \mathbb{R}^d$ such that there is $(y_1, \ldots, y_m) \in [O,c]^m$:
 $T^m(\omega, y_1, \ldots, y_m) \in A$ }.

From the definition of the set A it follows that:

$$Y \subset T^{-m}_{[0,c]^m}(A).$$

Consequently

$$P^{n_0}\mu_i(A)$$

$$\geq (G[O,c])^m \int_{\mathbb{R}^d} \int_{\mathbb{R}^{\frac{n}{2}}} 1_Y(T^{\overline{n}}(x,y_{k_1},\ldots,y_{k_{\overline{n}}}))\mu_i(dx)G(dy_{k_1})\ldots G(dy_{k_{\overline{n}}})$$

$$= (G[O,c])^m P^{\overline{n}}\mu_i(Y) \geq (G[O,c])^m \beta > 0, \text{ where } m \text{ is fixed.}$$

If $\lambda = (G[O, c])^m \beta$, than λ satisfies conditions (2.4). Since P is nonexpansive and satisfes conditions (2.4), operator P is asymptotically stable which completes the proof.

A continuous $V : \mathbb{R}^d \to [0, +\infty)$ is called a Liapunov function if

(2.14)
$$\lim_{\varrho(x,x_0)\to+\infty} V(x) = +\infty$$

for some $x_0 \in \mathbb{R}^d$.

Now we present an auxiliary proposition concerning the Prochorov condition ([5]).

PROPOSITION 1. Let P be a Markov operator and let U i.e a operator dual to P. Assume that there is a Liapunov function V such that

$$(2.15) UV(x) \le aV(x) + b \quad \text{for} \quad x \in \mathbb{R}^d$$

106

where a, b are nonnegative constants and a < 1. Then P satisfies the Prochorov condition.

From Lemma 1 and Proposition 1 we have the following.

THEOREM 1. If conditions (i)-(iv) hold for equation (1.0), then the operator P given by equation (1.4) is asymptotically stable.

PROOF. Setting $V(x) = |x|^{\alpha_0}$ we have

$$UV(x) = \int_{\mathbb{R}_{+}} |S(x)y|^{\alpha_{0}} G(dy) = |S(x)|^{\alpha_{0}} \int_{\mathbb{R}_{+}} y^{\alpha_{0}} G(dy)$$

= $|S(x) - S(x_{0}) + S(x_{0})|^{\alpha_{0}} \int_{\mathbb{R}_{+}} y^{\alpha_{0}} G(dy)$
 $\leq |S(x) - S(x_{0})|^{\alpha_{0}} \int_{\mathbb{R}_{+}} y^{\alpha_{0}} G(dy) + |S(x_{0})|^{\alpha_{0}} \int_{\mathbb{R}_{+}} y^{\alpha_{0}} G(dy).$

Since S satisfies Lipschitz condition (ii), it is easy to notice that following inequalities hold:

$$\begin{aligned} UV(x) \leq L^{\alpha_0} |x - x_0|^{\alpha_0} \int\limits_{\mathbb{R}_+} y^{\alpha_0} G(dy) + |S(x_0)|^{\alpha_0} \int\limits_{\mathbb{R}_+} y^{\alpha_0} G(dy) \\ \leq L^{\alpha_0} \int\limits_{\mathbb{R}_+} y^{\alpha_0} G(dy) |x|^{\alpha_0} + L^{\alpha_0} \int\limits_{\mathbb{R}_+} y^{\alpha_0} G(dy) |x_0|^{\alpha_0} \\ &+ |S(x_0)|^{\alpha_0} \int\limits_{\mathbb{R}_+} y^{\alpha_0} G(dy). \end{aligned}$$

Thus condition (2.15) holds with

7

$$a = L^{\alpha_0} \int_{\mathbb{R}_+} y^{\alpha_0} G(dy)$$

and

$$b=(L^{\alpha_0}|x_0|^{\alpha_0}+|S(x_0)|^{\alpha_0})\int\limits_{\mathbb{R}_+}y^{\alpha_0}G(dy).$$

Consequently Markov operator P corresponding to the dynamical system (1.0) satisfies the Prochorov condition (2.3). According to Lemma 1 the Markov operator P is asymptotically stable. The proof is completed. \Box

REFERENCES

- K. Horbacz, Dynamical systems with multiplicative perturbations, Ann. Polon. Math. 50 (1989), 93-102.
- [2] K. Horbacz, Asymptotic stability of dynamical systems with multiplicative perturbations, Ann. Polon. Math. 50 (1989), 209-218.
- [3] A. Lasota and M. C. Mackey, Probabilistic properties of deterministic systems, Cambridge University Press, Cambridge 1985.
- [4] A. Lasota and M. C. Mackey, Stochastic perturbation of dynamical systems: The weak convergence of measures, J. Math. Anal. Appl. 138 (1989), 232-248.
- [5] A. Lasota and J. A. Yorke, Lower bound technique for Markov operators and iterated function systems, in press.

Uniwersytet Śląski Instytut Matematyki ul. Bankowa 14 40–007 Katowice