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Abstract. We consider discret time dynamical systems with multiplicative 
perturbations. We give a sufficient condition for the asymptotic stability of 
Markov operators on measures generated by dynamical systems with multi
plicative perturbations. 

Introduction. In this paper we consider a stochastically perturbed dis
crete time dynamical system of the form xn+\ = S(xn)£n, n = 0,1,2,..., 
where S is a,given Borel measurable transformation, and f n are random 
variables. The trajectories of our system are sequences of random variables 
xn with values in E d . Systems of this type has been examined recently by 
K. Horbacz ([1], [2)). She considered the case when f n are continuously 
distributed with a common density g. In this case xn are also continuously 
distributed. K. Horbacz gave a sufficient condition for the convergence of 
the densities of xn to a unique stationary density. 

We study the same problem without assumption that the common dis
tribution of £ n is continuous. In our case xn are in general random vectors 
without density. Our aim is to found sufficient conditions for the weak con
vergence of the distributions of xn to a stationary measure. The Proof of the 
main result is based on a theorem of A. Lasota and J.A.Yorke [5] concerning 
Markov operator on measures. 
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Our paper is divided into two sections. Section 1 contains some notations 
and definitions. The main result is formulated in Section 2. 

1. Formulation of the problem. Consider a stochastically perturbed 
discrete time dynamical system of the form 

(1.0) x n + 1 = S(xn)£n for n = 0,1,2,. 

where 5 is a Borel measurable transformation of E d into itself, and £ n are 
independent random variables with values in R+. 

We assume the following conditions: 
(i) The random variables £O,£L?--- are independent and have the same 

nontrivial distributions G i.e. G is not concetrated on a single point. 
(ii) 5 is a function which satisfies the Lipschitz condition: 

\S(x) - S(z)\ < L\x - z\ for x, z € Rd 

where the symbol | • | denotes a norm in Rd. 
(iii) There is a0 € (0,1) such that 

' « 0 / yaoG(dy) < 1. 

(iv) The vector x0, and variables are independent for i = 0,1,2, 
According to (1.0) the random vector xn is function of xo and £o»fi> • • •» 

£ n _ i . From this and from condition (iv) it follows that xn and f n are inde
pendent. Using this fact we will derive a recurrence formula for the measures 

(1.1) Hn(A) = Prob (acB € A), A € B(Rd). 

Let consider now a bounded Borel measurable function h : R d —»• E . The 
expectation E(zn+\) of the random vector zn+i = h(xn+i), (where n > 0) 
is given by 

(1.2) E(zn+1) = E(h(xn+1)) = J h(x)(in+1(dx). 

Since z n + i = /i(5'(a;n)^n)this implies 

(1,3) E(zn+1) = E(h(S(xn)Cn)) = J j h(S(x)y)G(dy) Hn(dx). 
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Comparing (1.2) and (1.3) and setting h = 1,4 we obtain: 

fi„+i(A) = J [J lA(S(x)y)G(dy) fin(dx) or nn+l(A) = Pnn(A), 

where 

(1.4) Pfi(A) = J j lA(S(x)y)fi(dx)G{dy). 

The operator P given by formula (1.4) maps the space Mi, of all proba
bilistic measures on M.d into itself and is called the Markov operator corre
sponding to the dynamical system (1.0). 
The equation (1.4) can be rewritten in the form 

(1.5) Pn(A) = JUlAn(dx) 

where U : Co(Md) —• C(Rd) is the operator adjoint to the Markov opera
tor P. By Co(]Rd) is denoted the space of all real valued continuous functions 
with compact support, and by C(R d) the space of all continuous functions. 

The operator U satisfes the following equation: 

(1.6) U f{x) = J f(S(x)y)G(dy). 

»+ 

Let us define a sequence of functions Tn(x, yi,... , yn) by setting: 

T(x,y) = S{x)y, Tn(x,yu... ,yn) = T(Tn-\x,yi,... , y„_ i ) , y„ ) . 

Using this notation we obtain 

(1.7) Unf(x) = J ••• J f(Tn{x,yi,... ,yn))G(dyi)..-G(dyn) 

and 

(1.8) Pn

ii{A) = j Un\Aii{dx). 
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We introduce the class $ of functions <f>: —> satisfying the following 
conditions: 

1° <J> is continuous and <£(0) = 0; 
2° 4> is nondecreasing and concave, i.e. 

^(j-y1) > 5(^*1)+ for *i,t 2 em+; 

3° <f>(t) > 0 for t> 0 and 0(f) -»• +oo when * -» +oo. 
We define the metric g^'m E d by the formula: 

Q4>(x, V) = »)) for x, y £ M d , 

where Q is Euclidean metric and in the space M\ we define the distance 
between measures by: 

(1.9) \\m - n2\U = sup I y f(x)m(dx) - J f(x)n2(dx)\, 

where F ,̂ is the set of functions such that | / | < 1 and \f(x) — f(y)\ < 
Q<t>(x, y) = <f>(g(x,.y)). 

The space Mi with the distance — / /2 IU is a complete metric space 
and 

(1.10) lim | | / z n - / i | L = 0 for / i n , / i 6 M i 
n—>+oo 

holds if and only if the sequence {fin} is weakly convergent to fi. The 
sequence of measures {/xn} is convergent to /J in || • H ,̂ if and only if {/in} is 
convergent to /z in || • ||jd, where id (x) = x. Indeed, the identity function id 
belongs to the set $ and the metrics Q\Ą and define the same topology. 
From now, || • || = || • | | i d . 

2. Asymptotic stability. Let P be a Markov operator; a measure 
H G M\ is called stationary or invariant if P/x = /x. A Markov operator is 
called asymptotically stable if there exists a stationary distribution //* such 
that 

(2.1) Urn \\Pnn - //*|| = 0 for /i G M i . 
n—>+oo 

From now we consider Rd with metric QJ,. 
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We introduce the following definitions: 
A Markov operator P is called nonexpansive if 

\\Ppi - P/x 2 |U < | | M I - M 2 I U F O R 

A Markov operator P : M\ —> Afi, satisfies the Prochorov condition if 
there exists a compact set Y C M d and a number /? > 0 such that 

( 2 . 3 ) lim inf P n / /(Y) > 0 for p, e Mi. 

From [5] it follows that, if P satisfies the Prochorov condition and P is 
nonexpansive then the Markov operator P has an invariant measure . 

We can use the following theorem [5]: 

" T H E O R E M . Let P be a nonexpansive Markov operator Assume that for 
every e > 0 tAere is a number A > 0 having the following property: for every 
(ii,H2 G Mi there exists a Borel set A with diam A < e and an integer no 
such that 

(2 .4 ) P n >i(yl)>A for i = 1 ,2 . 

Tiien P satisfes the following condition 

( 2 . 5 ) lim \\Pn(fii -fi2)\\ = 0 for m,(i2eMi. 

Now we proof the following auxiliary lemma: 

L E M M A 1. Assume that conditions (i), (ii), (iv) hold for equation (1.0). 
Suppose that the Markov operator P corresponding to the dynamical system 
(1.0) satisfes Prochorov condition and the following inequality holds: 

for some a G ( 0 , 1 ) . TAeii the Markov operator defined by equation (1.4) is 
asymptotically stable. 

P R O O F . First, we prove that the operator P is nonexpansive i.e. 

sup I / Uf(x)m - / Uf(x)p,2\ < sup I / f(x)m - f(x)n2\ 
/ e n J J ffF* J. 

file:////Ppi
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for <j>(t) = \t\a. In order to check it we show that if / G than Uf G F$. 
Indeed 

\Uf(x) - Uf(z)\ < I J(f(yS(x)) - f{yS{z)))G{dy)\ 

< J <f>(y\S(x)-S(z)\)G(dy) 

< J ya\S(x)-S(z)\aG(dy) 

<\S(x)-S(z)\° j yaG(dy) 

<La\x-z\a J yaG(dy) 

<|x-.z | a = <£( |x -2 | ) . 

Since P is nonexpansive and P satisfies Prochorov condition, the operator P 
has an invariant measure 

Now we show that condition (2.4) holds. Fix an e > 0. Then there exists 
an integer m such that 

{2.7) <j>(rm diameY) < e 

where 0 < r < 1, Y - compact set satisfying Prochorov condition. Notice 
that 

Prob ( £ » < {jyaG{dy))°) > 0. 

Thus there exists 

(2.8) c < ( / yaG(dy))± 

+ 

such that Prob (£„ < c) > 0. 
Fix y G [0,c]. According to (ii) we have 

|r(x,jf)-T(«,jf)l=|5W-5(z)jf| 
=y|S(x)-S(z) |<cZ,|x-z| . 
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Conditions (2.8) and (2.6) imply that cL < 1. Thus, we can set in (2.7) 
r = cL, (0 < r < 1). Observe that 
(2.9) 
\Tm{x,yx,... ,ym)-Tm(z,yi,... ,ym)\ 

= |T(T m - 1 (x ,2 / 1 , . . . ,ym-i),ym)-T{Tm-\z,yu... ,ym-i),ym)\ 

<r\Tm~\x,yx,... ,ym-i)-Tm-\z,yx,... ,ym-i)\ < rm\x - z\. 

where (yx,... , ym) € [0,c]m is fixed. Condition (2.9) implies that 

(2.10) diam e (T m (F,y i , . . . ,ym)) < rm diameY. 

Define 

(2.11) A = Tm(Y,yx,...,ym). 

Then 

(2.12) diam^(A) < <f>(diameA) < <t>{rm diameY) < e. 

According to Prochorov condition there exists n = n(/J,) such that 

(2.13) PnHi(Y)>P f o r n>n, i = 1,2. 

Set no = n + m, then 

PnoHi(A) = J j ... J lA(Tn°(x, yu... , yno)Mdx)G(dyl)... G(dyno) 

>/ / _.. [ lA(Tm(T*(x,ykl,... ,y^),ykir+1,... ,ykno))tii(dx) 
J J » l x [ 0 , c ) m J 
xG(dy f c l ) . . .G(dy f c n o ) . 

Define 

and notice that condition 

Tm(T*(x, ykl,...,ykw), V k w + 1 , . . . , y f c „ o ) € A 

gives 

rx*,yk l,...,ykyr)er (;» , . . . , j / f e n o )(A). 
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This implies: 

Pn>i(A) 

>(G[0,c)rJ J ^ . . ^ ( ^ y ^ , . . . , ^ ) ) ^ ) 

xG(dykl)---G(dykw), 

where 

c[0,c 

= {u; e l d such that there is (ylt... ,j/m) € [0,c]m : 
Tm(a;,2/i,... ,ym) € A}. 

From the definition of the set A it follows that: 

Conseqently 

Pnof*i(A) 

>(G[0,c})m J J lY(I*{x,yk1,...,Vkr))rtdx)G(dykl)...G(dykr) 

=(G[0, c))mPwm(Y) > (G[0,c])m0 > 0, where m is fixed. 

If A = (G[0,c])mj3, than A satisfies conditions (2.4). Since P is nonexpan-
sive and satisfes conditions (2.4), operator P is asymptotically stable which 
completes the proof. • 

A continuous V : M.d —• [0, +oo) is called a Liapunov function if 

(2.14) lim V(x) = +oo 

for some xo ERd. 
New we present an auxiliary proposition concerning the Prochorov con

dition ([5]). 

P R O P O S I T I O N 1. Let P be a MarAov operator and let U Le a operator 
dual to P. Assume that there is a Liapunov function V such that 

(2.15) UV(x) < aV(x) + 6 fo* x € l r f 
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where a,b are nonnegative constants and a < 1. Then P satisfes the Pro
chorov condition. 

From Lemma 1 and Proposition 1 we have the following. 

T H E O R E M 1. If conditions (i)-(iv) hold for equation (1-0), then the ope
rator P given by equation (1.4) is asymptotically stable. 

P R O O F . Setting V(x) = \x\a° we have 

UV(x) = j \S(x)y\°">G(dy) = \S(x)\°"> j ya°G(dy) 

=|5(x) - S(x0) + S(x0)\ao J ya°G(dy) 

<\S(x)-S{xQ)\"° J ya°G(dy)+\S(x0)\a<> J ya°G{dy). 

Since S satisfies Lipschitz condition (ii), it is easy to notice that following 
inequalities hold: 

UV(x) <La°\x - *<>r j yaoG{dy) + \S(x0)\°"> J ya°G(dy) 

0 J yaoG(dy)\x\°"> + La° J ya°G(dy)\x0r 

\S(x0)\ao J yaoG(dy). 

Thus condition ( 2 . 1 5 ) holds with 

jyaoG(dy) 

<L 

+ 

a = La° 

and 
6 = (L a o|xor o + |5(xo)|Qo) J yaoG(dy). 

Consequently Markov operator P corresponding to the dynamical system 
( 1 . 0 ) satisfes the Prochorov condition ( 2 . 3 ) . According to Lemma 1 the 
Markov operator P is asymptotically stable. The proof is completed. • 
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