## E. SKRZYPKOWSKA, CZ. WOWK*

## LINKAGE AND THE BASIC PART OF WITT RINGS


#### Abstract

We prove that the Yucas quaternionic mapping (considered in [6]) satisfies $B_{G}=X_{3}(a)$ for any $a \in B_{G}$. We also give examples of a quaternionic mapping which satisfies $B_{G}=X_{2}(a)$ for any $a \in B_{G}$ but not (L) and a quaternionic mapping which satisfies $B_{G}=X_{1}(a)$ for any. $a \in B_{G}$ but not (L).


1. Introduction. Let $q: G \times G \rightarrow Q$ be a quaternionic mapping in the terminology of [4]. Recall that this means $q$ is a symmetric bilinear mapping, $G, Q$ are Abelian groups, $G$ has exponent two and contains a distinguished element -1 such that $q(a,-a)=1$ for every $a \in G$.

If a quaternionic mapping also satisfies
(L) $q(a, b)=q(c, d) \Rightarrow \exists x \in G$ with $q(a, b)=q(a, x)$ and $q(c, d)=q(c, x)$
then $q$ is said to be a linked quaternionic mapping.
For $a \in G$, let $D\langle 1, a\rangle=\{b \in G: q(-a, b)=1\}$. An element $a \in G$ is said to be rigid if $D\langle 1, a\rangle=\{1, a\}$ and $a$ is said to be birigid (or 2 -sided rigid) if both $a$ and $-a$ are rigid. The set

$$
B_{G}=\{ \pm 1\} \cup\{a \in G: a \text { is not birigid }\}
$$

is said to be the basic part of $G$.
Carson and Marshall [1] proved that if $q$ is a quaternionic mapping with $|G|<\infty$ then ( L ) implies

$$
\begin{equation*}
B_{G}= \pm X_{1}(a) X_{3}(a) \cup X_{1}(a) X_{2}(a)^{2} \tag{*}
\end{equation*}
$$

for every $a \in B_{G} \backslash\{1\}$ where $X_{1}(a)=D\langle 1, a\rangle$ and

$$
X_{i}(a)=\bigcup\left\{D\langle 1,-x\rangle: 1 \neq x \in X_{i-1}(a)\right\}, \quad i \geqslant 2 .
$$

This result is quite strong and it was thought that perhaps (*) was strong enough to imply (L) when $|G|<\infty$ (see [6]). J. L. Yucas [6] gave an example of quaternionic mapping which satisfies (*) but not (L).

[^0]Observing the known examples, one realizes that the structure of $B_{G}$ is probably much simpler than Carson-Marshall's result (*). K. Szymiczek [5] considered the structure of the basic part of typical fields with an infinite group of square classes including global fields, all purely transcendential extension fields and subfields of real numbers. In all these cases, except for subfields of $\mathbf{R}$, he has got simply $B_{G}=X_{2}$ and for subfields of $R$, he has proved $B_{G}=X_{2} \cup-X_{2}$ or $X_{3} \cup-X_{3}$ depending on the sign of the number $a$ we start with.

Iwan and Wowk [2] proved that the basic part of Witt rings $R$ of elementary type is $B_{R}=X_{3}(a) \cup-X_{3}(a)$ for any $a \in B_{R}$. (We refer the reader to [3] for the definition of Witt ring).

Motivated by this we study the problem whether $B_{G}=X_{3}(a) \cup-X_{3}(a)$ implies (L).

In answer to this question we prove that the Yucas quaternionic mapping (considered in [6]) satisfies $B_{G}=X_{3}(a)$ for any $a \in B_{G}$ (J.L. Yucas proved that $B_{G}=X_{1}(a) X_{3}(a)$ for any $\left.a \in B_{G}\right)$. We also give examples of a quaternionic mapping which satisfies $B_{G}=X_{2}(a)$ for any $a \in B_{G}$ but not (L) and a quaternionic mapping which satisfies $B_{G}=X_{1}(a)$ for any $a \in B_{G}$ but not (L).

We would like to thank the referee for helpful remarks which allowed to improve the presentation of the paper.
2. Structure of the Yucas' quaternionic mapping. Let $\hat{q}: G \times G \rightarrow Q$ be the Yucas quaternionic mapping considered in [6]. Recall that in his construction $G$ is a finite group of exponent two and of dimension $n \geqslant 4$ over $F_{2}$ with basis $A=\left\{a_{1}, a_{2}, \ldots, a_{n}\right\}$ and $Q$ is any other group of exponent two and of dimension $n-2$ over $F_{2}$ with fixed basis $\left\{q_{2}, q_{3}, \ldots, q_{n-1}\right\}$. The quaternionic mapping $\hat{q}$ is defined on $A \times A$ by

$$
\hat{q}\left(a_{i}, a_{j}\right)= \begin{cases}q_{j} & \text { if } i=1 \text { and } 2 \leqslant j \leqslant n-1, \\ q_{i} & \text { if } j=1 \text { and } 2 \leqslant i \leqslant n-1, \\ q_{n-j+1} & \text { if } i=n \text { and } 2 \leqslant j \leqslant n-1, \\ q_{n-i+1} & \text { if } j=n \text { and } 2 \leqslant i \leqslant n-1, \\ 1 & \text { otherwise }\end{cases}
$$

and is extended to $\hat{q}: G \times G \rightarrow Q$ by bilinearity. $\hat{q}$ is a quaternionic mapping with $-1=1$.

We begin by establishing the following
LEMMA. (i) If $a \in G \backslash D\left\langle 1, a_{2} a_{3} \ldots a_{n-1}\right\rangle$ then there exists $\hat{a} \in G$ such that $a \hat{a} \in D\langle 1, a\rangle \cap D\left\langle 1, a_{2} a_{3} \ldots a_{n-1}\right\rangle$.
(ii) If $a, b \in G \backslash D\left\langle 1, a_{2} a_{3} \ldots a_{n}\right\rangle$ then there exist $\hat{a}, \hat{b} \in G$ such that $b b \in D\langle 1, a \hat{a}\rangle \cap D\langle 1, b\rangle$ and $a \hat{a} \in D\langle 1, a\rangle$.

Proof. (i) This follows from Step 2 in [6]. However, we need an explicit expression for $\hat{a}$. Let $H$ be the span of $a_{2}, \ldots, a_{n-1} ; D\left\langle 1, a_{2} \ldots a_{n-1}\right\rangle=$ $\left\{1, a_{1} a_{n}\right\} H$ by [6]. For $h=a_{i_{1}} \ldots a_{l_{4}} \in H$ set $h=a_{n-i_{1}+1} \ldots a_{n-i_{s}+1}$. We
note that $\hat{q}(h, \hat{h})=1, \hat{q}\left(a_{1}, h\right)=\Pi q_{i_{j}}=\hat{q}\left(a_{n}, h\right)$ and similarly $\hat{q}\left(a_{n}, h\right)=$ $\hat{q}\left(a_{1}, h\right)$. As a result, $\hat{q}\left(a_{1} a_{n}, h \hat{h}\right)=\hat{q}\left(a_{1}, h\right) \hat{q}\left(a_{n}, \hat{h}\right) \hat{q}\left(a_{n}, h\right) \hat{q}\left(a_{1}, \hat{h}\right)=1$.

Now $a \in a_{1} H \cup a_{n} H$. Suppose $a=a_{1} h$ for some $h \in H$. Set $\hat{a}=a_{n} h$ and note $a \hat{a}=a_{1} a_{n} h \hat{h} \in D\left\langle 1, a_{2} \ldots a_{n-1}\right\rangle$. Further $\hat{q}(a, a \hat{a})=\hat{q}(a, \hat{a})=$ $\hat{q}\left(a_{1}, a_{n}\right) \hat{q}(h, \hat{h}) \hat{q}\left(a_{1}, \hat{h}\right) \hat{q}\left(a_{n}, h\right)=1$ and $a \hat{a} \in D\langle 1, a\rangle$. If $a=a_{n} h$ then take $\hat{a}=a_{1} h$.

Note that in either case $a \hat{a}=a_{1} a_{n} h h$.
(ii) Choose $\hat{a}$ as in (i) and repeat the construction for $b$, yielding $b \hat{b}=a_{1} a_{n} k \hat{k}$ for some $k \in H$. We need only check $b \hat{b} \in D\langle 1, a \hat{a}\rangle$. We have shown $q\left(a_{1} a_{n}, h \hat{h}\right)=1$. Thus

$$
\hat{q}(b \hat{h}, a \hat{a})=\hat{q}\left(a_{1} a_{n}, a_{1} a_{n}\right) \hat{q}\left(a_{1} a_{n}, h \hat{h}\right) \hat{q}\left(k \hat{k}, a_{1} a_{n}\right) \hat{q}(k \hat{k}, h \hat{h})=1,
$$

as desired.
Now we are ready to prove the following
THEOREM. $\hat{q}$ is a quaternionic mapping which satisfies $G=X_{3}(a)$ for every $a \in G$.

Proof. J. L. Yucas [6] proved that if $a \in D\left\langle 1, a_{2} \ldots a_{n-1}\right\rangle$ then $G=X_{3}(a)$. Suppose that $a \notin D\left\langle 1, a_{2} a_{3} \ldots a_{n-1}\right\rangle$. By Lemma (i) there exists $a \hat{a} \in D\langle 1, a\rangle \cap$ $D\left\langle 1, a_{2} \ldots a_{n-1}\right\rangle$.

Consequently, $a_{2} a_{3} \ldots a_{n-1} \in D\langle 1, a \hat{a}\rangle$ and $a \hat{a} \in D\langle 1, a\rangle=X_{1}(a)$ so $a_{2} a_{3} \ldots a_{n-1} \in X_{2}(a)$ and $D\left\langle 1, a_{2} a_{3} \ldots a_{n-1}\right\rangle \subset X_{3}(a)$. Thus it suffices to show that if $b \in G \backslash D\left\langle 1, a_{2} a_{3} \ldots a_{n-1}\right\rangle$ then $b \in X_{3}(a)$.

By the Lemma there exist $\hat{a}, \hat{b}$ such that $b \hat{b} \in D\langle 1, a \hat{a}\rangle \cap D\langle 1, b\rangle$ and $a \hat{a} \in D\langle 1, a\rangle$, which leads to $b \in D\langle 1, b \hat{b}\rangle, b \hat{b} \in D\langle 1, a \hat{a}\rangle$. Since $a \hat{a} \in D\langle 1, a\rangle=$ $X_{1}(a)$ and $b \widehat{b} \in D\langle 1, a a\rangle \subset X_{2}(a)$ we get $b \in D\langle 1, b b\rangle \subset X_{3}(a)$.
3. Some examples. In this section we give examples showing that

$$
\begin{equation*}
B_{G}=X_{2}(a) \text {, for every } a \in B_{G} \text { does not imply (L) } \tag{a}
\end{equation*}
$$

and

$$
\begin{equation*}
B_{G}=X_{1}(a), \text { for every } a \in B_{G} \text { does not imply (L). } \tag{b}
\end{equation*}
$$

EXAMPLE (a). Let $G$ be a group of exponent two of dimension $n \geqslant 6$ over $F_{2}$ with a basis $A=\left\{a_{1}, a_{2}, \ldots, a_{n}\right\}$ and let $Q$ be a group of exponent two of dimension $n-4$ over $F_{2}$ with basis $\left\{q_{2}, q_{4}, q_{5}, \ldots, q_{n-3}, q_{n-1}\right\}$. Define $\bar{q}$ on $A \times A$ by the matrix $\left[\tilde{q}\left(a_{i}, a_{j}\right)\right]:$

$$
\left[\begin{array}{lllllllll}
1 & q_{2} & 1 & q_{4} & \cdots & q_{n-3} & 1 & q_{n-1} & 1 \\
q_{2} & 1 & 1 & 1 & \cdots & 1 & 1 & 1 & q_{n-1} \\
1 & 1 & 1 & 1 & & \cdots & 1 & 1 & 1 \\
1 \\
q_{4} & 1 & 1 & 1 & \cdots & 1 & 1 & 1 & q_{n-3} \\
\vdots & \vdots & \vdots & \vdots & & :: & \vdots & \vdots & \vdots \\
\vdots \\
q_{n-3} & 1 & 1 & 1 & \cdots & 1 & 1 & 1 & q_{4} \\
1 & 1 & 1 & 1 & \cdots & 1 & 1 & 1 & 1 \\
q_{n-1} & 1 & 1 & 1 & \cdots & 1 & 1 & 1 & q_{2} \\
1 & q_{n-1} & 1 & q_{n-3} & \cdots & q_{4} & 1 & q_{2} & 1
\end{array}\right]
$$

Let us observe that for any $a \in B_{G}, X_{2}(a)=B_{G}$. Indeed, in this case we get $D\left\langle 1, a_{3}\right\rangle=D\left\langle 1, a_{n-2}\right\rangle=B_{G}=G$. Thus if $a \in G$ we have $a \in D\left\langle 1, a_{3}\right\rangle$ and $a_{3} \in D\langle 1, a\rangle=X_{1}(a)$. This implies $G=D\left\langle 1, a_{3}\right\rangle=X_{2}(a)$. Of course, this quaternionic mapping does not satisfy ( L ) $\left(\bar{q}\left(a_{1}, a_{2}\right)=\bar{q}\left(a_{n}, a_{n-1}\right)=q_{2}\right.$ and there is no $x \in G$ with $\left.\bar{q}\left(a_{1}, a_{2}\right)=\bar{q}\left(a_{1}, x\right)=\bar{q}\left(a_{n}, x\right)=\bar{q}\left(a_{n}, a_{n-1}\right)\right)$.

EXAMPLE (b). Let $\boldsymbol{G}$ be a group of exponent two of dimension 4 over $\mathbf{F}_{\mathbf{2}}$ with a basis $A=\left\{a_{1}, a_{2}, a_{3}, a_{4}\right\}$ and let $Q$ be a group of exponent two of dimension 4 over $F_{2}$ with basis $\left\{q_{2}, q_{3}, q_{4}, q_{5}\right\}$. Define $\hat{q}$ on $A \times A$ by the matrix $\left[\hat{\tilde{q}}\left(a_{i}, a_{j}\right)\right]$ :

$$
\left[\begin{array}{llll}
1 & 1 & q_{2} & q_{3} \\
1 & 1 & q_{4} & q_{2} \\
q_{2} & q_{4} & 1 & q_{5} \\
q_{3} & q_{2} & q_{5} & 1
\end{array}\right]
$$

and extend $\hat{q}$ to $\hat{\hat{q}}: G \times G \rightarrow Q$ by bilinearity.
It is easy to verify that $B_{G}=\left\{1, a_{1}, a_{2}, a_{1} a_{2}\right\}$ and $D\left\langle 1, a_{1}\right\rangle=D\left\langle 1, a_{2}\right\rangle=$ $D\left\langle 1, a_{1} a_{2}\right\rangle=\left\{1, a_{1}, a_{2}, a_{1} a_{2}\right\}$. This proves $B_{G}=X_{1}(a)$ for every $a \in B_{G}$. Notice that $\hat{q}\left(a_{1}, a_{3}\right)=\hat{q}\left(a_{2}, a_{4}\right)=q_{2}$ but there is no $x \in G$ with $\hat{q}\left(a_{1}, a_{3}\right)=$ $\hat{q}\left(a_{1}, x\right)=\hat{q}\left(a_{2}, x\right)=\hat{q}\left(a_{2}, a_{4}\right)$. Thus ( L$)$ is not satisfied.

## REFERENCES

[1] A. CARSON and M. MARSHALL, Decomposition of Witt rings, Canad. J. Math. 34 (1982), 1276-1302
[2] A. IWAN and CZ. WOWK, Basic part of Witt rings of elementary type, Comment, Math. Prace Mat. 28 (1988), 257-263.
[3] M. MARSHALL, Abstract Witt rings, Queen's papers in pure and applied math. no. 57, Kingston, Ontario 1980.
[4] M. MARSHALL and J. L. YUCAS, Linked quaternionic mappings and their associated Witt rings, Pacific J. Math. 95 (1981), 411-425.
[5] K. SZYMICZEK, Structure of the basic part of a field, J. Algebra 99, 2 (1986), 422-429.
[6] J. L. YUCAS, Linkage and the basic part of Witt rings, Ann. Math. Sil. 5 (1991), 7-9.


[^0]:    Manuscript received June 6, 1991, and in final form June 16, 1992.
    AMS (1991) subject classification: Primary 11E81.
    *Instytut Matematyki Uniwersytetu Szczecińskiego, ul. Wielkopolska 15, 70-451 Szczecin.

