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QUASI-JENSEN FUNCTIONS 

Abstract There is defined quasi-Jensen function as a solution of a certain functional inequality 

(*+y\ /W+/(y) —— 1 = . The introduced inequality 

is analogous to the inequality which defines J. Tabor's quasi-additive functions. The main result of 
this paper is to show strong relationship between quasi-Jensen and quasi-additive functions. 

0. The subject matter of the present considerations was proposed to me by 
Professor J. Tabor and it is connected with his papers [2] and [3]. In 
particular, the paper [3] deals with functions defined on a vector space 
X taking their values in a normed space Y and satisfying, with some e > 0, the 
condition 

(1) l l / (x+y)- / (x)- / (y) | | < a • min {||/(x+y)||, ||/(x)+/(y)||} for x , yeX, 

or in other words the conjunction of inequalities 

(2) l l / (x+y)- / (x) - / (y) | |<e | | / (x+y) | | for x . y e X , 

and 

0) ll/(*+y)-/(x)-/G0ll < e II/M+/G0II for *> y e z . 
Inequality (1) is, of course, a generalization of the Cauchy equation. Functions 
satisfying (1) are called quasi-additive functions. The purpose of these con­
siderations is to put forward and to characterize a condition which would be 
a similar type generalization of the Jensen equation 

/ ^ ) - * W ± « ! > - 0 f o r * , y £ X . 

We are going to show the relationships between quasi-additive functions and 
functions satisfying the generalized Jensen condition mentioned above. 
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From now on X will denote a vector space and Y will denote a vector space 
equipped with norm ||-||. 

1. In the first part of the paper we will be considering functions defined on 
X which take their values in Y (f:X -* Y) satisfying, with some fixed s > 0, 
inequality 

(4) ) + ^ i « . . - b . { / ( ? + ' m+m 
2 II U l ' V 2 

or equivalently, the conjunction of two inequalities 

m+m 

J , x,yeX, 

(5) 

and 

(6) (x+y^j m+m "m+m 

for x,yeX, 

for x , yeX. 

L E M M A 1. I/O < s < 1 and f: X -» Y satisfies inequality (5), then f satisfies 
also inequality 

f 
(x+y\ m+m e m+m 
[ 2 J 2 ^ 1 - e 2 

for x,yeX. 

Proof . Using properties of norm and inequality (5) we get 

m+m 
<4f\ 

and therefore 

so in other words 

f(x)+f(y) 
•e || 2 

Owing to the last inequality we get from (5) 

m+m 
1-E 

m+m 
which completes the proof. 

One can prove analogously 
L E M M A 2. 7/0 < e < 1 andf: X^Ysatisfies inequality (6), then f satisfies 

also the inequality 

m+m for x,yeX. 
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Let us notice that Lemma 1 and Lemma 2 establish a certain kind of 
equivalence between conditions (5) and (6). 

P R O P O S I T I O N 1. If 0 < e < 1, f:X— Y satisfies condition (5), and 
/(0) = 0, then f satisfies inequality 

(7) 

(8) 

l l / ( x + y ) - / ( x ) - / ( y ) | | < - ^ - | | / ( x + j ; ) | | for x,yeX. 
1 —£ 

Proof . Putting y = 0 into (5) we get 

/ M i l 

Using above inequality we can write 

and hence 

(9) 114)1 
1 

;ll/(x)||. 2(1 -6) 

Now putting x+y for x into (8) and (9) we get 

/ (x+y) (10) 

and 

(11) ll/(*+y)| | . 2 ( l - « ) ' 

Using in turn inequalities (10), (5), (11) we get for every x.yeX 

\\f(x+y)-m-f(y)\\ 

< 2 / Ax+y)\ 
+ 2 / 1 )+f(y) 

2e 
1-e II/(*+JOII, 

which completes the proof. 

2e 
Let us notice that if e < 1/3, then - — < 1. Now, using Proposition 1 of [2] 

1-e 
we' conclude that inequality (7) implies 

l l / (x+y) - / (x ) - / (y ) | | < 

That is why we can state 
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l - 3 e ll/(*)+/(y)|| f o r x . y e X . 



P R O P O S I T I O N 2. If 0 < e < 1/3,/: X -> Y satisfies (5), andf(0) = 0, then 

f is a quasi-additive function with e' = -—— 

\\f(x+y)-f(x)-f(y)\\ < ̂ -mindl/Cx+y)!!, ||/(x)+/(y)||} /or x , y e X . 

Futhermore, if e< 1/5, t/ien a' < 1. 
PROPOSITION 3. I /O < e < 1 and f:X -*Y satisfies inequality (2), then 

for , - * - _ f satisfies inequality & ,e. 

(12) 

1 - 6 

for x,yeX. 

x + y 
Proof . Putting ——- for x and y into inequality (2) we get 

(13) 

and hence 

(14) 

2 

f(x+y) m i 

<«ll/(x+J»ll, 

f(x+y) 

From inequality (2) we can also get 

II/(x+y) /(x)+/(y) 
1 J II 2 2 i || z 

Finally using inequality (13) we get 

| | / ( x + y ) | | - 2 | | / ^ ) | | < | | / ( x + y ) - 2 / ^ ) 

and therefore 

(16) l l ^ + ^ ^ T ^ | K ^ ) | 
Now, from inequalities (14), (15), (16), we have 

<e||/(*+y)||, 

+ 

f(x+y) 

m+y) m+m 

2e \\Jx+y\ 

i - « I r v 2 ; 

2 2 

which completes the proof. 
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2e 
Of course if B < 1/3, then —— < 1, and so by Lemma 1 inequality (12) implies 

^1 C+y\j /(x)+/(y) 
2e 

l - 3 e 
f(x)+M for x.yeX. 

So we have 

PROPOSITION 4. / / 0 O < l / 3 and f:X-+Y satisfies (2\ then for 

ć = f satisfies inequality (4) i.e., l - 3 e 

m - m+m < e'-min \ for x,yeX. 

Moreover, if e< 1/5, then e' < 1. 
Now we are going to present some properties of functions satisfying (4). 
L E M M A 3. Let us assume that f: X -*Y satisfies condition (4). If there exists an 

x0eX such that /(—x 0 ) = —/(x0), then the function is odd. 
Proof. Putting x = x 0 and y = —x 0 into (6) we obtain ||/(0)|| = 0. Now, 

for each xeX we have 

f(X)+n-x) 

hence 

and therefore 

| / ( x ) + / ( - x ) 
< 0 , 

which completes the proof. 
P R O P O S I T I O N 5. Let us assume thatf: X -* Y satisfies inequality (4) with 

0 < e < 1. Let us define Junction g:X-*Y as follows: 

Then the Junction g is bounded. Moreover, unless g vanishes, values of g are 
separated from zero. 

Proo f . Putting — x for y into (5) and (6) we get respectively 

/ (x )+ / ( -x ) | | 
/(0)-

and 

f(x)+f(-x) 

||/(0)|| for x e X , 

l / (x)+/ ( -x) 
for xeX. 
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So, in accordance with the assumed notation 

(17) ll/(0)-ff(x)||<6||/(0)|| f o r x e X , 
and 

(18) \\f(0)-g(x)\\^s\\g(x)\\ forxeX. 

Using inequality (17) we get 

ILf(O)IHl0(*)|| < \\f(0)-g(x)\\ < «||/(0)||, 
and 

lid(x)||-||/(0)|| < ||/(0)-g(x)|| < 6||/(0)||. 
Therefore 

\\g(x)\]>(l-e) ||/(0)||, 

and 

|| f f(x)||<(l+e)||/(0)||. 

In similar way, using (18) we get 

11/(0)11 -||0(x)|| < ||/(O)-0(x)|| < £||fif(x)||, 
and 

ll0(x)IHI/(O)|| < ll/(0)-fl(x)|| < e|| f f(x)||. 
Hence 

Il0(*)ll>ri-11/(0)11, 
1 + 6 

and 

\\9(x)\\<^-\\f(0)\\-
1 — 6 

Therefore we can write 

A-11/(0)11 ś\\g(x)\\ś (1+£)||/(0)||. 
1 + 6 

In the case where/(0) = 0 (by Lemma 3 it is equivalent to the fact that/is odd) 
from the last inequality we obtain g = 0, which completes the proof. 

Now we will give some sufficient condition in order to inequality (5), with 
some fixed e > 0, holds. 

P R O P O S I T I O N 6. Let e be fixed positive number. Let us assume that 
f:X-*Y is bounded. Then there exists ay0e Y such that the function g:X-*Y, 
defined as follows: 

g(x):=f(x)+y0 for xeX, 

satisfies inequality (5). 
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Proof . The fact that / is bounded means that there exists an M > 0 
such that 

| | / ( x ) | | < M for xeX. 

2 + E 
Let us fix a yQe Y such that | |y 0 | | = c := M . From the definition of the 

e 
function g arises that 

We also have 

and hence 

that is 

So we have 

HffMH = ll/(x)+y0ll < ll/MII+WI ŚM+C. 

WHIffMH < \\9(x)-y0\\ = \\f(x)\\ < M, 

\\g(x)\\>\\y0\\-M, 

\\g{x)\\>c-M. 

c-M < ||fii(x)|| < c+M for xeX. 

Simultaneously, we have 

9 (*+y^ g(x)+g(y) = f(*+ySj f(x)+f(y) 

< f(^)\\+"Jy"'\"J V / " < 2 M f o r x . y e X . 
fx±y\\\ , ||/(x)|| + ||/(y)|| 

2 

Therefore 

9(x)+g(y) 
< 2 M = E(C-M) < £ g for x,yeX, 

which completes the proof. 

If we assume that e < 1, then by Lemma 1 we obtain that inequality (6) is 
also satisfied. 

Last proposition shows that the class of functions satyisfying inequality (4) 
is quite large. Simultaneously, as we will show in the Example 1, a translation 
of quasi-additive function can be out of this class, unlike to the case of additive 
and Jensen functions (see e.g., [1]). As we look for generalization of the Jensen 
equation the condition (4) does not seem to be satisfying. 
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E X A M P L E 1. Let us consider the func t ion / :R-»R defined as follows: 

x for x e [0, 21] u [26, +co\ 

m = < x+7 for xe(21, 24], 
3 

J x - 1 3 for xe(24, 26), 

and 
fix) = -f(-x) for x < 0. 

The function defined in this way satisfies inequality (1) with e = 1/2 (see 
Example 2 in [2]). Let us put c = 21, and let us define 

g(x) :=/(x)+c for xeR. 

Elementary calculations show that for x = — 22 and y = —20 the left side i n 
condition (4) equals 1/6, and the right one equals zero. It means that g does not 
satisfy inequality (4). 

2. With respect to the last remarks we change a little the subject of our 
investigations. From now on we will be considering functions f:X-*Y 
satisfying the following condition for some e > 0: 

there exists an x0eX such that 

(19) /I / ( * ) + / 0 ) | | 

< fi-min (IK^)-/w m+m J for x , yeX. 

Of course it is still a generalization of the Jensen equation. Unlike as in the case 
of condition (4), the error in the realisation of the Jensen equation is measured 

with respect to | | / ^ - / ( x 0 ) | | and H / W + / W ow 

with respect to the distance between / or 

2 -/(*o) 

, and some initial 

value / (x 0 ) . 
It is obvious that inequality (19) can be written as a conjunction of 

inequalities 

(20) 

and 

(21) m+m m+m 
-/e*o> 

for x.yeX, 

for x.yeX. 
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D E F I N I T I O N 1. Function/: X -> Y is called quasi-Jensen function iff there 
exists an x0eX and c > 0 such that inequality (19) is satisfied. 

L E M M A 4. Having given a function f:X-*Y satisfying, for s^O and for 
some x0eX, inequality (20) or (21) we define the function g:X -*Y as follows: 

(22) g(x): = f(x+x0)-f(x0) for xeX. 

Then 
a) if f satisfies (20), then g satisfies (5), 
b) if f satisfies (21), then g satisfies (6), 
c) if f satisfies (19), then g satisfies (4), 
Proof . It arises from the definition of the function g that 

f(x+x0)+f(y+x0) jj g^c + y^ g(xj+g(y)jj = l ^ x + X o + y + X p ^ 

Assuming that / satisfies inequality (20) we get 

| ^ x + x 0 + y + x 0 ^ / ( x + x 0 ) + / ( y + x 0 ) | 

That is to say, we showed that 

9(x)+g(y)\\ 
\9 <e \\g 2 

for x, y e Z , 

which completes the proof in case a). In case b) the proof runs similarly as in 
case a), and case c) is a corollary from a) and b). 

L E M M A 5. Assume that f:X -*Y satisfies inequality (20) for some 
0 < e < 1. Then f satisfies also inequality 

l - £ m+m -f(x0) for x,yeX. 

Proof . Define the function g: X -*• Y as in (22). Using Lemma 4 we state 
that g satisfies inequality (S). That is why we can use Lemma 1 and state 

g(x)+g(y)\\ 
l - e 

g(x)+g(y) 
for x,yeX, 

which means 

/I 
^ x + x 0 + y + x 0 ^ / ( x + x0)+f(y+x0) 

2 ) 2 

e / ( x+x 0 )+ / (y+x 0 ) 
l - e 2 -f(x0) for x . y e X . 
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Putting into above inequality x — x 0 and y—x0 in place of x and y respectively 
we obtain 

-/(*o) for x,yeX, 

which completes the proof. 

Proceeding similarly as above, using Lemma 4 and Lemma 2 one can show 
the following 

L E M M A 6. Iff: X-*Y satisfies inequality (21) for 0 < s < 1, then f satisfies 
also inequality 

for x,yeX. 

Lemma 5 and Lemma 6 permit us to state that conditions (20) and (21) are 
equivalent to a certain degree. 

T H E O R E M 1. Iff: X -• Ysatisfies (20) for 0^e<l and some x0eX, then 
the Junction g:X-*Y, defined by formula (22), satisfies inequality (2) with 

2e 
i.e., £ = 1-e 

\\9(x+y)-g(x)-g(y)\\^^-Jg(x+y)\] for x,yeX. 
1 — £ 

Proof . By Lemma 4 function g satisfies inequality (5). Furthermore, it 
results from the definition of g that g(Q) = 0. In this way the assumptions of 
Proposition 1 are satisfied and we can easily obtain our result. 

Similarly one can prove, using Lemma 4 and Proposition 2 the following 
T H E O R E M 2. Iff: X-* Y satisfies (20) for some x0eX and 0 < e < 1/3, 

Is 
then the Junction g, defined by (22), satisfies inequality (1) with e' = -—— i.e., 

1 — 3s 
llff(x+y)-3(x)- f f(y)| |^e'-inin{||0(x+y)| | , | |g(x)+0(y)| |} for x,yeX. 

In particular Theorem 2 implies that each quasi-Jensen function (with 
sufficiently small e) can be obtained by a translation of a quasi-additive 
function. It is similar to the case of the Jensen functions and additive functions 
(see e.g. [1]). 

In the end we will show that translation by some vector in X x Y of 
a quasi-additive function is a quasi-Jensen function. 

T H E O R E M 3. Let g:X-+Y satisfies inequality (2) for 0 < s < 1. Fix 
arbitrary x0eX and y0eY. Then the Junction J: X-*Y, defined as follows: 

f(x):= g(x-x0)+y0 for xeX, 
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1 — £ 

km- m+m 
•f(*o) for x,yeX. 

Proof . Evidently g(0) = 0, so / (x 0 ) = y0. From the definition off we have 
for each x.yeX 

f(x)+f(y)\\ _ \\Jx-x0+y-x0\ g(x-x0)+g(y-x0)\\ 
9 

^ c - x 0 + y - x 0 ^ g(a 

2 u i r v 2 J 2 

The function g satisfies inequality (2), so using Proposition 3 we obtain 

g(x-x0)+g(y-x0)\\ Jx-x0+y-x0\ i 
e \ — 5 — r 

2e / x - x 0 + y - x 0 \ 
I Z " , ^ J ) forx.yeX. 

Now one can easily notice that 

= | / ( ^ ) - , 0 | | = | | / ( ^ ) - / W 

Therefore we obtain 

/W+/(y)|| m ^ y /(x„) for x . y e X , 

which completes the proof. 
In analogous way, using Proposition 4 one can obtain 
T H E O R E M 4.Ifg:X^Y satisfies (2) for 0 < e < 1/3, then for arbitrary 

x0eX and y0eY the function f: X-*Y, defined as in Theorem 3, satisfies 
2B . 

inequality (19) with e' = 
l - 3 e i.e., 

m+m\\ 

< E ' -min i n { | / ( ^ ) - / ( x 0 ) 
m+m 

-f(*o) for x,yeX. 

Finally, as a corollary from Theorems 1-4 we get 
C O R O L L A R Y 1. Letf: X -* Y satisfies (20) for some 0 < e < 1/3 and some 

x0eX. Put 

/ i t o ^ / f r - x j + y ! for xeX, 
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where x t and y^ are arbitrary elements of X and Y respectively. Then 

i(*)+/iGO|| f(*+y\ /i(*)+/i(y) . 4e ,fx+y\ 

Furthermore if 0 < s < 1/7, ffeen 

< 4e / 1 (x)+/ 1 (y) 

/or x, VGJT. 

/or x, yeX. 

In particular we can say that a translation of quasi-Jensen function (for 
sufficiently small e) remains quasi-Jensen function. 

Owing to strong connections between quasi-additive and quasi-Jensen 
functions, showed above, many properties of quasi-additive functions and 
sufficient conditions (proved in [2] and [3]) remain true in case of quasi-Jensen 
functions. 
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