JACEK CHMIELINSKI*

QUASI-JENSEN FUNCTIONS

Abstract. There is defined quasi-Jensen function as a solution of a certain functional inequality

5—12-—!) =£(x)-;ﬂ. The introduced inequality
is analogous to the inequality which defines J. Tabor’s quasi-additive functions. The main result of

this paper is to show strong relationship between quasi-Jensen and quasi-additive functions.

which generalizes the classical Jensen equation: f

"0. The subject matter of the present considerations was proposed to me by
Professor J. Tabor and it is connected with his papers [2] and [3]. In
particular, the paper [3] deals with functions defined on a vector space
X taking their values in a normed space Y and satisfying, with some & > 0, the
condition

M) I e+)=f@)=fOI < & min {{f G+, IfG)+OI}  for x, yeX,

or in other words the conjunction of inequalities

? N+ =f )= < ellf(x+y)l for x,yeX,
and
3 NfC+)=f)=fON <ellfx)+fOI for x, yeX.

Inequality (1) is, of course, a generalization of the Cauchy equation. Functions
satisfying (1) are called quasi-additive functions. The purpose of these con-
siderations is to put forward and to characterize a condition which would be
a similar type generalization of the Jensen equation

f<x+y>_f(x)+f(y)

2 > =0 for x,yeX.
We are going to show the relationships between quasi-additive functions and
functions satisfying the generalized Jensen condition mentioned above.
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From now on X will denote a vector space and Y will denote a vector space
equipped with norm ||-|l.

1. In the first part of the paper.we w1ll be considering functions defined on
X which take their values in Y (f: X — Y) satisfying, with some fixed & > 0,

inequality
x+y f(x)+f(y) x+y\| |S&)+50)|
o [r(37)- 7057 < ema{l (2P 122579

or equivalently, the conjunction of two inequalities

»yeX,

) f<x-;y>_f(X)-2i-f(y)H <é f(%,) for x,yeX,
and ‘
" I <x+y) f(x)+f(y)” < "’l IO 1y yex.
LEMMA 1. If0 < e <1l and f: X — Y satisfies inequality (5), then f satisfies

also inequality

P x+y)_ fO+0)| . & [[f&)+f0)
2 2 T 1-¢ 2 |

Proof. Using properties of norm and inequality (5) we get
' f<x+y>“ [F&+10)|| f(x+y> f6)+f (y)" (x+y>“
2 ]

2
and therefore

-l ()<

x+y 1
fC)<

Owing to the last inequality we get from (5)
F(EF) IO ] (xrY| o e
2 2 1—¢
One can prove analogously

2
which completes the proof.
LEMMA 2. If0 < & < 1 and f: X — Y satisfies inequality (6), then [ satisfies
also the inequality

(XY _S@H0) x+y
2 2 || 2

Jor x,yeX.

fx)+f ()’)“
2 ’

so in other words

i) +f(y)u‘

fx)+f (v)“
2 2

for x,yeX.
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Let us notice that Lemma 1 and Lemma 2 establish a certain kind of
equivalence between conditions (5) and (6).

PROPOSITION 1. If 0<e<l, f: X > Y satisfles condition (5), and
f(0) =0, then f satisfies inequality

U e =TI~ ON < T2 IS G+l Sor %, yeX.
Proof. Putting y =0 into (5) we get
x\ f(x) x
<8’ <O

Using above inequality we can write

OHE<b6- 2
and hence

X
© ‘f( ) <355/l
Now putting x+y for x into (8) and (9) we get

G)

x+y\ f(x+y) x+y
1o (32)- 75 “< )
and
’ x+y
(11) 'f( )H 2(1 )Ilf(x+}’)|l

Using in turn inequalities (10), (5), (11) we get for every x,yeX
If G+ y)—f ()= O

<2lf<xw2w>_f(x+y) +2|f<x42ry) f(x);fmﬁ
<l (P () - () « v

which completes the proof.

2
Let us notice that if ¢ < 1/3, then 1% < 1. Now, using Proposition 1 of [2]

we' conclude that inequality (7) implies

1+ 9~ =FON < g I+ O for x, yeX.

That is why we can state
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PROPOSITION 2. If 0 < & < 1/3, f: X — Y satisfies (5), and f(0) = O, then

[ is a quasi-additive function with & = ie.,

2e
1-3e
Nfx+y)=f )= O < & -min {||f G+, 1S &) +f W} for x, yeX.

Futhermore, if ¢ < 1/5, then ¢ < 1. ,
PROPOSITION 3. If0< e <1 and f: X —» Y satisfies inequality (2), then

%)

Proof. Putting E—;—X for x and y into inequality (2) we get

Jor £ = 1—2_%; [ satisfies inequality (5) i.e.,

f(x+y> f&)+10)| .
2 2 |

(125 l for x,yeX.

(13 f(x+y)-2f<%’1>|' <alf G+l
and hence

14 l f(x2+y) f<x+y>” (x+y)n

From inequality (2) we can also get

as) S+ _f(x);rf(y)“ < | f(x;y)“.

Finally using inequality (13) we get

If G+ )l —2 f<"—?)“<

seeen-2 (52| <oz,

x+y
()
Now, from inequalities (14), (15), (16), we have

f<x+y> f(x)+f(y)|| | <x+y) f(x+y)"

2
f(x2+y)| f(x;”i = ellf e+l

)
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and therefore

1) I+ <

fx+y)  f&)+0)|
2

2
S1—c¢

which completes the proof.




Of course if ¢ < 1/3, then 1~2_f; < 1, and so by Lemma 1 inequality (12) implies

P(xﬂ)_ fO)+f (v)“ =
2 2 S 1-3¢

So we have
PROPOSITION 4. If 0<e<1/3 and f: X—> Y satisfies (2), then for

f satisfies inequality (4) i.e.,

for x,yeX.

fx)+f (v)l
2

= 1-3¢

)\ SO _ (] (5t
()5 < emaf(3)

Moreover, if € <1/5, then & < 1.

Now we are going to present some properties of functions satisfying (4).

LEMMA 3. Let us assume that f: X — Y satisfies condition (4). If there exists an
Xo€X such that f(—xy) = —f(x,), then the function is odd.

Proof. Putting x = x, and y = —x, into (6) we obtain || f(0)|| = 0. Now,
for each xeX we have

f(x)~2l-f(y)||} Jor % yeX.

sy o)
hence
‘f(x)+{(—x) <o,
and therefore
J(=x) = —f(x),

which completes the proof.
PROPOSITION 5. Let us assume that f: X — Y satisfies inequality (4) with
0 <ée < 1. Let us define function g: X - Y as follows:

J&x)+f(=x)
2

g(x):= for xeX.

Then the function g is bounded. Moreover, unless g vanishes, values of g are
separated from zero.
Proof. Putting —x for y into (5) and (6) we get respectively

" “f(o)—ﬂL“sz(:’i) <e|lfO) for xeX,

’j(x) +f(=x)
2

and

fe)+f(=x)
2

<eé for xeX.

|-
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So, in accordance with the assumed notation

(ty)) IfO)—gMl <ellfO) for xeX,
and

(18) 1f@—-g(l < eflgx)ll for xeX.
Using inequality (17) we get |
£ Ol —llg Nl < 1 f@)—g Xl < el Ol

and
llg CI=11FON < fO)—g )l < e[l SOl
Therefore
I llg Gl = (1—2) LFO)I,
and

llg Nl < (1+ IS

In similar way, using (18) we get

IO —llg N < 11F/O) —g (il < &llg (Xl

and
lg G~ 17O < 1/~ 6 < ellg .
Hence
lg i > 1 LSO,
and

o G < 1 IFOl.

Therefore we can write

1%8 1O < llg Il < (L+8) 17 O

In the case where f(0) = 0 (by Lemma 3 it is equivalent to the fact that f'is odd)
from the last inequality we obtain g =0, which completes the proof.

Now we will give some sufficient condition in order to inequality (5), with
some fixed ¢ > 0, holds.

PROPOSITION 6. Let € be fixed positive number. Let us assume that
f:X - Y is bounded. Then there exists ay,€ Y such that the function g: X — Y,
defined as follows:

g(x):=f(x)+y, for xeX,
satisfies inequality (5).
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Proof. The fact that f is bounded means that there exists an M>0
such that

IfGl <M for xeX.

. 2 .
Let us fix a y,€Y such that ||y,)]] = c:= -—:—f M. From the definition of the
function g arises that

llg o)l = ILFE)+yoll < NG+ Ilyoll < M +c.

We also have
Iyoll —llg )il < llg () —yoll = IIF G < M,
and hence
llg Ol = llyoll — M,
that is
llg ()il = c—M.
So we have

c—-M<£ gl <c+M for xeX.

Simultaneously, we have

” <x+y> g(x)+g ()
9\~ )~

2

f<x+y>_f(x)+f(v)|
2 2|

< l f(x;y>“ AV oy o 5, yex.
Therefore
g(x;-}'>_9(x);'g()’) <M =s(c—M) < slg(x—;},)I for x,yeX,

which completes the proof.

If we assume that & < 1, then by Lemma 1 we obtain that inequality (6) is
also satisfied. ,.

Last proposition shows that the class of functions satyisfying inequality (4)
is quite large. Simultaneously, as we will show in the Example 1, a translation
of quasi-additive function can be out of this class, unlike to the case of additive
and Jensen functions (see e.g., [1]). As we look for generalization of the Jensen
equation the condition (4) does not seem to be satisfying.
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EXAMPLE 1. Let us consider the function f: R - R defined as follows:

r

x for xe[0, 21] U [26, + o),
f0) = 4 §x+7 for xe(21, 24],

34—13 for xe(24, 26)

2

and
J(x) = —f(—x) for x <O.

The function defined in this way satisfies inequality (1) with & = 1/2 (see
Example 2 in [2]). Let us put ¢ = 21, and let us define

g(*):=f(x)+c for xeR.

Elementary calculations show that for x = —22 and y = —20 the left side-in
condition (4) equals 1/6, and the right one equals zero. It means that g does not
satisfy inequality (4). .

2. With respect to the last remarks we change a little the subject of our
investigations. From now on we will be considering functions f: X —»Y
satisfying the following condition for some &> 0:

there exists an x,€X such that

x+y\ f)+10)|
(19) f( * )— =
<e-min{f("+’) 1o, f"";’f"’—ﬂxo)} for x, yeX.

Of course it is still a generalization of the Jensen equation. Unlike as in the case
of condition (4), the error in the realisation of the Jensen equation is measured

1(552)-re TOHO) s,

with respect to the distance between f (x > ) fe+f (-V)

ow with mpect to and ie.,

> , and some initial

value f(x,).
It is obvious that inequality (19) can be written as a conjunction of

inequalities

(20) \ f<x-;-y>_ 169 ;—f(y) ' <e¢ } f(x+y)—f(xo) for x,yeX,
and

1) S (x ;y)— /&) ;-f(y)i 16 +f(y) —f(xo)|| for x,yeX.
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DEFINITION 1. Function f: X — Y is called quasi-Jensen function iff there
exists an x,€X and &> 0 such that inequality (19) is satisfied.

LEMMA 4. Having given a function f: X — Y satisfying, for € > 0 and for
some x,€ X, inequality (20) or (21) we define the function g: X — Y as follows:
(22) g(x):=fx+x0)—f(xo) for xeX.

Then

-a) if f satisfies (20), then g satisfies (5),

b) if f satisfies (21), then g satisfies (6),

c) if f satisfies (19), then g satisfies (4),

Proof. It arises from the definition of the function g that

x+y\ g@x)+gO _ || fx+x0ty+xo\  Slx+x0)+f(y+x,)
N2 ) 2 = 2 - 2

Assuming that f satisfies inequality (20) we get

f X+x0+y+%0\  fx+x0)+f(7+x,)
2 2

(B

f(T +xo>"‘f(xo)
That is to say, we showed that
g<x+y>_a(x)+g(y)

x+y
2 2 g( 2 )

which completes the proof in case a). In case b) the proof runs similarly as in
case a), and case c) is a corollary from a) and b).

LEMMA 5. Assume that f:X — Y satisfies inequality (20) for some
0 < &€ < 1. Then f satisfies also inequality

f(x+y>_f(x) +/0) f6)+£6)

x+
e =E y =g

)

for x,yeX,

SS'

&

<

1—: for x,yeX.

2 2 2 —f(xp)

Proof. Define the function g: X — Y as in (22). Using Lemma 4 we state
that g satisfies inequality (5). That is why we can use Lemma 1 and state

x+y\ g)+g0)|| _ & ||e@x)+g0)]
9( ) )— ) l < 1—: 2 " for x,yeX,
which means
5 x+xo+y+x0\  fx+X0)+f (¥ +x)
2 2
<1i8 f(x+x°)-2|-f@+x°)——f(xo) for x, yeX.
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Putting into above inequality x—x, and y—x, in place of x and y respectively
we obtain

’ f<x+y>_f(x);-f(v)" <t

2 —8&
which completes the proof.

SOHO g

for x,yeX,

Proceeding similarly as above, using Lemma 4 and Lemma 2 one can show
the following
LEMMA 6. If f: X - Y satisfies inequality (21) for 0 < ¢ < 1, then f satisfies

also inequality
x+
1(552)-re

x+y\_ SX)+f() &
- <
/ ( 2 ) 2 | T 1-e

Lemma 5 and Lemma 6 permit us to state that conditions (20) and (21) are
equivalent to a certain degree.

THEOREM 1. Iff: X — Y satisfies (20) for 0 < ¢ < 1 and some x,€ X, then
the function g: X — Y, defined by formula (22), satisfies inequality (2) with
, 2

T 1-¢

for x,yeX.

€ ie.,

lgG+9) -9 -9 N < 7= lg(e+ 9l for x,yeX.

Proof. By Lemma 4 function g satisfies inequality (5). Furthermore, it
results from the definition of g that g(0) = 0. In this way the assumptions of
Proposition 1 are satisfied and we can easily obtain our result.

Similarly one can prove, using Lemma 4 and Proposition 2 the following

THEOREM 2. If f: X - Y satisfies (20) for some x,€X and 0 < &< 1/3,
then the function g, defined by (22), satisfies inequality (1) with ¢ =

2 ie
1-3:

llg(x+y)—g(x)—g Ol < & -min {llg(x+ ), lg ) +g G} for x,yeX.

In particular Theorem 2 implies that each quasi-Jensen function (with
sufficiently small &) can be obtained by a translation of a quasi-additive
function. It is similar to the case of the Jensen functions and additive functions
(see e.g. [1]).

In the end we will show that translation by some vector in X x Y of
a quasi-additive function is a quasi-Jensen function.

THEOREM 3. Let g: X » Y satisfies inequality (2) for 0 <& < 1. Fix
arbitrary x,€X and y,€Y. Then the function f: X — Y, defined as follows:

X)) :=gx—xg)+y, for xeX,
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<é

satisfies inequality (20) with ¢ = l—zj:gi.e.,
| f(x+y>_f(x)+f(y) for x, yeX.

ty)_fe+ 1(552) st

Proof. Evidently g(0) = 0, so f(x,) = y,. From the definition of f we have
for each x,yeX

f x+y\_fE)+fO)ff _ g x—Xo+y—Xo\ g(x—x0)+g(y—x,)|
2 2 2 2 B
The function g satisfies inequality (2), so using Proposition 3 we obtain
X=X, +y—Xo\ g(x—xo)+g(y—xo)
g —
2 2
< 2 g X—Xo+y—Xo
S1-¢ 2

Now one can easily notice that
x—Xo+y—Xo\|| _ || [x+y)
(=) = [o (537

x+y
Therefore we obtain

|p(x+2) - f+70) 2
2 2
which completes the proof.

In analogous way, using Proposition 4 one can obtain

THEOREM 4. If g: X - Y satisfies (2) for 0 < & < 1/3, then for arbitrary
Xo€X and y,eY the function f: X — Y, defined as in Theorem 3, satisfies

for x,yeX.

("” )—f(xo)

f("” ) o)

for x,yeX,

inequality (19) with ¢ = ie.,

1-3¢
' f<x+y>_ f(x)+f(y)H

2 2
f("” ) —feeo): —ftxo)

Finally, as a corollary from Theorems 1-4 we get

COROLLARY 1. Let f: X - Y satisfies (20) for some 0 < & < 1/3 and some
xo€X. Put

<o mm{ S +16) £10)

} Jor x,yeX.

fix) = f(x—x,)+y, for xeX,



where x; and y, are arbitrary elements of X and Y respectively. Then

P (x;-}’) fl(x);'fl(y)l - 15 (x+y)_f1(x1) Jor x,yeX.
Furthermore if 0 <& < 1/7, then
fl (x-;y)_fl(x);ﬁ(}’) < 11378 fl(x)+f1(y) fl(xl) fOT x,yEX.

In particular we can say that a translation of quasi-Jensen function (for
sufficiently small ¢) remains quasi-Jensen function.

Owing to strong connections between quasi-additive and quasi-Jensen
functions, showed above, many properties of quasi-additive functions and
sufficient conditions (proved in [2] and [3]) remain true in case of quasi-Jensen
functions.
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