JACEK CHMIELIŃSKI*

QUASI-JENSEN FUNCTIONS

Abstract

There is defined quasi-Jensen function as a solution of a certain functional inequality which generalizes the classical Jensen equation: $f\left(\frac{x+y}{2}\right)=\frac{f(x)+f(y)}{2}$. The introduced inequality is analogous to the inequality which defines J. Tabor's quasi-additive functions. The main result of this paper is to show strong relationship between quasi-Jensen and quasi-additive functions.

- The subject matter of the present considerations was proposed to me by Professor J. Tabor and it is connected with his papers [2] and [3]. In particular, the paper [3] deals with functions defined on a vector space X taking their values in a normed space Y and satisfying, with some $\varepsilon \geqslant 0$, the condition

$$
\begin{equation*}
\|f(x+y)-f(x)-f(y)\| \leqslant \varepsilon \cdot \min \{\|f(x+y)\|,\|f(x)+f(y)\|\} \quad \text { for } x, y \in X \tag{1}
\end{equation*}
$$

or in other words the conjunction of inequalities

$$
\begin{equation*}
\|f(x+y)-f(x)-f(y)\| \leqslant \varepsilon\|f(x+y)\| \text { for } x, y \in X, \tag{2}
\end{equation*}
$$

and

$$
\begin{equation*}
\|f(x+y)-f(x)-f(y)\| \leqslant \varepsilon\|f(x)+f(y)\| \quad \text { for } x, y \in X . \tag{3}
\end{equation*}
$$

Inequality (1) is, of course, a generalization of the Cauchy equation. Functions satisfying (1) are called quasi-additive functions. The purpose of these considerations is to put forward and to characterize a condition which would be a similar type generalization of the Jensen equation

$$
f\left(\frac{x+y}{2}\right)-\frac{f(x)+f(y)}{2}=0 \quad \text { for } x, y \in X .
$$

We are going to show the relationships between quasi-additive functions and functions satisfying the generalized Jensen condition mentioned above.

[^0]From now on X will denote a vector space and Y will denote a vector space equipped with norm $\|\cdot\|$.

1. In the first part of the paper we will be considering functions defined on X which take their values in $Y(f: X \rightarrow Y)$ satisfying, with some fixed $\varepsilon \geqslant 0$, inequality
(4) $\left\|f\left(\frac{x+y}{2}\right)-\frac{f(x)+f(y)}{2}\right\| \leqslant \varepsilon \cdot \min \left\{\left\|f\left(\frac{x+y}{2}\right)\right\|,\left\|\frac{f(x)+f(y)}{2}\right\|\right\}, \quad x, y \in X$,
or equivalently, the conjunction of two inequalities

$$
\begin{equation*}
\left\|f\left(\frac{x+y}{2}\right)-\frac{f(x)+f(y)}{2}\right\| \leqslant \varepsilon\left\|f\left(\frac{x+y}{2}\right)\right\| \text { for } x, y \in X, \tag{5}
\end{equation*}
$$

and

$$
\begin{equation*}
\left\|f\left(\frac{x+y}{2}\right)-\frac{f(x)+f(y)}{2}\right\| \leqslant \varepsilon\left\|\frac{f(x)+f(y)}{2}\right\| \text { for } x, y \in X . \tag{6}
\end{equation*}
$$

LEMMA 1. If $0 \leqslant \varepsilon<1$ and $f: X \rightarrow Y$ satisfies inequality (5), then f satisfies also inequality

$$
\left\|f\left(\frac{x+y}{2}\right)-\frac{f(x)+f(y)}{2}\right\| \leqslant \frac{\varepsilon}{1-\varepsilon}\left\|\frac{f(x)+f(y)}{2}\right\| \text { for } x, y \in X .
$$

Proof. Using properties of norm and inequality (5) we get

$$
\left\|f\left(\frac{x+y}{2}\right)\right\|-\left\|\frac{f(x)+f(y)}{2}\right\| \leqslant\left\|f\left(\frac{x+y}{2}\right)-\frac{f(x)+f(y)}{2}\right\| \leqslant \varepsilon\left\|f\left(\frac{x+y}{2}\right)\right\|,
$$

and therefore

$$
(1-\varepsilon)\left\|f\left(\frac{x+y}{2}\right)\right\| \leqslant\left\|\frac{f(x)+f(y)}{2}\right\|,
$$

so in other words

$$
\left\|f\left(\frac{x+y}{2}\right)\right\| \leqslant \frac{1}{1-\varepsilon}\left\|\frac{f(x)+f(y)}{2}\right\| .
$$

Owing to the last inequality we get from (5)

$$
\left\|f\left(\frac{x+y}{2}\right)-\frac{f(x)+f(y)}{2}\right\| \leqslant \varepsilon\left\|f\left(\frac{x+y}{2}\right)\right\| \leqslant \frac{\varepsilon}{1-\varepsilon}\left\|\frac{f(x)+f(y)}{2}\right\|,
$$

which completes the proof.
One can prove analogously
LEMMA 2. If $0 \leqslant \varepsilon<1$ and $f: X \rightarrow Y$ satisfies inequality (6), then f satisfies also the inequality

$$
\left\|f\left(\frac{x+y}{2}\right)-\frac{f(x)+f(y)}{2}\right\| \leqslant \frac{\varepsilon}{1-\varepsilon}\left\|f\left(\frac{x+y}{2}\right)\right\| \text { for } x, y \in X .
$$

Let us notice that Lemma 1 and Lemma 2 establish a certain kind of equivalence between conditions (5) and (6).

PROPOSITION 1. If $0 \leqslant \varepsilon<1, f: X \rightarrow Y$ satisfies condition (5), and $f(0)=0$, then f satisfies inequality

$$
\begin{equation*}
\|f(x+y)-f(x)-f(y)\| \leqslant \frac{2 \varepsilon}{1-\varepsilon}\|f(x+y)\| \quad \text { for } x, y \in X \tag{7}
\end{equation*}
$$

Proof. Putting $\boldsymbol{y}=0$ into (5) we get

$$
\begin{equation*}
\left\|f\left(\frac{x}{2}\right)-\frac{f(x)}{2}\right\| \leqslant \varepsilon\left\|f\left(\frac{x}{2}\right)\right\| . \tag{8}
\end{equation*}
$$

Using above inequality we can write

$$
\left\|f\left(\frac{x}{2}\right)\right\|-\left\|\frac{f(x)}{2}\right\| \leqslant\left\|f\left(\frac{x}{2}\right)-\frac{f(x)}{2}\right\| \leqslant \varepsilon\left\|f\left(\frac{x}{2}\right)\right\|,
$$

and hence

$$
\begin{equation*}
\left\|f\left(\frac{x}{2}\right)\right\| \leqslant \frac{1}{2(1-\varepsilon)}\|f(x)\| . \tag{9}
\end{equation*}
$$

Now putting $x+y$ for x into (8) and (9) we get

$$
\begin{equation*}
\left\|f\left(\frac{x+y}{2}\right)-\frac{f(x+y)}{2}\right\| \leqslant \varepsilon\left\|f\left(\frac{x+y}{2}\right)\right\|, \tag{10}
\end{equation*}
$$

and

$$
\begin{equation*}
\left\|f\left(\frac{x+y}{2}\right)\right\| \leqslant \frac{1}{2(1-\varepsilon)}\|f(x+y)\| . \tag{11}
\end{equation*}
$$

Using in turn inequalities (10), (5), (11) we get for every $x, y \in X$
$\|f(x+y)-f(x)-f(y)\|$

$$
\begin{aligned}
& \leqslant 2\left\|f\left(\frac{x+y}{2}\right)-\frac{f(x+y)}{2}\right\|+2\left\|f\left(\frac{x+y}{2}\right)-\frac{f(x)+\mathrm{f}(y)}{2}\right\| \\
& \leqslant 2 \varepsilon\left\|f\left(\frac{x+y}{2}\right)\right\|+2 \varepsilon\left\|f\left(\frac{x+y}{2}\right)\right\|=4 \varepsilon\left\|f\left(\frac{x+y}{2}\right)\right\| \leqslant \frac{2 \varepsilon}{1-\varepsilon}\|f(x+y)\|,
\end{aligned}
$$

which completes the proof.
Let us notice that if $\varepsilon<1 / 3$, then $\frac{2 \varepsilon}{1-\varepsilon}<1$. Now, using Proposition 1 of [2] we conclude that inequality (7) implies

$$
\|f(x+y)-f(x)-f(y)\| \leqslant \frac{2 \varepsilon}{1-3 \varepsilon}\|f(x)+f(y)\| \quad \text { for } x, y \in X
$$

That is why we can state

PROPOSITION 2. If $0 \leqslant \varepsilon<1 / 3, f: X \rightarrow Y$ satisfies (5), and $f(0)=0$, then f is a quasi-additive function with $\varepsilon^{\prime}=\frac{2 \varepsilon}{1-3 \varepsilon}$ i.e.,
$\|f(x+y)-f(x)-f(y)\| \leqslant \varepsilon^{\prime} \cdot \min \{\|f(x+y)\|,\|f(x)+f(y)\|\}$ for $x, y \in X$.
Futhermore, if $\varepsilon<1 / 5$, then $\varepsilon^{\prime}<1$.
PROPOSITION 3. If $0 \leqslant \varepsilon<1$ and $f: X \rightarrow Y$ satisfies inequality (2), then for $\varepsilon^{\prime}=\frac{2 \varepsilon}{1-\varepsilon} f$ satisfies inequality (5) i.e.,

$$
\begin{equation*}
\left\|f\left(\frac{x+y}{2}\right)-\frac{f(x)+f(y)}{2}\right\| \leqslant \frac{2 \varepsilon}{1-\varepsilon}\left\|f\left(\frac{x+y}{2}\right)\right\| \text { for } x, y \in X . \tag{12}
\end{equation*}
$$

Proof. Putting $\frac{x+y}{2}$ for x and y into inequality (2) we get

$$
\begin{equation*}
\left\|f(x+y)-2 f\left(\frac{x+y}{2}\right)\right\| \leqslant \varepsilon\|f(x+y)\|, \tag{13}
\end{equation*}
$$

and hence

$$
\begin{equation*}
\left\|\frac{f(x+y)}{2}-f\left(\frac{x+y}{2}\right)\right\| \leqslant \varepsilon\left\|\frac{f(x+y)}{2}\right\| . \tag{14}
\end{equation*}
$$

From inequality (2) we can also get

$$
\begin{equation*}
\left\|\frac{f(x+y)}{2}-\frac{f(x)+f(y)}{2}\right\| \leqslant \varepsilon\left\|\frac{f(x+y)}{2}\right\| . \tag{15}
\end{equation*}
$$

Finally using inequality (13) we get

$$
\|f(x+y)\|-2\left\|f\left(\frac{x+y}{2}\right)\right\| \leqslant\left\|f(x+y)-2 f\left(\frac{x+y}{2}\right)\right\| \leqslant \varepsilon\|f(x+y)\|,
$$

and therefore

$$
\begin{equation*}
\|f(x+y)\| \leqslant \frac{2}{1-\varepsilon}\left\|f\left(\frac{x+y}{2}\right)\right\| . \tag{16}
\end{equation*}
$$

Now, from inequalities (14), (15), (16), we have

$$
\begin{aligned}
\left\|f\left(\frac{x+y}{2}\right)-\frac{f(x)+f(y)}{2}\right\| & \leqslant\left\|f\left(\frac{x+y}{2}\right)-\frac{f(x+y)}{2}\right\|+\left\|\frac{f(x+y)}{2}-\frac{f(x)+f(y)}{2}\right\| \\
& \leqslant \varepsilon\left\|\frac{f(x+y)}{2}\right\|+\varepsilon\left\|\frac{f(x+y)}{2}\right\|=\varepsilon\|f(x+y)\| \\
& \leqslant \frac{2 \varepsilon}{1-\varepsilon}\left\|f\left(\frac{x+y}{2}\right)\right\|
\end{aligned}
$$

which completes the proof.

Of course if $\varepsilon<1 / 3$, then $\frac{2 \varepsilon}{1-\varepsilon}<1$, and so by Lemma 1 inequality (12) implies

$$
\left\|f\left(\frac{x+y}{2}\right)-\frac{f(x)+f(y)}{2}\right\| \leqslant \frac{2 \varepsilon}{1-3 \varepsilon}\left\|\frac{f(x)+f(y)}{2}\right\| \text { for } x, y \in X .
$$

So we have
PROPOSITION 4. If $0 \leqslant \varepsilon<1 / 3$ and $f: X \rightarrow Y$ satisfies (2), then for $\varepsilon^{\prime}=\frac{2 \varepsilon}{1-3 \varepsilon} \quad f$ satisfies inequality (4) i.e.,

$$
\left\|f\left(\frac{x+y}{2}\right)-\frac{f(x)+f(y)}{2}\right\| \leqslant \varepsilon^{\prime} \cdot \min \left\{\left\|f\left(\frac{x+y}{2}\right)\right\|,\left\|\frac{f(x)+f(y)}{2}\right\|\right\} \text { for } x, y \in X .
$$

Moreover, if $\varepsilon<1 / 5$, then $\varepsilon^{\prime}<1$.
Now we are going to present some properties of functions satisfying (4).
LEMMA 3. Let us assume that $f: X \rightarrow Y$ satisfies condition (4). If there exists an $x_{0} \in X$ such that $f\left(-x_{0}\right)=-f\left(x_{0}\right)$, then the function is odd.

Proof. Putting $x=x_{0}$ and $y=-x_{0}$ into (6) we obtain $\|f(0)\|=0$. Now, for each $x \in X$ we have

$$
\left\|f\left(\frac{x+(-x)}{2}\right)-\frac{f(x)+f(-x)}{2}\right\| \leqslant \varepsilon\left\|f\left(\frac{x+(-x)}{2}\right)\right\|
$$

heṇce

$$
\left\|\frac{f(x)+f(-x)}{2}\right\| \leqslant 0
$$

and therefore

$$
f(-x)=-f(x)
$$

which completes the proof.
PROPOSITION 5. Let us assume that $f: X \rightarrow Y$ satisfies inequality (4) with $0 \leqslant \varepsilon<1$. Let us define function $g: X \rightarrow Y$ as follows:

$$
g(x):=\frac{f(x)+f(-x)}{2} \text { for } x \in X
$$

Then the function g is bounded. Moreover, unless g vanishes, values of g are separated from zero.

Proof. Putting $-x$ for y into (5) and (6) we get respectively

$$
\left\|f(0)-\frac{f(x)+f(-x)}{2}\right\| \leqslant \varepsilon\|f(0)\| \quad \text { for } x \in X
$$

and

$$
\left\|f(0)-\frac{f(x)+f(-x)}{2}\right\| \leqslant \varepsilon\left\|\frac{f(x)+f(-x)}{2}\right\| \text { for } x \in X
$$

So, in accordance with the assumed notation

$$
\begin{equation*}
\|f(0)-g(x)\| \leqslant \varepsilon\|f(0)\| \quad \text { for } x \in X, \tag{17}
\end{equation*}
$$

and

$$
\begin{equation*}
\|f(0)-g(x)\| \leqslant \varepsilon\|g(x)\| \quad \text { for } x \in X . \tag{18}
\end{equation*}
$$

Using inequality (17) we get

$$
\|f(0)\|-\|g(x)\| \leqslant\|f(0)-g(x)\| \leqslant \varepsilon\|f(0)\|,
$$

and

$$
\|g(x)\|-\|f(0)\| \leqslant\|f(0)-g(x)\| \leqslant \varepsilon\|f(0)\| .
$$

Therefore

$$
\|g(x)\| \geqslant(1-\varepsilon)\|f(0)\|,
$$

and

$$
\|g(x)\| \leqslant(1+\varepsilon)\|f(0)\| .
$$

In similar way, using (18) we get

$$
\|f(0)\|-\|g(x)\| \leqslant\|f(0)-g(x)\| \leqslant \varepsilon\|g(x)\|,
$$

and

$$
\|g(x)\|-\|f(0)\| \leqslant\|f(0)-g(x)\| \leqslant \varepsilon\|g(x)\| .
$$

Hence

$$
\|g(x)\| \geqslant \frac{1}{1+\varepsilon}\|f(0)\|
$$

and

$$
\|g(x)\| \leqslant \frac{1}{1-\varepsilon}\|f(0)\| .
$$

Therefore we can write

$$
\frac{1}{1+\varepsilon}\|f(0)\| \leqslant\|g(x)\| \leqslant(1+\varepsilon)\|f(0)\| .
$$

In the case where $f(0)=\mathbf{0}$ (by Lemma 3 it is equivalent to the fact that f is odd) from the last inequality we obtain $g \equiv 0$, which completes the proof.

Now we will give some sufficient condition in order to inequality (5), with some fixed $\varepsilon>0$, holds.

PROPOSITION 6. Let ε be fixed positive number. Let us assume that $f: X \rightarrow Y$ is bounded. Then there exists $a_{0} \in Y$ such that the function $g: X \rightarrow Y$, defined as follows:

$$
g(x):=f(x)+y_{0} \quad \text { for } x \in X,
$$

satisfies inequality (5).

Proof. The fact that f is bounded means that there exists an $M \geqslant 0$ such that

$$
\|f(x)\| \leqslant M \text { for } x \in X
$$

Let us fix a $y_{0} \in Y$ such that $\left\|y_{0}\right\|=c:=\frac{2+\varepsilon}{\varepsilon} M$. From the definition of the function g arises that

$$
\|g(x)\|=\left\|f(x)+y_{0}\right\| \leqslant\|f(x)\|+\left\|y_{0}\right\| \leqslant M+c .
$$

We also have

$$
\left\|y_{0}\right\|-\|g(x)\| \leqslant\left\|g(x)-y_{0}\right\|=\|f(x)\| \leqslant M,
$$

and hence

$$
\|g(x)\| \geqslant\left\|y_{0}\right\|-M,
$$

that is

$$
\|g(x)\| \geqslant c-M .
$$

So we have

$$
c-M \leqslant\|g(x)\| \leqslant c+M \quad \text { for } x \in X .
$$

Simultaneously, we have

$$
\begin{aligned}
\left\|g\left(\frac{x+y}{2}\right)-\frac{g(x)+g(y)}{2}\right\| & =\left\|f\left(\frac{x+y}{2}\right)-\frac{f(x)+f(y)}{2}\right\| \\
& \leqslant\left\|f\left(\frac{x+y}{2}\right)\right\|+\frac{\|f(x)\|+\|f(y)\|}{2} \leqslant 2 M \quad \text { for } x, y \in X .
\end{aligned}
$$

Therefore

$$
\left\|g\left(\frac{x+y}{2}\right)-\frac{g(x)+g(y)}{2}\right\| \leqslant 2 M=\varepsilon(c-M) \leqslant \varepsilon\left\|g\left(\frac{x+y}{2}\right)\right\| \text { for } x, y \in X,
$$

which completes the proof.
If we assume that $\varepsilon<1$, then by Lemma 1 we obtain that inequality (0) is also satisfied.

Last proposition shows that the class of functions satyisfying inequality (4) is quite large. Simultaneously, as we will show in the Example 1, a translation of quasi-additive function can be out of this class, unlike to the case of additive and Jensen functions (see e.g., [1]). As we look for generalization of the Jensen equation the condition (4) does not seem to be satisfying.

EXAMPLE 1. Let us consider the function $f: \mathbf{R} \rightarrow \mathbf{R}$ defined as follows:

$$
f(x)= \begin{cases}x & \text { for } x \in[0,21] \cup[26,+\infty) \\ \frac{2}{3} x+7 & \text { for } x \in(21,24] \\ \frac{3}{2} x-13 & \text { for } x \in(24,26)\end{cases}
$$

and

$$
f(x)=-f(-x) \text { for } x<0
$$

The function defined in this way satisfies inequality (1) with $\varepsilon=1 / 2$ (see Example 2 in [2]). Let us put $c=21$, and let us define

$$
g(x):=f(x)+c \quad \text { for } x \in \mathbf{R} .
$$

Elementary calculations show that for $x=-22$ and $y=-20$ the left side in condition (4) equals $1 / 6$, and the right one equals zero. It means that g does not satisfy inequality (4).
2. With respect to the last remarks we change a little the subject of our investigations. From now on we will be considering functions $f: X \rightarrow Y$ satisfying the following condition for some $\varepsilon \geqslant 0$:
there exists an $x_{0} \in X$ such that

$$
\begin{align*}
& \left\|f\left(\frac{x+y}{2}\right)-\frac{f(x)+f(y)}{2}\right\| \tag{19}\\
& \leqslant \varepsilon \cdot \min \left\{\left\|f\left(\frac{x+y}{2}\right)-f\left(x_{0}\right)\right\|,\left\|\frac{f(x)+f(y)}{2}-f\left(x_{0}\right)\right\|\right\} \text { for } x, y \in X .
\end{align*}
$$

Of course it is still a generalization of the Jensen equation. Unlike as in the case of condition (4), the error in the realisation of the Jensen equation is measured ow with respect to $\left\|f\left(\frac{x+y}{2}\right)-f\left(x_{0}\right)\right\|$ and $\left\|\frac{f(x)+f(y)}{2}-f\left(x_{0}\right)\right\|$ i.e., with respect to the distance between $f\left(\frac{x+y}{2}\right)$ or $\frac{f(x)+f(y)}{2}$, and some initial value $f\left(x_{0}\right)$.

It is obvious that inequality (19) can be written as a conjunction of inequalities

$$
\begin{equation*}
\left\|f\left(\frac{x+y}{2}\right)-\frac{f(x)+f(y)}{2}\right\| \leqslant \varepsilon\left\|f\left(\frac{x+y}{2}\right)-f\left(x_{0}\right)\right\| \text { for } x, y \in X \tag{20}
\end{equation*}
$$

and

$$
\begin{equation*}
\left\|f\left(\frac{x+y}{2}\right)-\frac{f(x)+f(y)}{2}\right\| \leqslant \varepsilon\left\|\frac{f(x)+f(y)}{2}-f\left(x_{0}\right)\right\| \text { for } x, y \in X . \tag{21}
\end{equation*}
$$

DEFINITION 1. Function $f: X \rightarrow Y$ is called quasi-Jensen function iff there exists an $x_{0} \in X$ and $\varepsilon \geqslant 0$ such that inequality (19) is satisfied.

LEMMA 4. Having given a function $f: X \rightarrow Y$ satisfying, for $\varepsilon \geqslant 0$ and for some $x_{0} \in X$, inequality (20) or (21) we define the function $g: X \rightarrow Y$ as follows:

$$
\begin{equation*}
g(x):=f\left(x+x_{0}\right)-f\left(x_{0}\right) \text { for } x \in X \tag{22}
\end{equation*}
$$

Then
a) if f satisfies (20), then g satisfies (5),
b) if f satisfies (21), then g satisfies (6),
c) if f satisfies (19), then g satisfies (4),

Proof. It arises from the definition of the function g that

$$
\left\|g\left(\frac{x+y}{2}\right)-\frac{g(x)+g(y)}{2}\right\|=\left\|f\left(\frac{x+x_{0}+y+x_{0}}{2}\right)-\frac{f\left(x+x_{0}\right)+f\left(y+x_{0}\right)}{2}\right\| .
$$

Assuming that f satisfies inequality (20) we get

$$
\begin{aligned}
& \left\|f\left(\frac{x+x_{0}+y+x_{0}}{2}\right)-\frac{f\left(x+x_{0}\right)+f\left(y+x_{0}\right)}{2}\right\| \\
& \leqslant \varepsilon\left\|f\left(\frac{x+x_{0}+y+x_{0}}{2}\right)-f\left(x_{0}\right)\right\|=\varepsilon\left\|f\left(\frac{x+y}{2}+x_{0}\right)-f\left(x_{0}\right)\right\|=\varepsilon\left\|g\left(\frac{x+y}{2}\right)\right\| .
\end{aligned}
$$

That is to say, we showed that

$$
\left\|g\left(\frac{x+y}{2}\right)-\frac{g(x)+g(y)}{2}\right\| \leqslant \varepsilon\left\|g\left(\frac{x+y}{2}\right)\right\| \text { for } x, y \in X,
$$

which completes the proof in case a). In case b) the proof runs similarly as in case a), and case c) is a corollary from a) and b).

LEMMA 5. Assume that $f: X \rightarrow Y$ satisfies inequality (20) for some $0 \leqslant \varepsilon<1$. Then f satisfies also inequality

$$
\left\|f\left(\frac{x+y}{2}\right)-\frac{f(x)+f(y)}{2}\right\| \leqslant \frac{\varepsilon}{1-\varepsilon}\left\|\frac{f(x)+f(y)}{2}-f\left(x_{0}\right)\right\| \text { for } x, y \in X .
$$

Proof. Define the function $g: X \rightarrow Y$ as in (22). Using Lemma 4 we state that g satisfies inequality (5). That is why we can use Lemma 1 and state

$$
\left\|g\left(\frac{x+y}{2}\right)-\frac{g(x)+g(y)}{2}\right\| \leqslant \frac{\varepsilon}{1-\varepsilon}\left\|\frac{g(x)+g(y)}{2}\right\| \text { for } x, y \in X,
$$

which means

$$
\begin{aligned}
& \left\|f\left(\frac{x+x_{0}+y+x_{0}}{2}\right)-\frac{f\left(x+x_{0}\right)+f\left(y+x_{0}\right)}{2}\right\| \\
& \quad \leqslant \frac{\varepsilon}{1-\varepsilon}\left\|\frac{f\left(x+x_{0}\right)+f\left(y+x_{0}\right)}{2}-f\left(x_{0}\right)\right\| \text { for } x, y \in X .
\end{aligned}
$$

Putting into above inequality $x-x_{0}$ and $y-x_{0}$ in place of x and y respectively we obtain

$$
\left\|f\left(\frac{x+y}{2}\right)-\frac{f(x)+f(y)}{2}\right\| \leqslant \frac{\varepsilon}{1-\varepsilon}\left\|\frac{f(x)+f(y)}{2}-f\left(x_{0}\right)\right\| \text { for } x, y \in X,
$$

which completes the proof.
Proceeding similarly as above, using Lemma 4 and Lemma 2 one can show the following

LEMMA 6. If $f: X \rightarrow Y$ satisfies inequality (21) for $0 \leqslant \varepsilon<1$, then f satisfies also inequality

$$
\left\|f\left(\frac{x+y}{2}\right)-\frac{f(x)+f(y)}{2}\right\| \leqslant \frac{\varepsilon}{1-\varepsilon}\left\|f\left(\frac{x+y}{2}\right)-f\left(x_{0}\right)\right\| \text { for } x, y \in X
$$

Lemma 5 and Lemma 6 permit us to state that conditions (20) and (21) are equivalent to a certain degree.

THEOREM 1. Iff: $X \rightarrow Y$ satisfies (20) for $0 \leqslant \varepsilon<1$ and some $x_{0} \in X$, then the function $g: X \rightarrow Y$, defined by formula (22), satisfies inequality (2) with $\varepsilon^{\prime}=\frac{2 \varepsilon}{1-\varepsilon}$ i.e.,

$$
\|g(x+y)-g(x)-g(y)\| \leqslant \frac{2 \varepsilon}{1-\varepsilon}\|g(x+y)\| \quad \text { for } x, y \in X
$$

Proof. By Lemma 4 function g satisfies inequality (5). Furthermore, it results from the definition of g that $g(0)=0$. In this way the assumptions of Proposition 1 are satisfied and we can easily obtain our result.

Similarly one can prove, using Lemma 4 and Proposition 2 the following
THEOREM 2. If $f: X \rightarrow Y$ satisfies (20) for some $x_{0} \in X$ and $0 \leqslant \varepsilon<1 / 3$, then the function g, defined by (22), satisfies inequality (1) with $\varepsilon^{\prime}=\frac{2 \varepsilon}{1-3 \varepsilon}$ i.e.,
$\|g(x+y)-g(x)-g(y)\| \leqslant \varepsilon^{\prime} \cdot \min \{\|g(x+y)\|,\|g(x)+g(y)\|\}$ for $x, y \in X$.
In particular Theorem 2 implies that each quasi-Jensen function (with sufficiently small ε) can be obtained by a translation of a quasi-additive function. It is similar to the case of the Jensen functions and additive functions (see e.g. [1]).

In the end we will show that translation by some vector in $X \times Y$ of a quasi-additive function is a quasi-Jensen function.

THEOREM 3. Let $g: X \rightarrow Y$ satisfies inequality (2) for $0 \leqslant \varepsilon<1$. Fix arbitrary $x_{0} \in X$ and $y_{0} \in Y$. Then the function $f: X \rightarrow Y$, defined as follows:

$$
f(x):=g\left(x-x_{0}\right)+y_{0} \quad \text { for } x \in X,
$$

satisfies inequality (20) with $\varepsilon^{\prime}=\frac{2 \varepsilon}{1-\varepsilon}$ i.e.,

$$
\left\|f\left(\frac{x+y}{2}\right)-\frac{f(x)+f(y)}{2}\right\| \leqslant \varepsilon^{\prime}\left\|f\left(\frac{x+y}{2}\right)-f\left(x_{0}\right)\right\| \text { for } x, y \in X .
$$

Proof. Evidently $g(0)=0$, so $f\left(x_{0}\right)=y_{0}$. From the definition of f we have for each $x, y \in X$

$$
\left\|f\left(\frac{x+y}{2}\right)-\frac{f(x)+f(y)}{2}\right\|=\left\|g\left(\frac{x-x_{0}+y-x_{0}}{2}\right)-\frac{g\left(x-x_{0}\right)+g\left(y-x_{0}\right)}{2}\right\| .
$$

The function g satisfies inequality (2), so using Proposition 3 we obtain

$$
\begin{aligned}
& \left\|g\left(\frac{x-x_{0}+y-x_{0}}{2}\right)-\frac{g\left(x-x_{0}\right)+g\left(y-x_{0}\right)}{2}\right\| \\
& \leqslant \frac{2 \varepsilon}{1-\varepsilon}\left\|g\left(\frac{x-x_{0}+y-x_{0}}{2}\right)\right\| \text { for } x, y \in X .
\end{aligned}
$$

Now one can easily notice that

$$
\begin{aligned}
\left\|g\left(\frac{x-x_{0}+y-x_{0}}{2}\right)\right\| & =\left\|g\left(\frac{(x+y)}{2}-x_{0}\right)\right\| \\
& =\left\|f\left(\frac{x+y}{2}\right)-y_{0}\right\|=\left\|f\left(\frac{x+y}{2}\right)-f\left(x_{0}\right)\right\| .
\end{aligned}
$$

Therefore we obtain

$$
\left\|f\left(\frac{x+y}{2}\right)-\frac{f(x)+f(y)}{2}\right\| \leqslant \frac{2 \varepsilon}{1-\varepsilon}\left\|f\left(\frac{x+y}{2}\right)-f\left(x_{0}\right)\right\| \text { for } x, y \in X,
$$

which completes the proof.
In analogous way, using Proposition 4 one can obtain
THEOREM 4. If $g: X \rightarrow Y$ satisfies (2) for $0 \leqslant \varepsilon<1 / 3$, then for arbitrary $x_{0} \in X$ and $y_{0} \in Y$ the function $f: X \rightarrow Y$, defined as in Theorem 3, satisfies inequality (19) with $\varepsilon^{\prime}=\frac{2 \varepsilon}{1-3 \varepsilon}$ i.e.,

$$
\begin{aligned}
& \left\|f\left(\frac{x+y}{2}\right)-\frac{f(x)+f(y)}{2}\right\| \\
& \quad \leqslant \varepsilon^{\prime} \cdot \min \left\{\left\|f\left(\frac{x+y}{2}\right)-f\left(x_{0}\right)\right\|,\left\|\frac{f(x)+f(y)}{2}-f\left(x_{0}\right)\right\|\right\} \text { for } x, y \in X .
\end{aligned}
$$

Finally, as a corollary from Theorems 1-4 we get
COROLLARY 1. Let $f: X \rightarrow Y$ satisfies (20) for some $0 \leqslant \varepsilon<1 / 3$ and some $x_{0} \in X$. Put

$$
f_{1}(x):=f\left(x-x_{1}\right)+y_{1} \quad \text { for } x \in X,
$$

where x_{1} and y_{1} are arbitrary elements of X and Y respectively. Then

$$
\left\|f_{1}\left(\frac{x+y}{2}\right)-\frac{f_{1}(x)+f_{1}(y)}{2}\right\| \leqslant \frac{4 \varepsilon}{1-3 \varepsilon}\left\|f_{1}\left(\frac{x+y}{2}\right)-f_{1}\left(x_{1}\right)\right\| \text { for } x, y \in X .
$$

Furthermore if $0 \leqslant \varepsilon<1 / 7$, then
$\left\|f_{1}\left(\frac{x+y}{2}\right)-\frac{f_{1}(x)+f_{1}(y)}{2}\right\| \leqslant \frac{4 \varepsilon}{1-7 \varepsilon}\left\|\frac{f_{1}(x)+f_{1}(y)}{2}-f_{1}\left(x_{1}\right)\right\|$ for $x, y \in X$.
In particular we can say that a translation of quasi-Jensen function (for sufficiently small ε) remains quasi-Jensen function.

Owing to strong connections between quasi-additive and quasi-Jensen functions, showed above, many properties of quasi-additive functions and sufficient conditions (proved in [2] and [3]) remain true in case of quasi-Jensen functions.

Acknowledgement. I am grateful to Professor J. Tabor for suggesting this problem and supervising my work.

REFERENCES

[1] M. KUCZMA, An introduction to the theory of functional equations and inequalities. Cauchy's equation and Jensen's inequality, Polish Scientific Publishers (PWN), Silesian University, Warszawa-Kraków-Katowice, 1985.
[2] J. TABOR, On functions behaving like additive functions, Aequationes Math. 35 (1988), $164-185$.
[3] J. TABOR, Quasi-additive functions, Aequationes Math. 39 (1990), 179-197.

[^0]: Manuscript received October 26, 1988, and in final form June 12, 1992.
 AMS (1992) subject classification: Primary 39B72

 * Instytut Matematyki Wyższej Szkoły Pedagogicznej im. Komisji Edukacji Narodowej, ul. Podchorążych 2, 30-084 Kraków.

