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ON MEASURABLE FUNCTIONS
WITH VANISHING DIFFERENCES

Abstract. It is shown (under suitable conditions on H — R) that if f: R — R is a measurable
funeétion such that for an neN, and every he H we have AT f(x) = 0 almost everywhere on R,
then fis equal almost everywhere on R to a polynomial of degree at most n. In particular, every
measurable polynomial function f: R — R is a polynomial. In fact, these (essentially known) results
are here proved in a more general and more abstract form. The paper contains also a version of the
Lomnicki-type theorem on measurable microperiodic functions.

_ Introduction. In the present paper we study (under conditions which will be
specified later) measurable functions f: X — Y satisfying for every he H the
condition

1)) A*1f(x) =0 almost everywhere in X

(n is here a fixed nonnegative integer). We will prove that such a function f'is
equal almost everywhere in X to a continuous polynomial function of order n.
(See the Preliminaries section below for definitions).

Such a result clearly is related to the theorem of R. Ger {5] (cf. also [9;
Theorem 17.7.2]) on almost polynomial functions. And indeed, in some
instances our Theorem 3 is an immediate consequence of Ger’s result, but in
general the two results are independent of one another.

For X = Y= R and f Lebesgue measurable our theorem becomes a special
case of much more general and difficult result in [7]. Also [1] contains related
results.

"For n = 0 we obtain a version of our earlier result [10] about measurable
microperiodic functions. In the case X = Y= R and f Lebesgue measurable
this version reduces to a result of R.P. Boas Jr. [2].

.Concerning further references pertinent to the questions discussed in the
present paper and, in particular, to the quoted results the reader is referred to
[9] and [10].
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Preliminaries. Let X and Y be linear spaces over Q (or, what amounts to
the same, commutative divisible groups), and let f denote an arbitrary function
J: X - Y. The difference operator 4, with the span heX and its iterates 43,
n=1,2,...,are defined by the formulas

{Amx) = 4,f®) = f(x+h)—f(x),

2)’ :
( ) Alnl+lf(x) = Ah gf(x), n= 1, 2""

The composition of operators 4,,..., 4, is denoted simply by 4,, .. 4..
It can easily be shown by induction that

. &N
G) W)=Y (-1 "<k>f(X+kh)-
k=0
The main properties of the difference operator may be found e.g. in [9; Chapter
XV]: In particular, we have the following
LEMMA 1. For every positive integer n and every hy, ..., h,e X we have
1

Ay fE)= X (=DM fx+H)

21, 00008n=0
where
n 1 n
W=—73¢h~, h =73 gh,.
=17 j=1

Let i be a positive integer. A function Y:X'—> Y is called i-additive
whenever it is additive in each variable, ie. whenever the relation

lp(xls---)xj—lax+y"xj4ls---axi)

: =‘|l,(x1,,..,xj_px,xj+1,...,x,)+l[1(x1,...,xj_1,y, Xjg1seees X))
holds for every x,, ..., x;, x, yeX and every j = 1,...,i. Function ¥ is called
symmetric iff

'/’(xls ""xi) = lﬁ(x.ix! '“’le)
for every x,,...,x;€X and every permutation (j,,...,j) of (l,...,i). The
function ¥: X — Y arising from by putting all the variable equal
' (x)=y(x,..,x), xeX,

is called the diagonalization of . By a 0-additive function we understand any
constant from Y. Every 0-additive is symmetric, and its diagonalization is again
the same constant. ‘

LEMMA 2. Let ¥: X — Y be the diagonalization of a symmetric n-additive
Junction y: X" — Y (neN). For every integer m > n and every h,,...,h eX

we have
nly(hy,.... h if m=n,
lryon P ) = ¥ (hy ) f ‘
0 if m>n.
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In particular, for every heX,
nPh ifm=n,
APP() = m i
0 if m>n.

‘"COROLLARY 1. Let ne N, and let ¥, be the diagonalization of a symmetric
i-additive function, i =0, ...,n. Put

@ f6) = z ?,().
Then .
) A fx)=0 for all x,heX.

A function f: X — Y fulfilling (5) is called a polynomial function of order
n (neN,). Corollary 1 states that every function of form (4) is a polynomial
function of -order n. The converse is also true: if f: X —» Y is a polynomial
function of order n, then there exist symmetric i-additive functions y;: X! - Y,
i=0,...,n such that (4) holds, where ¥, denotes the diagonalization of y,,
i = 0,..., n. The classical reference is [11], but several other proofs of this fact
have been found since: cf. [9].

When X = Y =R, the function y: R' >R,

V(X X)) = €Xgea Xy Xgye, XER,

(ceR) is symmetric and i-additive, and its diagonalization is the monomial cx’.
By Corollary 1 every polynomial f: R — R is a polynomial function of every
order > the degree of £ The converse is true under mild regularity assumption;
cf. [9] and also Proposition 3 and Corollary 4 in the last section of the present
paper.

Before we proceed further with our main result we prove a variant (in the
spitit of [2]; cf. also [7]) of a theorem [10] on measurable microperiodic
functions.

1. In this section we assume that (cf. [10]):

(i) X is a separable semitopological group (ie. the group operation is
separately continuous with respect to either variable; cf. [6]).

Although we do not assume that the group is commutative, we use the
additive notation because of the connection of the present section with the rest
of the paper. Observe that in a semitopological group translations are
homeomorphisms.

(i) Y is a separable metric space.

(ili) H < X is countable and dense subsemigroup of X.

(@iv) # is a o-algebra of subsets of X. A function f: X — Y is said to be
M -measurable iff f~! (V)e.# for every open set Vc Y.

(v) & < A is a proper o-ideal, i.e., a non-empty family of subsets A€ .# of
X fulfilling the conditions (cf. [9], [10])
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1. X¢N.
2 If Aic A, and A,e A, then also 4,e 4.

3. f Aje# for i=1,2,.., then also |J A;e A"
i=1

Let @ (x) be a condition depending on a parameter x € X. We say that @ (x)
holds A" —(ae.) in X iff ®(x) holds in X\A, where Ae.A".

(vi) The following analogue of Smital’s lemma (cf. [9], [10]) holds true:

(s) If Be #\N, D c X is dense in X and B+ De .#, then X\(B+D)e .
- REMARK 1. The most important examples of .#, 4" fulfilling (iv)}—(vi) are
as follows (cf. [10]).

L X =R", 4 is the family of all Lebesgue measurable subsets of R”, and
A is the family of all subsets of RY of N-dimensional Lebesgue measure zero.

In the sequel these particular .4 and 4" (in X = R") will be denoted by .4
and Ay, respectively. ‘

II. X is a locally compact topological group with a complete right Haar
measure 4 defined on a s-algebra .# of subsets of X, and 4" is the family of all
subsets of X of measure u zero.

III. X is a second category semitopological group. . is the family of all
Baire subsets of X, and 4" is the family of all first category subsets of X.

Now we prove the following

THEOREM 1. Let hypotheses (i}—(vi) be fulfilled. If an .#-measurable
Junction f: X — Y fulfils for every heH the condition

©) fx+h) =f(x) N —(ae),
then there exists a ceY such that
Y fx)=c N —(ae)

Proof. We may assume without loss of generality (possibly replacing H by
H vy {0}) that

8) OeH.
For every he H write
) X, := {xeX: f(x+h) = f(x)}
and put
(10) X*:= {xeX: f(x+h) =f(x) for every heH} =  X,.
heH
Condition (6) says that for every he H
X\X,e A,
wh;ence
(11) X\X* = | X\X)en,

heH

since H is countable. Relation (11) implies in particular that X*e.# and
X*¢ N so that
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12) X*e M\N.
We are going to show that
(13) X*+H=X*.
Take arbitrary xe X* and he H. For every h'e H we have h+h € H, whence
by (10)
S(x+B)+1) = f(x+(h+h)) = f(x) = f(x+h),

and again by (10) x+heX* Thus X*+H < X*. The converse inclusion
results from (8).

Further the proof runs very much like in [10]. Let R < Y be a countable
and dense set, and for every meN and reR let K7 denote the open ball in
Y centred at r and with the radius 2~™. For every fixed m eN we have

U X*nf K] = X*,

reR
thus in view of (12) there exists an r,€R such that

B,:=X*nf"Y{K")¢N.

On the other hand, B,e.# since f is .#-measurable and by (12) X*e 4.
Consequently

(14) B, M\N.

Take arbitrary xe B and he H. According to (10) and to the definition of B,,
we have f(x+h) = f(x)e K} . Moreover, x+he X* by virtue of (13). Thus
x+heB,, that is, B, +H < B,, and since the converse inclusion results from
(8), we actually have ’

(15) B,+H=B,.
Now, (14), (15) and (s) imply
(16) X\B, = X\(B,+H)e N,
Now we put
B:= N B,<X, C:=NKLcY
meN meN
By (16)
17 X\B= U (X\B)e .
In particular, B # ¢ and since evidently
(18) f@B)<C,

also C # 0. On the other hand, it is clear that C cannot contain two distinct
points. Consequently C is a singleton: C = {c} with a ce Y. Relation (7) results
now from (18) and (17).

46



The assumption about the algebraic structure of H is not so arbitrary as it
might seem. This can be seen from Lemma 3 below. The set family 4" is said to
be invariant under (right) translations iff A+de A for every Ae /" and deX.

LEMMA 3. Let X be an arbitrary group, Y # O an arbitrary set,f: X - Y an
arbitrary function, and let N be a proper c-ideal of subset of X (i.e. a family of
subsets of X fulfilling conditions 1—3 of (v)) invariant under right translations.
Then the set

19) H*:={heX: f(x+h) =f(x) N —(a.e)}

is a subgroup of X.

Proof. Clearly 0e¢ H*, so H* # 0. For he X we have he H* if and only if
X\X, e, where X, is defined by (9).

Take arbitrary i, h" e H* so that

(20) X\X,eA and X\X,.eN.

Hence also

@y X\[X -+ —h)] = (X\Xy)+(h"—h)e ¥
For x€ Xy-+(h"—h) we have x+h'—h € X}, whence by (9)
(22) fc+H)=f((x+h—h)+h") =f(x+K —h"). |
Further, for xeX,; we have, also by (9),

(23) fle+h) = (9.

Relations (22) and (23) imply that for xe X,. N [X,-+(h"—Hh)] we have

S+t ~1) = f(x),

which shows that X, N [X. +(h"—H)] X} _,. This yields according to (20)
and (21)

X\Xy—pr € (X\Xp) U (X\[Xp + (0" — ) eN.

Consequently X\ X _,- e./V that is, i'—h”"e H*. This means that H* is
a subgroup of X.

REMARK 2. It follows from Theorem 1 that under hypotheses (i)-—(vi) if,
moreover, A" is invariant under right translations and f: X - Y is an
#-measurable function fulfilling (6) for every h € H, then for the set (19) we have

(24) H*=X.

Indeed, then there are a ceY and a set B< X such that X\Be#/ and
Jf(x) = ¢ for xeB. Then also, for arbitrary heX, we have f(x+h) = ¢ for
x€B—h and X\(B—h) = [(X\B)—h]e#". Consequently f(x+h) = ¢ = f(x)
for xeBn(B—h) < X,,, whence X\X,e#" and heH* This implies (24).

We terminate this section with a version of Theorem 1 in the case where
X =R
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THEOREM 2. Let X =R, let Y fulfil (ii), and let hypotheses (iv}—(vi) be
fulfielled with X = R. Further assume that A is invariant under translations and
H < R is a dense set. If an #-measurable function f: R — Y fulfils condition (6)
for every he H, then there exists a ceY such that (7) holds.

Proof. In view of Lemma 3 we may assume that H is a group (a subgroup
of the additive group of the reals). We will distinguish two cases.

Case 1. There exist in H two incommensurable (rationally independent)
real numbers a,b. Then the set

(25) A = {xeR: x = ka+1b, k,leZ}
is contained in H:
(26) HcH.

H is a countable and dense subgroup of R and by (26) relation (6) holds for
every he . Theorem 1 (with H in place of H) implies the existence of a ce Y
with the property (7).

Case 2. Any two members of H are rationally dependent. Then there ex1sts
an aeR\{0} such that

H < aQ.

Consequently H is countable and again (7) results from Theorem 1.

Theorem 2 with Y =R and # = #,, &/ = A, (cf. Remark 1) was proved
by R.P. Boas Jr. [2]. Our Theorems 1 and 2 may be regarded as genaraliza-
tions of the latter result.

2. Now we pass to the case of the general n in (1). To this aim we must
strengthen considerably our hypotheses. In this section we assume that:

(vi) X is a linear space over Q, endowed with a topology such that
X becomes a separable topological space and the mapping

A,x,2)—> Ax+2z, AeQ, x,zeX,

is separately continuous with respect to each variable (a semilinear topology;
cf. [8]).

Whenever we refer to a subset of X as a group we have in mind the additive
structure of X. (Thus X is a commutative divisible separable semitopological
group). Observe that for every fixed 1eQ\{0} and zeX the mapping
Xax+» Ax+zeX is a homeomorphism.

(viii) Y is a linear space over Q, endowed with a topology such that
Y becomes a separable and metrizable topological space and the mapping

27) W, y, w)— uy+w, keQ, y,wey,

is jointly continuous with respect to the triple (u,y,w) in Qx Y x Y (a linear
topology).
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In other words, Y is a linear space over Q, endowed with a topology such
that Y becomes a T, topological space satisfying the second axiom of
countability and mapping (27) is continuous in QxYxY (cf [4; p. 537,
Exercise 8.1.6(a)]).

(ix) E < X is a countable and dense linear subspace of X over Q with the
property:

(P) For every positive integer i, every dense subgroup G of E and every
symmetric i-additive function y: G'— Y there exists a (necessarily unique)
continuous symmetric i-additive function f: X’ —» Y such that = y on G'.

(x) Hc X is a subgroup of X such that the set

(28) Hy=HAnE

is dense in X.

Concerning the set classes # and 4" we assume that besides (iv)}—(vi) they
fulfil also the following conditions.

‘(xi) We have

A+ ze N, AB+ze A

for every 1€Q, zeX, AeA and Be 4.

(xii) 4 contains all Borel subsets of X. In other words, every continuous
function f: X - Y is .#-measurable.

REMARK 3. All the examples of #, .4/ given in Remark 1 fulfil also
conditions (xi) and (xii).

We start with a lemma.

LEMMA 4. Let hypotheses (vii), (viii), (iv) and the part of (xi) concerning
M be fulfilled. If the functions f, f,,f,: X —» Y are .M -measurable, then also (for
every fixed ,p€Q, zeX and weY) the functions g,,g,: X » Y given by

g1(x) = pf (hx+2)+w, g:(x) =f1(X)+f,(x), xeX,

are M -measurable.
Proof. Since every constant function from X into Y is .#-measurable we
may assume that 1% 0 and 4 #0. For every open set V < Y we have

‘0 =3[ G-w)-:]

whence the .#-measurability of g, results.

The space Y satisfies the second axiom of countability, consequently it has
a countable neighbourhood base #. The .-measurability of g, is now
a consequence of the formula

g:'(V) = U fl—l(U.l) f‘fz_l(Uz)
Al

valid for every open set V c Y.
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COROLLARY 2. Under conditions of Lemma 4, if f: X = Y is an .#-meas-
urable function, then for every positive integer n and every fixed h,, ..., h,€ X the
Sunction 4y, f is #M-measurable.

Proof. For n =1 this is true by virtue of (2) and Lemma 4. Now use
induction on n.

Now we are going to prove our main result.

THEOREM 3. Let hypotheses (iv)—(xii) be fulfilled and let n be a non-
negative integer. If an .#-measurable function f: X — Y satisfies for every he H
the condition

(29) £ f)=0 N —(ae),
then there exists a continuous polynomial function @ : X — Y of order n such that
(30) fE)=90@x) N —(ae).

Proof. First observe that (replacing, if necessary, H by the set H, given by
(28)) we may assume that H is a countable and dense subgroup of X fulfilling
the condition H c E.

For n = 0 Theorem 3 is a consequence of Theorem 1. Now assume that
Theorem 3 it true with n replaced by n—1 (neN) and let f: X —» Y be an
#-measurable function fulfilling for every he H condition (29). Put

(31) G=(n+1)!H.
G is a countable and dense subgroup of X fulfilling the condition
(32) GcE.

e s . h
Moreover, for every he G and every positive integer j < n+1 we have }eH.

Thus it follows from (29) by virtue of Lemma 1 that for every h,...,h,,,€G
the function f satisfies the condition

(33) Apy.bns f(X) =0 A —(ae).
For every hy, ..., h,€G we define a function gy, .. ;. : X - Y by the formula
(34) ghl...hn(x) = A‘lu...hnf(x), XE_X.

Corollary 2 guarantes that g,, ., is .#-measurable, and by (33)
A,9h.0.(x) =0 A —(ae)

for every heG. By virtue of Theorem 1 g, . ,, is constant A" —(a.e.) in X (the
constant, however, depends on h,,..., h):

gh:...hn(x) = c(hl, sesy hn) ‘/V‘_(&e')°
In other words, for every h,, ..., h,eG, we have in view of (34)
(35) Ay fX) = c(hy,....,h,) for xeX\A[h,,...,h],
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where
(36) Alhy,....hJeN.

Fix arbitrary h,,...,h,€G and an arbitrary permutation (iy,...,i,) of
(1,...,n). According to (36) there exists an x in X such that

xeX\(Alhy, . hJU Ay, s D),
whence by (35)
C(h1» cees By) = Au,...lp..f(x) = Am,...m,,f(x) = c(hy,, .., hy)s

This shows that c is a symmetric function of its variables. Moreover, for every
u,v,h,,...,h,€G we can find an x in X such that

xeX\(A[u+v,hy,...., 8, JUA[u, h,,....,h JU(A[v, h,, ..., h,]—u).
Thus by (2) and (35)
c+v,hy,...,h)—c(u,hy,...h)—c(v, hy, ..., h)
= Autvhzrin S )= Bups b [ ) — Aoy pa [ (x+10)
= Ay, [Aus o f)— 4, f (x)— 4, f (x + 1))
= Ay, 4, [f+u+0)=f () =f (x+u)+f ()= f(x+u+0)+f(x+u)] = 0.

Consequently c is additive in the first variable, and due to the symmetry c is
actually additive in each variable. Consequently ¢:G" - Y is a symmetric
n-additive function. According to (P) (cf, in particular, (31) and (32)) there exists
a continuous symmetric n-additive function /: X* —» Y such that

(37) U(hysnh) = c(hy, ... h) for hy,... h,eG.

Let ¥: X - Y be the diagonalization of  and write ¥ (x) = ;17 ¥ (x),xeX.
For heG we have by Lemma 2, (37), (35) and (36) )
(38) BIX) =M f(x) & —(ae).

¥Y:X Y is a continuous, and hence .#-measurable function. By Lemma
4 also the function f— ¥ is #-measurable and for every he G we have in view
of (38)

)-PE] =0 N —(ae). |
By the induction hypothesis there exists a continuous polynomial _function
9o: X = Y of order n—1 such that ‘
FX)—P (X = @o(x) N —(ae).

Hence we obtain (30), where @(x):= P(x)+ ¢, (x) clearly is a continuous
polynomial function of order n (cf, in particular, Lemma 2). Induction
completes the proof.
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REMARK 4. One could believe that without the measurability assumption
(29) still implies (30) with a (not necessarily continuous) polynomial function
¢: X - Y of order n. However, it is not so, as may be seen from Example
1 below.

Similarly, one could reasonable conjecture that if the equality in (29) holds
for all xeX, then also the equality in (30) holds for all xe X. And again, in
general it is not true, the conjecture being disproved by Example 2 below.

Before proceeding with the announced examples we prove a lemma.

‘LEMMA 5. Let hypotheses (vii), (viii), (v) and the part of (xi) concerning
A" be fulfilled, and suppose that we are given a set H < X, functionsf,g: X - Y
and an meN such that :

(39) Hé¢w

and

(40) A f(x) = 4Fg(x) for all xeX, heH.
If

1) ) =g(x) N —(ae),

then actually f=g on X.
Proof. The proof is standard. Write (41) as

42 fx)=g(x) for xeT,
where X\Te 4. Take an arbitrary xe X and write
43) S:= N l,(T—x).

j=1J
We have

X\S = C) [X\;l,(T-x)]= O [—;—(X\T)-—Jl,x]e./t".

=1 j=1
In view of (39) we get hence HN S # . Take an he Hn §. It follows from
(43) that ,
| x+jheT forj=1,...,m,
whence by (42)

fec+jh) = g(x+jh) for j=1,...,m,

and by (40), in view of formula (3), we obtain f(x) = g(x).

In the examples that follow X = Y=R, # = .#,, # = A, (cf. Remark 1).
We write measurable instead of .#,-measurable and almost everywhere instead
of /' —(ae.)

EXAMPLE 1. Assuming the continuum hypothesis, W. Sierpiriski [12; p.
135] constructed a nonmeasurable function ¢: R — R such that for every heR

44) 4,0(x) =0 almost everywhere.
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(By the way, this shows that the measurability assumption in Theorems 1 and
2 is essential). By induction

45) . 4p,.4,0(x)=0 almost everywhere

for arbitrary h,,...,h,€R and ieN.
Fix-an neN and a polynomial P: R — R of degree n, and write f = P+o.
For every x,h,,...,h,,;€R we have (cf. the Preliminaries section)

(46) Ay e P0) = 0,
whence it follows in view of (45) that for every heR
47 M f(x) =0 almost everywhere.

Suppose that there exists a (discontinuous) polynomial function ¢: R — R of
order n such that

48) f(x) =@(x) almost everywhere.

By virtue of Lemma 1 the function ¢ fulfils for every x, h,,..., h,,, €R the
condition

(49) Apy..bus @ (X) = 0.
‘Now fix arbitrarily an heR. We have by (44) and (48)
4,P(x) = 4,p(x) almost everywhere,
whereas by (46) and (49)
43(4,P(x)) = 0 = 43.(4,0(x)) for all x, K eR.

According to Lemma 5 4,P = 4,¢ in R, whence 4,6 = 0 in R. This being true
for every heR, it follows that o = const, a contradiction. Consequently (48)
cannot be true.

EXAMPLE 2. Fix an neN and a polynomial ¢: R — R of degree n, and
define the function f: R+ R by

(50) £00:= 0 for xeQ,
X)i= ¢(x) for xeR\Q.

For every x, he Q we have x+jheQ forj = 0, ..., n+1, whence by (3) and (50)
nt+l

$) =Y (—1)"+“’<n-;1)f(x+jh) =0,
i=o .

whereas for xe R\Q, heQ we have x+jheR\Q for j = 0, ..., n+ 1, whence by
(3) and (50) ‘

. a+1 a+1
7560 = 5 0" i =T (") o
=4 e(x)=0.
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Thus with H = Q the function f fulfils the condition
A () =0 for all xeR, heH,

but the equality f(x) = ¢ (x) holds only almost everywhere, and not everywhere
in R.

Such an example would not be possible if the set H were large enough.

THEOREM 4. Let hypotheses (iv)—(xii) and condition (39) be fulfilled and let
n be a nonnegative integer. If an .M-measurable function f: X — Y satisfies the
condition

(51) M*f)=0 for all xeX, heH,

then f is continuous polynomial function of order n.

Proof. Condition (51) implies (29) (the exceptional sets being empty), thus
according to Theorem 3 there exists a continuous polynomial function
@: X - Y of order n such that (30) holds. On the other hand, since ¢ is
a polynomial function of order n, we have in particular

(52) A lo(x) =0 for all xeX, heH.

Relations (30), (39), (51) and (52) show by virtue of Lemma 5 that f = g, that is,
fis a continuous polynomial function of order n.

‘COROLLARY 3. Let hypotheses (ivi—ix) and (xi}—(xii) be fulfilled. Then
every #-measurable polynomial function f: X —» Y is continuous.

This results from Theorem 4 on taking H = X.

REMARK 5. It could seem that the condition H¢ " is considerably
weaker than H = X, but in many cases it is not true. Suppose that the
following form of the theorem of Steinhaus is valid in X:

) If A, Be #\ A, then int(4+B) # .
(Thns is certainly the case for all examples of .#, 4 listed in Remark 1; cf
[10]). Let H = X be a dense subgroup of X. If He.#\.4, then by (H)

intH = int(H+ H) # &,

whence H = H+ H = X since H is dense in X.

REMARK 6. Under conditions (vii) and (v), if, moreover, .#" is invariant
under translations, we have int 4 = @ for every set Ae.#. Indeed, suppose
that int A # & for an A€ .#; and let D be a countable and dense subset of X.
We have

A+D = \J (A+d)eNs
deD
since D is countable and A+d e 4" for every d. On the other hand, A+D = X
since int 4 # @f and D is dense in X. Consequently X € 4, a contradiction.

‘Thus if a condition @ (x) is fulfilled A" — —(a.e.), then it is fulfilled on a dense
subset of X. In particular, if two continuous functions are equal 4" — (a.c.), then
actually they coincide in the whole of X.
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It follows that the continuous polynomial function ¢ occuring in Theorem
3 is determined uniquely. The uniqueness of a polynomial function ¢: X - Y
fulfilling (30) (without appealing to continuity) may be obtained from Lemma 5.

3. In the present section we discuss some particular cases of Theorem 3. Of
course, the most interesting and important instances of X, Y fulfilling (vii) or
(viiij) are R (or, more generally, R") and C.

(@) X =R, Y=K (K stands for R or C). We start with a lemma.
LEMMA 6. For every real number a # O the set E = aQ is a countable and
dense linear subspace of R over Q with property (P) (X =R, Y =K).
Proof. Only (P) requires a proof. Let' G be a dense subgroup of E. We
may assume that a€ G. For otherwise take an a’€ G\{0} c E = aQ. Thus there
exists an reQ\{0} such -that a' = ar, whence a=ar ! and E=aQ =
d(r Q) =d'Q and d'eG.
~ One can prove by induction that if ;: G‘—» K is a symmetric 1-add1t1ve
function, then there exists a c;eK such that

(53) ',’l(t.l’ sosy t‘) = Cltl .en ti fOl‘ all tl’ ceey tle G.
Clearly the function ;: R* -+ K given by :
(54) lp,(xl, v X)) = ¢X4...%;  for all xg,...,x;€R

is a continuous extension of y; onto R’, and V, is symmetric and i-additive.

COROLLARY 4. If f: R = K is a continuous polynomial function of order
n(neN), then f is a polynomial (in a real variable x with coefficients from K) of
degree at most n.

Proof. It follows from the theorem of Mazur-Orlicz [11] (cf. the
Preliminaries section) that f can be written in form (4), where for j =0, ..., n the
function ¥, is .the diagonalization of a symmetnc j-additive functxon
y;: R K. It is enough to show that for j=1,..., n the function ¥, is
a monomial '
(55 ?,x) =c;x!, xeR,

- with a c;eK. (For j = 0 (55) is trivial). Suppose this has already been proved for
j=i+1,..,n(1 <i<n) and write ‘

F(x):=f(x)— Y ¢’
i=i+1

(F,=f) so that
i
(56) Fix) = jzo Tj(x)'

The function F, is continuous and in view of (2) 4,, .., F,(x) is a continuous
function of x,,...,x; in R. But according to (56) and Lemma 2

Axl...xiFi(x) = i! lpi(.xl, coey x,)
and thus y, is continuous. '
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Now put G:= Q and ¥, = {|;.. We have (53), whence (54) results in view
of the continuity of , and ultimately we get (55) for j = i. Thus (55) is valid for
ji=0,..,n

Now we assume that A

(xiii) H = R is a subgroup of R and there exists an aeR such that the set
Hn(aQ) is dense in R. '

Lemma 6, Theorem 3 and Corollary 4 imply the following

PROPOSITION 1. Let hypotheses (iv}—(vi), (xi), (xii) (with X = R) and (xiii)
be fulfilled and let n be a nonnegative integer. If an M -measurable function
f: R—K satisfies for every he H condition (29), then there exists a polynomial
@ (in a real variable, with coefficients from K) of degree not exceeding n such that
(30) holds.

As it has been pointed out in Remarks 1 and 3, hypotheses (iv)—(vi) and
(xi}—(xii) (X = R) are fulfilled, e.g., by the family of all Lebesgue measurable
subsets of R or that of all Baire subsets of R as ., and by the family of all
subsets of R of Lebesgue measure zero or that of all first category subsets of R,
respectively, as 4. As to (xiii), it is certainly fulfilled whenever H is a linear
subspace of R over Q. Another example of an H fulfilling (xiii) is furnished by
the set of all dyadic numbers. On the other hand, (xiii) is not fulfilled byH=H
given by (25), where a, b are incommensurable real numbers. Actually, it can be
inferred from the argument in the proof of Theorem 2 that if H is a dense
subgroup of R, then H fulfils either (xiii) or

(xiii) H < R is a subgroup of R and there exist incommensurable a, beR
such that (26) with (25) holds.

The two conditions do not exclude each other. For instance, H = R fulfils
both (xiii) and (xiii)'.

Unfortunately, we have not been able to prove Proposition 1 with (xiii)
replaced by (xiii)'. The Proposition 2 below (cf. the sentence immediately before
Example 1), however, is a consequence of a much more general result of J. H. B.
Kemperman [7].

PROPOSITION 2. Let H < R fulfil (xiii) and let n be a nonnegative integer.
If a measurable function f: R — R fulfils for every he H condition (47), then there
exists a real polynomial ¢ of degree not excending n and such that (48) holds.

Extending this result to the case of functions f: R — K presents no
difficulties.

J.A. Baker [1] proved that if a function f: R — C satisfies for certain
m,neN and incommensurable a, beR the condition

47 f(x)=43f(x) =0 for all xeR,

and is Lebesgue integrable on an interval of length ma, then there exists
a polynomial ¢ (in a real variable, with complex coefficients) of degree at most
m—1 such that

A79(x)=A4jp(x) =0 for all xeR
and (48) holds.
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Taking X = Y = R and choosing suitable .#, .#; we obtain from Corol-
laries 3 and 4 the following result essentially due to Z. Ciesielski [3] (cf.
also [9]).

PROPOSITION 3. Every Lebesgue measurable or Baire measurable polyno-
mial function f: R — R (of order n) is continuous, and hence it is a real polynomial
(of degree at most n).

®) X=RY,Y=R¥(M,NeN). Let e, ..., ey R" be linearly independent
over R (a base of RY over R) and put
(57) E = {xERN: X = }'Ie1+ “ee +1~e~, Al’ esey lNEQ}.

LEMMA 7. Let E be given by (57) with e,, ..., ey€RY linearly independent
over R and let G < E be a dense subgroup of E. If y:G — R is an additive
function, then there exist real constants c,,...,cy such that for t = T+

+TNeNEG ‘

(58) ll’(t) = 'p(""lel + PR +1:Ne~) = Cl‘tl+ .os +cNtN’

Proof. There exist ¢),...,eyeG linearly independent over R (otherwise
G could not be dense in E). We have, since G < E,

(59) €)= A,e + ... +Avey, j=1,..,N,
with rational 4;, j,k =1,..., N, whence also
(60) ej = pj‘e’1+ ...[ljueln, j = 1, ceny N,

with rational g, j,k = 1,..., N. Relations (57), (59) and (60) imply that

E={xeR": x = p e} + ... + uyej, py, ..., uy€Q}.

Thus in the sequel we assume that e,,...,ey€G.

For every he G and keZ we have khe G and y (kh) = ky (h). An arbitrary
te G can be written as t = tle,+ . +1yey with 14, ..., 7y€Q. Choose a geN
such that p; = g7;€Z for j = 1, ..., N. We have by the additivity of y, since
Pies+ ... +pyey€G,

q¥(t) =¥ (gt) = Y (pye;+ ... +pyey) = py¥(e))+ ... +py¥(ey)
=gt ¥ (e)+ ... +q1y¥ (ey),
whence (58) results with c;:= v, j=1,..,N.

LEMMA 8. For every e,,...,eyeRY linearly independent over R the set
E given by (57) is a countable and dense linear subspace of RY over Q with
property (P) (X =R¥, Y=RY).

Proof. Again only (P) requires a proof. Note that we may restrict ourselves
to M = 1, since each of the M components of y may be considered separately.

Let G< E be a dense subgroup of E. (As previously, we assume that

€y, ..., y€ G). Our Lemma will be proved when we show (induction on ieN)
the assertion:
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‘(*) For every symmetric i-additive function y,: G' - R there exists a con-
tinuous symmetric i-additive function §,;: R*) = R such that J)g: = ¥,.
For i=1 (*) is true by virtue of Lemma 7: the function

P =Y e +... +Even) =c, & + ... +cyéy

is the desired extension of (58) onto R". Now assume that (*) is true for an ieN
and let Y, ,:G'*! — R be a symmetric (i + 1)-additive function. Fix arbitrarily
ty,...,t;€G and write -

(61) W)= Yiaslty, ... tnt), teG.

Thus y: G- R is an additive function. By virtue of Lemma 7 we have (58)
where c;eR, j=1,..., N, depend, in fact, on ¢, ..., t, previously fixed. Since by
(58) and (61)

cj(t1, cevy ti) = wt+l(t1, eeey ti, ej), j =. 1’ veey N:

every ¢;: G' - R is a symmetric i-additive function. By the induction hypothesis
every c; can be extended onto (R¥) to a continuous symmetric i-additive
function ¢;: (R*)' — R. Let é = (,, ..., é5) €R" be the N-tuple of functions ¢; so
that ¢ is a function é: (RM)!— R”. The functon ;. ,: R¥*! >R

Vraa0egs oo Xp Xp4 1) = €061, s X) Xpyys Xy oeer X1 ERF,

where dot denotes the scalar product, is a continuous (i + 1)-additive extension
of Y;,, onto (R¥*1. The symmetry of ,, , results from that of y,, , and from
the continuity of ;. ,.

‘Thus (*) is valid for i+ 1. This completes the induction and ends the proof
of Lemma 8.

Our next hypothesis reads:

(xiv) H < R" is a subgroup of R" and there exist e, ..., ey & RY linearly inde-
pendent over R such that the set H n E, where E is given by (59), is dense in R”.

Since every continuous polynomial function of order n from RY into R is
a real polynomial in N variables of degree at most n [9, Theorem 15.9.4], we
obtain from Theorem 3 and Lemma 8

PROPOSITION 4. Let hypotheses (iv}—(vi), (xi), (xii) (X = R") and (xiv) be
Julfilled and let n be a nonnegative integer. If an #-measurable function
f: R R¥ satisfies for every he H condition (29), then each of the M compon-
ents of fis equal & —(a.e.) to a real polynomial in N variables of degree at most n.

(c) X = Y =C. Since in the present paper we do not go beyond continuity
(the analytic structure of C plays no role whatsoever), we may identify C with
R?. Thus the present situation becomes the special case M = N = 2 of (b), in
particular (cf. Lemma 8), for every z,,z,eC\{0} such that z,/z,¢R the set

(62) E:= {ZEC: Z=ﬂ.121+/1222, 11,12EQ}
is a countable and dense linear subspace of C over Q with property (P)
X=Y=C).
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“Observe that a continuous polynomial function from C into C is not
necessarily a complex polynomial. In fact, let f: C— C be a continuous
polynomial function of order n. According to [9; Theorem 15.9.4] either of the
(real) functions Ref(z), Imf(z) is. a polynomial in two real variables u = Rez
and v = Im z of degree at most n. In other words, there exist real constants a
and by, j,k=0,..,n, j+k < n, such that for z=u+iv :

(63) Ref(z) = i ajkujv*, Imf(z) = Z bpu'v*, z=u+iveC.
}f:‘on j+k<n

With d;, = a,+ib, €C relation (63) yields

(64) 1@ =futi= 3 dw, zeC.
k=0

s
jt+k<n
Setting in (64) u = %(z +2),v= %(z——z‘)i (Z denotes the complex conjugate of z)

we arrive at a similar expression, but with other coefficients c,€C:

(65) f@) = i cp2'?*, zeC.
jj-'o-kl;_-son

In this way we have proved

LEMMA 9. If f: C — C is a continuous polynomial function of order n, then
f has form (65) or, equivalently, (64), where cy and dj are complex constants,
jk=0,..,n, j+k<n

Now we assume that

(xv) H < C is a subgroup of C and there exist zl,zzeC\{O} such that
z,/z,¢R and the set HNE, where E is given by (62), is dense in C.

PROPOSITION 5. Let hypotheses (iv)—(vi), (xi), (xii) (X = C) and (xv) be
fulfilled and let n be a nonnegative integer. If an .#-measurable function f: C - C
satisfies for every he H condition (29), then there exists a continuous polynomial
function ¢: C— C of order n (c¢f. Lemma 9) such that (30) holds.
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