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ADDITIVE F U N C T I O N S WITH BIG G R A P H S 

Abstract In this note we show that there exists a collection containing c additive 
functions with big graphs such that/(x) ¥• g{x) for every/,g in the collection (/# 0) and every 
xeK\{8}. 

A function / : R"-*R is called additive if it satisfies Cauchy's functional 
equation, Le. if f(x+y) =f(x)+f(y) for all x.yeR". 

Professor Marek Kuczma (Katowice, Poland), in his book, published in 
1985, entitled "An Introduction to the Theory of Functional Equations and 
Inequalities", [2], presents an up to date and very comprehensive study of 
additive functions. 

If / : R"-»R is discontinuous additive function then the graph of / (sym­
bolically Gr(/)) is dense in R " + 1 (see [2}). An additive function/: R" ->R is 
called an additive function with small grapht if /(R") is countable. On pages 286 
and 287 in [2] it is shown that every additive function having a small graph is 
discontinuous, the set Gr( / ) is of measure zero and of the first category in 
R " + 1 and is not connected. 

Let P: R " + 1 -»R" be the projection: if p e R " + 1 and p = (x, y), xeR", yeR, 
then P(p) = x. An additive function / : R" -> R is said to have a big graph'n lot 
every Borel set F c R " + 1 such that P(F) has cardinal c (the cardinal of 
continuum) we have FnGt(f) # 0 . in [2], starting on page 287 several 
results about additive functions with big graph are presented. In particular it is 
shown that there exist additive functions with big graphs. This is a result of 
Jones and can be found in [1]. 

In this note we will extend the last mentioned result. We will show that 
there exists a collection containing c additive functions with big graphs such 
thatf(x) # g(x) for every/, g in the collection ( / # g) and every xeR" different 
from the zero vector. 
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In the following coc will denote the smallest ordinal having the cardinal c. 
R"\{S} can be written in the form R"\{S} = {Ua<» t. Let be the family of all 
Borel sets F c R " + 1 such that the cardinal of P(F) is c. The cardinal of & is 
c and hence & can be written in the form & = {FB}a<a> t(see pg. 287 in [2]). The 
proof of the theorem mentioned in the last paragraph uses transfinite induction 
and is more complicated than the proof of Jones result We now proceed to the 
proof of our theorem. 

THEOREM, There exists a collection {.£}««», of additive junctions on R" 
into R such that each fa has big graph and such that for each a < h < oit and each 
xeR"\$},fa(x)*fb(x). 

Proof. Following Kuczma, if A c R", E(A) will denote the vector subspace 
(over Q, the rationals) generated by A. 

We will now define by transfinite induction, for each a, a<a>t, two 
sequences {(x^, y J } ł < ( B c and {(u ta, o t a)}j < a > c of points in R " + 1 . The first is to 
assure that the graph will be "big" and the second is to get a Hamel basis in an 
appropriate place. This will be done considering larger and larger squares of 
the double indices a and b. 

Step 1. Let ( x u , y u ) be an arbitrary point in Ft, with x u ¥= 3. Let u A 1 be 
the first ta (from the sequence {ta}a<m) not in 2?({xn}). Let t?11 be an arbitrary 
real number (fixed). 

Step 2. ^ ( { x i i . W n } ) has cardinality less than c (in fact this set is 
countable). Therefore there exists a point (x 2 1 , y 2 1 ) in F2 such that 
x 2 1 $E(xllt un}). Let u 2 1 be the first ta not in E({xn,un, x 2 1}). Let v21 be an 
arbitrary real number. We now proceed to define 4 pairs for the function f2. 
E({x11, u i u x21,u21}) has cardinality less than c. Therefore there exists a point 
( x i 2 » yiz)m F i s u c h ^ * i 2 tE(ixu> u u » x 2 i » u 2 i } ) - Let u 1 2 be the first t„ not 
in E({xl2}). Now we want to select v12 so that f2 can be defined (so far) on 
E({x12,u12}) differs, for each non-zero vector, from ft defined on 
^ ( { x n »

 un> x 2 i » u 2 i } ) - P ° r every s, teQ there exists at most one 4-tuple 
(u, v, w, x) of elements from Q such that sx12 + tu12 = u x n + vutl +wx21+xu21. 
There is exactly one choice of v12 such that syi2+tv12 equals 
uy11+wll+wy2l+xv21. Since E({x12,ui2}) has cardinality less than c, less 
than c choices of v12 have to be avoided. Therefore, there exists a real number 
vl2 such that if sx12+tu12 = ux 1 1 +cu 1 1 +wx 2 1 +xu 2 1 is not the zero vector, 
where s,t,u,v,w,xeQ, then syl2 + tv12 is not equal to uy11+vv11 + wy21 + 
xv2i. Therefore the pair (u 1 2 , vl2) has been defined. Similarly, there exists 
a point (x 2 2 , y22) in F2 such that x 2 2 # £ ( { x u , u n , x 2 1 , « 2 1 , x 1 2 , u 1 2}). Let u22 

be the first ta not in £ ({x 1 2 , w 1 2 , x 2 2}). Arguing as we did about the existence 
of v12 it can be shown that there exists a real number v22 such that if 
sx12 + tu12+ux22 + vu22 = wx 1 1 +xu 1 1 +yx 2 1 +zu 2 1 is not the zero vector, 
where s, t,u,v,w,x,y, zeQ, then s v 1 2 + t » 1 2 + M y 2 2 + w ; 2 2 is not equal to 
wy 1 1 +xr 1 1 + v y 2 1 + z » 2 1 . This completes step 2. 
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The process started in steps one and two can be continued by trans finite 
induction. Namely, suppose that a < a>c and for each b, d less than a the pairs 
(x M , } / J have been defined in such a way that: 
(1) (xu,yiJ)eFb for each b,d less than a. 
(2) x^E^x^: e<fc}u{u e < , : e<b}) for each b,d less than a. 
(3) u M is the first ta not in E^x^: e < b) u {u^,: e <i>}) for each b, d less than a. 
(4) If are less than a,g*h, and i 1 , . . . , i M , A ex,....e„fc^k, are 

less than a and 

= w 1 x e i ł + w 2 x , ł » + ... + v v c e j k + z 1 u M + z 2 u , I „ + ... +ztukt„ 

is a non-zero vector, where 

U i u m ,»! , . . . ,» B w 1 , . . . ,w„z 1 , . . . , z t are all in Q, then 

« l V i 1 , + U 2 y , J , + - +»myUt + VlVhl + V2VJlt+ . . . + 1 7 B » ^ 

is not equal to as above 

w1yeih+w2ye1H+ «. + w,y e.»+z 1» k l»+z 2t>* 1 B+ ... +ztvkth. 
We now define (in order) the pairs (x o i ,y f l l ) , (uai,val); (xu2,ya2\ 
( u

B 2»»«2 ) ; - ; ( x <i»»y«*). («<*»»«»);••• for all fc<a. Then we define (in order) 
(*i«. y J . («i«» »i«); (*2«» v j , ( "2a . « 2 « ) ; - ; (*««. yJ» (««.»»J- This can be done 
(since a<(o{ and an infinite set and its set of all finite subsets have the same 
cardinality) in such a way as to preserve properties (1) thru (4). Therefore, by 
transfinite induction, we obtain for each a,a< iot, two sequences (xte, y h ,) f t < 0 > c 

and K , » j K o t of points in R " + 1 with the following properties. 
(a) (xM ,yM)e.F 6 for each b,d less than cot. 
(b) For each a<o)c the set {x^: b < toc} w {u^: fc < coj is a Hamel basis 

for R". 
(c) If g, h are less than eut, g # ft, and 

i i W i V ^ i ' ' i are less than cot and 

«iXii«+«a*ii»-+ - +umXima+v1uht+v2uJia+ ... +w„u^ 
= w 1 x e , »+w 2 x e i A + ... +w,xejl+ziuklh+z2uklh+ ... +z ,u w 

is a non-zero vector, where 

u1,...,um,vl,...,vn,wl,...,wt,z1,...,zt are all in Q, then 

is not equal to 

W i V e i * + w 2 y e 2 f l + ... +wsyeJ,+z1vklh+z2vklh+ ... +z,vkth. 

For each a < (ot,fa is defined to be the unique additive function satisfying: 
fa(xba) = and faille) = for each b < coc. Because of (a), (b) and (c) the 
collection of functions {fa}a<at satisfies the conditions of our theorem. 
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REMARK. It is a trivial exercise to show that there exists a collection 
{/,}<!< o t of additive functions on R" into R such that each^ has a small graph 
and such that for each a < b < to{ and each xeR"\{S}, / e(x) &fh(x). 

COROLLARY. Since every additive function / : R" -»R with either small 
graph or large graph has the property that all of this level sets are saturated 
non-measurable (a set is saturated non-measurable if both it and its com­
plement have inner measure zero) and topologically saturated measurable 
(a set is topologically saturated non-measurable if neither it nor its complem­
ent contains a second category set having the Bake property), see [2] (pg. 297), 
it follows either from our remark or our theorem that there exists a collection of 
subspaces o/R", {Ea}tt<B>c, such that each Ea is saturated non-measurable and 
topologically saturated non-measurable and EanEb = {5} for each a,b, a^b. 
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