## HAMID KULOSMAN, HARRY I. MILLER*

## ADDITIVE FUNCTIONS WITH BIG GRAPHS


#### Abstract

In this note we show that there exists a collection containing $e$ additive functions with big graphs such that $f(x) \neq g(x)$ for every $f, g$ in the collection $(f \neq g)$ and every $x \in \mathbf{R}^{\boldsymbol{n}} \backslash\{\overline{0}\}$.


A function $f: \mathbf{R}^{\boldsymbol{n}} \rightarrow \mathbf{R}$ is called additive if it satisfies Cauchy's functional equation, i.e. if $f(x+y)=f(x)+f(y)$ for all $x, y \in \mathbf{R}^{n}$.

Professor Marek Kuczma (Katowice, Poland), in his book, published in 1985, entitled "An Introduction to the Theory of Functional Equations and Inequalities", [2], presents an up to date and very comprehensive study of additive functions.

If $f: \mathbf{R}^{\boldsymbol{n}} \rightarrow \mathbf{R}$ is discontinuous additive function then the graph of $f$ (symbolically $\operatorname{Gr}(f)$ ) is dense in $\mathbf{R}^{n+1}$ (see [2]). An additive function $f: \mathbf{R}^{\boldsymbol{n}} \rightarrow \mathbf{R}$ is called an additive function with small graph if $f\left(\mathbf{R}^{\boldsymbol{\eta}}\right)$ is countable. On pages 286 and 287 in [2] it is shown that every additive function having a small graph is discontinuous, the set $\operatorname{Gr}(f)$ is of measure zero and of the first category in $\mathbf{R}^{n+1}$ and is not connected.

Let $P: \mathbf{R}^{n+1} \rightarrow \mathbf{R}^{n}$ be the projection: if $p \in \mathbf{R}^{n+1}$ and $p=(x, y), x \in \mathbf{R}^{n}, y \in \mathbf{R}$, then $P(p)=x$. An additive function $f: \mathbf{R}^{\boldsymbol{n}} \rightarrow \mathbf{R}$ is said to have a big graph if for every Borel set $F \subset \mathbf{R}^{\boldsymbol{n + 1}}$ such that $P(F)$ has cardinal $c$ (the cardinal of continuum) we have $F \cap \operatorname{Gr}(f) \neq \varnothing$. In [2], starting on page 287 several results about additive functions with big graph are presented. In particular it is shown that there exist additive functions with big graphs. This is a result of Jones and can be found in [1].

In this note we will extend the last mentioned result. We will show that there exists a collection containing c additive functions with big graphs such that $f(x) \neq g(x)$ for every $f, g$ in the collection $(f \neq g)$ and every $x \in \mathbf{R}^{n}$ different from the zero vector.

[^0]In the following $\omega_{c}$ will denote the smallest ordinal having the cardinal $c$. $\mathbf{R}^{n} \backslash\{\overline{0}\}$ can be written in the form $\mathbf{R}^{n} \backslash\{\tilde{0}\}=\left\{t_{a}\right\}_{a<\omega_{c}}$. Let $\mathscr{F}$ be the family of all Borel sets $F \subset R^{n+1}$ such that the cardinal of $P(F)$ is $c$. The cardinal of $\mathscr{F}$ is $c$ and hence $\mathscr{F}$ can be written in the form $\mathscr{F}=\left\{F_{a}\right\}_{a<\omega_{c}}$ (see pg. 287 in [2]). The proof of the theorem mentioned in the last paragraph uses transfinite induction and is more complicated than the proof of Jones result. We now proceed to the proof of our theorem.

THEOREM, There exists a collection $\left\{f_{a}\right\}_{a<\omega_{t}}$ of additive functions on $\mathbf{R}^{n}$ into $\mathbf{R}$ such that each $f_{a}$ has big graph and such that for each $a<b<\omega_{c}$ and each $x \in \mathbf{R}^{\boldsymbol{n}} \backslash\{\overrightarrow{0}\}, f_{a}(x) \neq f_{b}(x)$.

Proof. Following Kuczma, if $A \subset \mathbf{R}^{n}, E(A)$ will denote the vector subspace (over Q, the rationals) generated by $A$.

We will now define by transfinite induction, for each $a, a<\omega_{c}$, two sequences $\left\{\left(x_{b a}, y_{b a}\right\}_{b<\omega_{c}}\right.$ and $\left\{\left(u_{b a}, v_{b a}\right\}_{b<\omega_{c}}\right.$ of points in $\mathbf{R}^{n+1}$. The first is to assure that the graph will be "big" and the second is to get a Hamel basis in an appropriate place. This will be done considering larger and larger squares of the double indices $a$ and $b$.

Step 1. Let $\left(x_{11}, y_{11}\right)$ be an arbitrary point in $F_{1}$, with $x_{11} \neq 0$. Let $u_{11}$ be the first $t_{a}$ (from the sequence $\left\{t_{a}\right\}_{a<\omega_{0}}$ ) not in $E\left(\left\{x_{11}\right\}\right)$. Let $v_{11}$ be an arbitrary real number (fixed).

Step 2. $E\left(\left\{x_{11}, u_{11}\right\}\right)$ has cardinality less than $c$ (in fact this set is countable). Therefore there exists a point $\left(x_{21}, y_{21}\right)$ in $F_{2}$ such that $\left.x_{21} \notin E\left(x_{11}, u_{11}\right\}\right)$. Let $u_{21}$ be the first $t_{a}$ not in $E\left(\left\{x_{11}, u_{11}, x_{21}\right\}\right)$. Let $v_{21}$ be an arbitrary real number. We now proceed to define 4 pairs for the function $f_{2}$. $E\left(\left\{x_{11}, u_{11}, x_{21}, u_{21}\right\}\right)$ has cardinality less than $c$. Therefore there exists a point $\left(x_{12}, y_{12}\right)$ in $F_{1}$ such that $x_{12} \notin E\left(\left\{x_{11}, u_{11}, x_{21}, u_{21}\right\}\right)$. Let $u_{12}$ be the first $t_{a}$ not in $E\left(\left\{x_{12}\right\}\right)$. Now we want to select $v_{12}$ so that $f_{2}$ can be defined (so far) on $E\left(\left\{x_{12}, u_{12}\right\}\right)$ differs, for each non-zero vector, from $f_{1}$ defined on $E\left(\left\{x_{11}, u_{11}, x_{21}, u_{21}\right\}\right)$. For every $s, t \in \mathbf{Q}$ there exists at most one 4 -tuple ( $u, v, w, x$ ) of elements from $Q$ such that $s x_{12}+t u_{12}=u x_{11}+v u_{11}+w x_{21}+x u_{21}$. There is exactly one choice of $v_{12}$ such that $s y_{12}+t v_{12}$ equals $u y_{11}+v v_{11}+w y_{21}+x v_{21}$. Since $E\left(\left\{x_{12}, u_{12}\right\}\right)$ has cardinality less than $c$, less than c choices of $v_{12}$ have to be avoided. Therefore, there exists a real number $v_{12}$ such that if $s x_{12}+t u_{12}=u x_{11}+v u_{11}+w x_{21}+x u_{21}$ is not the zero vector, where $s, t, u, v, w, x \in Q$, then $s y_{12}+t v_{12}$ is not equal to $u y_{11}+v v_{11}+w y_{21}+$ $x v_{21}$. Therefore the pair ( $u_{12}, v_{12}$ ) has been defined. Similarly, there exists a point ( $x_{22}, y_{22}$ ) in $F_{2}$ such that $x_{22} \notin E\left(\left\{x_{11}, u_{11}, x_{21}, u_{21}, x_{12}, u_{12}\right\}\right)$. Let $u_{22}$ be the first $t_{a}$ not in $E\left(\left\{x_{12}, u_{12}, x_{22}\right\}\right)$. Arguing as we did about the existence of $v_{12}$ it can be shown that there exists a real number $v_{22}$ such that if $s x_{12}+t u_{12}+u x_{22}+v u_{22}=w x_{11}+x u_{11}+y x_{21}+z u_{21}$ is not the zero vector, where $s, t, u, v, w, x, y, z \in \mathbf{Q}$, then $s y_{12}+t v_{12}+u y_{22}+v v_{22}$ is not equal to $w y_{11}+x v_{11}+y y_{21}+z v_{21}$. This completes step 2.

The process started in steps one and two can be continued by transfinite induction. Namely, suppose that $a<\omega_{c}$ and for each $b, d$ less than $a$ the pairs ( $x_{b d}, y_{b d}$ ) have been defined in such a way that:
(1) $\left(x_{b d}, y_{b d}\right) \in F_{b}$ for each $b, d$ less than $a$.
(2) $x_{b d} \notin E\left(\left\{x_{\text {ad }}: e<b\right\} \cup\left\{u_{\text {ed }}: e<b\right\}\right)$ for each $b, d$ less than $a$.
(3) $u_{b d}$ is the first $t_{d} \operatorname{not}$ in $E\left(\left\{x_{\infty d}: e \leqslant b\right\} \cup\left\{u_{o d}: e<b\right\}\right)$ for each $b, d$ less than $a$.
(4) If $g, h$ are less than $a, g \neq h$, and $i_{1}, \ldots, i_{m}, j_{1}, \ldots, j_{n}, e_{1}, \ldots, e_{g}, k_{1}, \ldots, k_{t}$ are less than $a$ and

$$
\begin{aligned}
u_{1} x_{i_{1} g}+u_{2} x_{i_{2 g}} & +\ldots+u_{m} x_{l_{m g}}+v_{1} u_{j_{1} \theta}+v_{2} u_{j_{2 g}}+\ldots+v_{n} u_{j n g} \\
& =w_{1} x_{e_{1} h}+w_{2} x_{e_{2} h}+\ldots+w_{s} x_{e_{\rho h}}+z_{1} u_{k_{1} h}+z_{2} u_{k_{2} h}+\ldots+z_{t} u_{k_{k, h} h}
\end{aligned}
$$

is a non-zero vector, where
$u_{1}, \ldots, u_{m}, v_{1}, \ldots, v_{n} w_{1}, \ldots, w_{s}, z_{1}, \ldots, z_{t}$ are all in $\mathbf{Q}$, then

$$
u_{1} y_{i_{1 g}}+u_{2} y_{i_{2 g}}+\ldots+u_{m} y_{i m g}+v_{1} v_{j, g}+v_{2} v_{j 2 g}+\ldots+v_{n} v_{j n g}
$$

is not equal to as above

$$
w_{1} y_{e_{1} h}+w_{2} y_{e_{2 h} h}+\ldots+w_{s} y_{e_{2} h}+z_{1} v_{k_{1} h}+z_{2} v_{k 2 h}+\ldots+z_{t} v_{k h h} .
$$

We now define (in order) the pairs $\left(x_{a 1}, y_{a 1}\right),\left(u_{a 1}, v_{a 1}\right) ;\left(x_{a 2}, y_{a 2}\right)$, $\left(u_{a 2}^{\prime}, v_{a 2}\right) ; \ldots ;\left(x_{a b}, y_{a b}\right),\left(u_{a b}, v_{a b}\right) ; \ldots$ for all $b<a$. Then we define (in order) $\left(x_{1 a}, y_{1 a}\right),\left(u_{1 a}, v_{1 a}\right) ;\left(x_{2 a}, y_{2 a}\right),\left(u_{2 a}, v_{2 a}\right) ; \ldots ;\left(x_{a a}, y_{a a}\right),\left(u_{a a}, v_{a a}\right)$. This can be done (since $a<\omega_{c}$ and an infinite set and its set of all finite subsets have the same cardinality) in such a way as to preserve properties (1) thru (4). Therefore, by transfinite induction, we obtain for each $a, a<\omega_{c}$, two sequences $\left(\mathrm{x}_{b a}, y_{b a}\right)_{b<\omega_{c}}$ and $\left(u_{b a}, v_{b a}\right)_{b<\omega_{c}}$ of points in $\mathbf{R}^{n+1}$ with the following properties.
(a) $\left(x_{b d}, y_{b d}\right) \in F_{b}$ for each $b, d$ less than $\omega_{c}$.
(b) For each $a<\omega_{c}$ the set $\left\{x_{b a}: b<\omega_{c}\right\} \cup\left\{u_{b a}: b<\omega_{c}\right\}$ is a Hamel basis for $\mathbf{R}^{n}$.
(c) If $g, h$ are less than $\omega_{c}, g \neq h$, and
$i_{1}, \ldots, i_{m}, j_{1}, \ldots, j_{n}, e_{1}, \ldots, e_{s}, k_{1}, \ldots, k_{t}$ are less than $\omega_{c}$ and

$$
\begin{aligned}
& u_{1} x_{i_{1 g}}+u_{2} x_{i_{2 g}}+\ldots+u_{m} x_{i_{m g}}+v_{1} u_{j 1 g}+v_{2} u_{j_{2 g}}+\ldots+v_{n} u_{j r g} \\
& \quad=w_{1} x_{e_{1} h}+w_{2} x_{e_{2} h}+\ldots+w_{s} x_{e_{g h} h}+z_{1} u_{k_{1} h}+z_{2} u_{k_{2} h}+\ldots+z_{t} u_{k_{k t} h}
\end{aligned}
$$

is a non-zero vector, where
$u_{1}, \ldots, u_{m}, v_{1}, \ldots, v_{n}, w_{1}, \ldots, w_{s}, z_{1}, \ldots, z_{t}$ are all in $\mathbf{Q}$, then

$$
u_{1} y_{i_{1 g}}+u_{2} y_{i 2 g}+\ldots+u_{m} y_{l m g}+v_{1} v_{j_{1 g}}+v_{2} v_{j_{2 g}}+\ldots+v_{n} v_{j_{n g}}
$$

is not equal to

$$
w_{1} y_{e_{1} h}+w_{2} y_{e 2 h}+\ldots+w_{s} y_{e e_{h}}+z_{1} v_{k_{1} h}+z_{2} v_{k_{2} h}+\ldots+z_{t} v_{k_{k} h} .
$$

For each $a<\omega_{c}, f_{a}$ is defined to be the unique additive function satisfying: $f_{a}\left(x_{b a}\right)=y_{b a}$ and $f_{a}\left(u_{b a}\right)=v_{b a}$ for each $b<\omega_{c}$. Because of (a), (b) and (c) the collection of functions $\left\{f_{a}\right\}_{a<\omega_{c}}$ satisfies the conditions of our theorem.

REMARK. It is a trivial exercise to show that there exists a collection $\left\{f_{a}\right\}_{a<\infty_{c}}$ of additive functions on $\mathbf{R}^{n}$ into $\mathbf{R}$ such that each $f_{a}$ has a small graph and such that for each $a<b<\omega_{c}$ and each $x \in \mathbf{R}^{n} \backslash\{\boldsymbol{0}\}, f_{a}(x) \neq f_{b}(x)$.

COROLLARY. Since every additive function $f: \mathbf{R}^{\boldsymbol{n}} \rightarrow \mathbf{R}$ with either small graph or large graph has the property that all of this level sets are saturated non-measurable (a set is saturated non-measurable if both it and its complement have inner measure zero) and topologically saturated measurable (a set is topologically saturated non-measurable if neither it nor its complement contains a second category set having the Baire property), see [2] (pg. 297), it follows either from our remark or our theorem that there exists a collection of subspaces of $\mathbf{R}^{n},\left\{E_{a}\right\}_{a<\omega_{c}}$, such that each $E_{a}$ is saturated non-measurable and topologically saturated non-measurable and $E_{a} \cap E_{b}=\{0\}$ for each $a, b, a \neq b$.

## REFERENCES

[1] F.B. JONES, Connected and disconnected plane sets and the functional equation $f(x+y)=f(x)+f(y)$, Bull. Amer. Math. Soc. 48 (1942), 115-120.
[2] M. KUCZMA, An Introduction to the Theory of Functional Equations and Inequalities, Państwowe Wydawnictwo Naukowe, Uniwersytet Ślaski, Warszawa-Kraków-Katowice, 1985.


[^0]:    The work on this paper was supported by the Scientific Research Fund of Bosna and Herzegovina.

    Manuscript received September 5, 1989, and in final form March 3, 1991.
    AMS (1991) subject classification: Primary 39B22. Secondary 26A30.

    * Department of Mathematics, University of Sarajevo, Vojvode Putnika 43, Sarajevo 71000, Bosna and Herzegovina.

