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ADDITIVE FUNCTIONS WITH BIG GRAPHS

Abstract. In this note we show that there exists a collection containing "¢ additive
functions with big graphs such that f(x) # g(x) for every f, g in the collection (f # g) and every
xeR"\{0}.

A function f: R* - R is called additive if it satisfies Cauchy’s functional
equation, ie. if f(x+y) =f(x)+f(y) for all x, yeR"

Professor Marek Kuczma (Katowice, Poland), in his book, published in
1985, entitled “An Introduction to the Theory of Functional Equations and
Inequalmes , [2], presents an up to date and very comprehensxve study of
additive functions.

If f: R" >R is discontinuous addmve function then the graph of f (sym-
bolically Gr(f)) is dense in R***! (see [2]). An additive function f: R* - R is
called an additive function with small graph if f(R") is countable. On pages 286
and 287 in [2] it is shown that every additive function having a small graph is
discontinuous, the set Gr(f) is of measure zero and of the first category in
R**! and is not connected.

Let P: R**! - R* be the projection: if peR**! and p = (x, ), x€R", yeR,
then P(p) = x. An additive function f: R" — R is said to have a big graph if for
every Borel set F <« R"*! such that P(F) has cardinal ¢ (the cardinal of
continuum) we have FnGr(f) # &. In [2], starting on page 287 several
results about additive functions with big graph are presented. In particular it is
shown that there exist additive functions with big graphs. This is a result of
Jones and can be found in [1]. ’

In this note we will extend the last mentioned result. We will show that
there exists a collection containing ¢ additive functions with big graphs such
that f(x) # g(x) for every f, g in the collection (f # g) and every x e R" different
from the zero vector.
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In the following w, will denote the smallest ordinal having the cardinal c.
R"\{0} can be written in the form R"\{0} = {t,},<a,. Let # be the family of all
Borel sets F c R"*! such that the cardinal of P(F) is ¢. The cardinal of & is
¢ and hence & can be written in the form & = {F }, <o, (see pg. 287 in [2]). The
proof of the theorem mentioned in the last paragraph uses transfinite induction
and is more complicated than the proof of Jones result. We now proceed to the
proof of our theorem.

"THEOREM, There exists a collection {f,}.<a, of additive functions on R"
into R such that each f, has big graph and such that for each a < b < w. and each
xeR\{0}, £.(x) # f,(x).

Proof. Following Kuczma, if A c R", E (4) will denote the vector subspace
(over Q, the rationals) generated by A. -

We will now define by transfinite induction, for each g, a < ®,, two
sequences {(Xpq» Vsa)}p<w, 804 {(Us4 Vpo)}s <o, Of points in R** 1. The first is to
assure that the graph will be “big” and the second is to get a Hamel basis in an
appropriate place. This will be done considering larger and larger squares of
the double indices a and b.

Step 1. Let (x,,, y,,) be an arbitrary point in F,, with x,, # 0. Let u, , be
the first ¢, (from the sequence {t,},<, ) not in E({x,,}). Let v,, be an arbitrary
real number (fixed).

Step 2. E({x,y,u;,}) has cardinality less than ¢ (in fact this set is
countable). Therefore there exists a point (x,,,y,,) in F, such that
X1 $E(xy1,1,,}). Let uy, be the first ¢, not in E({x,,, u;, x3,}). Let v, be an
arbitrary real number. We now proceed to define 4 pairs for the function f,.
E({xy1,u;1, %31, U,,}) has cardinality less than ¢. Therefore there exists a point
(%12, ¥12) in F, such that x,, ¢ E({x,,, u,,, X5,, u,,}). Let u, , be the first t, not
in E({x,,}). Now we want to select v,, so that f, can be defined (so far) on
E({x,,,u,,}) differs, for each non-zero vector, from f, defined on
E({xyy,uy,,X5;,5,})- For every s,teQ there exists at most one 4-tuple
(u, v, w, x) of elements from Q such that sx,, +tu,, = ux,, +vu,; +wx,, +xu,,.
There is exactly one choice of v,, such that sy,,+tv,, equals
uy,+ov,, +wy,, +xv,,. Since E({x,,,u,,}) has cardinality less than ¢, less
than ¢ choices of v,, have to be avoided. Therefore, there exists a real number
vy, such that if sx,, +tu,, = ux,, +ou, , +wx,, +xu,, is not the zero vector,
where s,t.,u,v,w,x€Q, then sy,,+tv, is not equal to uy,, +ovv,, +wy,, +
xv,,. Therefore the pair (u,,,v,,) has been defined. Similarly, there exists
a point (x,5, ¥;,) in F, such that x,; ¢ E({xy, uy;, X51, Uy, X415, 5,}). Let uy,
be the first ¢, not in E({x,,, u,;, X;,}). Arguing as we did about the existence
of vy, it can be shown that there exists a real number v,, such that if
5Xpp Uy, +ux,, + vy, = Wy, +Xuy +yx,, +2u,, is not the zero vector,
where s,t,u,v,w,x,y, z€Q, then sy,,+tv,,+uy,;+vv,, is not equal to
Wy, +X0y, +yy,, +2v,,. This completes step 2.
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The process started in steps one and two can be continued by transfinite
induction. Namely, suppose that a < w, and for each b, d less than a the pairs
(Xsa> Yoa) have been defined in such a way that:

(1) (%pa> ¥o)€F, for each b,d less than a.

(2) xp¢E({x,: e<b}uU{u,: e <b}) for each b,d less than a.

(3) uy, is the first t, not in E{{x,,: e < b} U {u,y: e < b}) for each b, d less than a.

(4) If g, h are less than a,g # h, and i, ..., Gy, j1s oo ps €15 -5 € Ky 5 ---5 k, aTE
less than a and

Uy Xp g FUpXppgF oon UKy g0 Uy o+ VU 0+ o VU

= Wy XehtWoXept oo + W Xon+ 2 Up g+ Zo U+ ... + 2,y
is a non-zero vector, where

Ugyooes Upgy Uy ooy Uy Wyyeoey Wyy 24, .00, 2, are all in Q, then

U Vgt Uy Visgt oo F Uy YigH 01 0jyg 0050+ oo + 0,054
is not equal to as above
W Vet WaVesr+ -.. +w,y,,,,+'zlvh,,+z,vm+ vee T 2,085

We now define (in order) the pairs (%ags Yar)s  (ars Var)s (%azs Vark
(8325 Vaz)s - s %aps Yap)s (thays Vp); --- for all b < a. Then we define (in order)

(X12> Y1a) (105 010)s K205 Y20)s U245 V203 -5 (Kaas Vaa)s (Waa> Vaa)- This can be done
(since a < w, and an infinite set and its set of all finite subsets have the same

cardinality) in such a way as to preserve properties (1) thru (4). Therefore, by
transfinite induction, we obtain for each a, a < ., two sequences (X,,, Yy )s<a,
and (Up,,0)s<0, Of points in R**! with the following properties.
(@) (xpq» ypa) €F, for each b,d less than w,.
(b) For each a < w, the set {x,,: b <o} U {u,: b<w] is a Hamel basis
for R".
() If g,h are less than w,, g # h, and
B1s cees Iy s eees fius €15 -oes €55 Ky ..y K, are less than w, and
Uy Xpgt Uy Xipgt oo FUpXg, g+ 03Uy o+ 08,4+ ..o + 0,1,
= WiXen+WaXept oo FWXep 2t g+ Zothon+ .. 2,0,
is a non-zero vector, where
Uy ey Upy gy eey Uy Wyy ooy Wy 24, ooy Z, are all in Q, then
Uy VirgtUpVizgt oo Fily Vi +010pg+ 03055+ ... +0,0,

is not equal to

WiVeshtWo Vet oo +W, Yeu+2, Upp+ 2,008+ oo + 2,04,

‘For each a < w,, f, is defined to be the unique additive function satisfying:
Ja(Xpa) = ys, and f,(u,,) = v,, for each b < w,. Because of (a), (b) and (c) the
collection of functions {f,},<.. satisfies the conditions of our theorem.
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REMARK. It is a trivial exercise to show that there exists a collection
{f.}a<a, of additive functions on R" into R such that each f, has a small graph
and such that for each a < b < w, and each xeR"\{0}, £,(x) # f;(»).

COROLLARY. Since every additive function f: R" - R with either small
graph or large graph has the property that all of this level sets are saturated
non-measurable (a set is saturated non-measurable if both it and its com-
plement have inner measure zero) and topologically saturated measurable
(a set is topologically saturated non-measurable if neither it nor its complem-
ent contains a second category set having the Baire property), see [2] (pg. 297),
it follows either from our remark or our theorem that there exists a collection of
subspaces of R*, {E }s<a,, such that each E, is saturated non-measurable and
topologically saturated non-measurable and E, ~ E, = {0} for each a, b, a # b.
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