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Abstract In the preceding paper (see [2]) we defined and investigated quasibilinear functionate 
on vector spaces, quasiorthogonal and weakly quasiorthogonal vector spaces. In the present paper 
we give certain applications of these concepts in projective geometry. 

In Section 1 we define quasiorthogonal projective spaces (Definition 1) and 
give analytical representation of these structures (Theorem t). Theorem 1 may 
be treated here as an analytical definition of quasiorthogonal projective spaces. 
In Section 2 the polarity and duality of quasiorthogonal projective spaces is 
investigated and the main results are given in Theorem 2. 

Quasiorthogonal projective spaces are some generalization of real projec
tive spaces with general projective metrics (see [4]). This is shown in Section 
3 (Theorem 3). 

1. Basic notions. Let us consider an (n+ l)-dimensional vector space V over 
a commutative field F of characteristic different from 2 and a relation 
~ c V x V defined by the condition 

u ~ » : o 3 X,neF\{0} (Au = fiv). 

The factor space 

P(V):=(V\{9})/~ 
is (see [1]) an n-dimensional projective space over F and for arbitrary 
fc-dimensional vector subspace U < V an image n(U\{&}) is a (k— ̂ -dimen
sional projective subspace of P(V), where n denotes a canonical projection of 
V\{&} onto P(V). Projective subspaces are also projective spaces and 
O-dimensional subspaces are called points while (n—l)-dimensional subspaces 
are called hyperplanes of P(V). The set of all hyperplanes of P(V) is denoted 
here by (P(V)). Since we may identify structures Jf(P(V)) and P(V*), where 
V* denotes a conjugate vector space, then we put 
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P*(V):= P(V*) = JT(P(V)) 

and we say that P*(V) is dual to the P(V) projective space. Analogically we 
adopt 

P**(V):= (P*(V))* = P (V). 

In [2] we defined weakly quasiorthogonal vector spaces as structures 
(W, J.), where W is some vector space of finite dimension and X is a relation of 
orthogonality of vectors determined by some quasibilinear functional on W. 
Now we adopt the following: 

D E F I N I T I O N 1. A structure (P(V), X) is called a quasiorthogonal projec
tive space (or shortly a qps) if and only if (V*, X 0 ) is a weakly quasiorthogonal 
vector space and 

H 1 G : O ( T C - 1 ( H ) U {©}) X.(w- \G) U { © } ) 
for every H,Gejf(P(V)). 

A hyperplane Hejf (P(V)) is said to be singular iff 

V G e j f ( P ( K ) ) ( H X G ) . 

A quasiorthogonal projective space (P(V),±) is said to be nondegerated 
(degenerated, totally degenerated) iff there is no singular hyperplane of P(V) 
(there is a singular hyperplane of P(V), all hyperplanes of P(V) are singular). 

A hyperplane H e j f (P(F)) is said to be isotropic iff H I H . 
Since each nonzero vector ueV determines some 1-dimensional vector 

subspace Lin(u) of V then we can define a mapping q>: V\{9} -* P(V) as 
follows: 

ę (u): = 7t (Lin (u)\{0}) for u 6 V\{@}. 

A tuple <a°, . . . , a" + 1> of points of n-dimensional projective space P (F) is said 
to be (see e.g. [1]) a co-ordinate {n+2)-frame of P(V) iff there exists a basis 
<e 1,...,e"+ 1> of V such that a0 = q>(e1+ and a1 = <p{e*) for 
i = l n+1. Each fixed co-ordinate (n+2)-frame <a° a" + 1> of P(K) 
uniquely determines homogeneous coordinates (Pi , . . . ,p„+i)~ of any point 
p e P ( F ) and ( H 1 , . . . , H " + 1 ) « of any hyperplane ffejP(P(F)j. Now by virtue 
of results of [2] we can formulate the following: 

T H E O R E M 1. Let P(V) be an n-dimensional projective space over a com
mutative field F of characteristic different from 2. A structure (P(V)), 1) is 
a quasiorthogonal projective space if and only if there exist integer numbers 
r = r(_L), n0 n,, scalars Xlt..., XK+l eF and a co-ordinate (n+lyframe 
<a° o" + 1> ofP(V\ such that 
(i) l < r < n + l , 
(ii) 0 = no<nl...<nr_l<nr = n+l, 
(iii) ifr>\then V ; 6 { l , . . . , r - 1 } l i e ^ ^ + l n̂ } (A,#0) 
and for every H,GeJtT(P(V)) 
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(iv) H l G o 3 y e { l , . . . , r } ( V i e { n j + l , . . . , n+ l} ( H ' = G' = 0)) 

A 3 ie{nj_! +1 nj} ( f l ' # O v G ' # 0 ) A L ^ J f ' G ' = 0), 

w/iere 2 J A , H ' G ' denotes the summation over all i with i e { n j _ 1 + l , . . . ,n ,} . 
Moreover, (P(V), 1) is nondegenerated iff 

(v) V i e { l n+1} (A,#0) 

and totally degenerated iff 

(vi) V i e { l , . . . , n + 1 } (A( = 0}. 

R E M A R K . In this paper we adopt the following convention: 

V n , m , feeZ (ke{n,...,m) :on < k < m), 

where Z denotes the set of integer numbers. Moreover, the symbol JJ always 
denotes the summation over all i with ie{nJ_l + l,...,nJ}. 

This theorem gives an analytical representation of any qps. A co-ordinate 
(n+2)-frame <a0,..., a" + 1> of P(V) such that the relation _L is described by the 
formula (iv) is called here orthogonal (with respect to ±) . Since by Theorem 
1 we may represent any relation i . in some co-ordinate (n+2)-frame 
< a ° , . . . , a " + 1 > by a suitable sequence ((Xlt...,^.....(V-i + i . — • K+d)> m e n 

we say that this sequence is a canonical form of _L with respect to <fl 0,..., a" + i > 
and we write <1><„O = (C^ , . . . ,A B l ) , . . . , (A B r _ l + i , . . . ,X B + 1 ) ) . Since (see 
[2]) two congruent quasibilinear functionals determine the same relation of 
orthogonality, then we have: 

C O R O L L A R Y 1. If(P{V), 1) is qps and <±><a„ „»•,> = ((^,...,XHi) 
( ^ r - i + i . — t n e n <-L><oo «»+i> = ((eiX1,...,e1Xni),...,(erX„r_1 + 1,..., 
e A + i ) ) / 0 * " H « r e * M ° } -

It is obvious that the concept of quasiorthogonal projective space is some 
generalization of the concept of an orthogonal projective space (see e.g. [3], 
[5]) and we have 

C O R O L L A R Y 2. A qps (P(V)), -L) is an orthogonal projective space if and 
only if r ( ± ) = 1. 

Additionally, it is clear that we also obtain: 
C O R O L L A R Y 3. If(P(V), J.) is a qps then the relation ± is symmetric, i.e. 

HLGoGLH for every H,GeJtf(P(V)). 
Now let us assume that <!><«<> ^*t> = ((X^..., Xn^,...,{Xnr_l+i,...,XH+l)) 

and let us put 

T0:=P(V), 

Tj-.= {peP(V): V i e { l , . . . , n , } fo = 0)} for ; = 1 r. 

It is evident that T0,...,Tr are projective subspaces of P(V), P(V) = 
r 0 $ Tt $ r r _ t $ Tr = 0 and H±Go3je{l r} ( T J c f f n G A 
Tj-t 4: H n G A UXflG* = 0) for H, G e J f (P(F)). Let us define a relation 
± t c j f ( P ( 7 ) ) x j f ( P ( 7 ) ) as follows: 

86 



H l ^ o E ' ^ t f ' G ' = 0 for H,Getf{P(y)). 

It is evident that HL^oiT^^ c H v Tr_t c G v Tr.^t H u G A H1G) 
for H,Geje(P(V)) and ( P ( F ) , ± X ) is an orthogonal projective space. More
over, if 7;_i ¥=P(V ) (i.e. r(_L)?t 1) then r r _j is a singular subspace of 
( P ( n - L i ) - The set P(Tr_J:= {Hejtr(P(V)): Tr_lczH} = {HejT(P(V)): 

+ n+l} (H ' = 0)} is an (n^- l j -d imens iona l projective space 
whose points are hyperplanes of P(V) and putting 

H l 2 G : o Z r - U , H ' G ' = 0 for H,GeP(Tr_J 

and defining a relation ± 2 <= (P(7))x J f (P(V)) as a union 

± 2 : = ( l 1 \ P ( T r _ 1 ) x P ( r r _ 1 ) ) u l 2 

we easily find that Hl2Go((H$P(Tr-1) v GtP(Tr-j) A H±tG v H e P ^ ) A 
G e P ^ . J A H 1 2 G ) for H , G e ( P ( 7 ) ) , (P*(7;_1), J . ^ is an orthogonal 
projective space, (P (F ) ,1 2 ) is a qps, r(12) = 2 and if i ; _ 2 P ( F ) then Tr_z is 
a singular subspace of (P(V),Ł^. Continuing this procedure for ; = l , . . . , r we 
obtain orthogonal projective spaces (PiV),!^, {P*(Tr_J,±J ( P * ^ ) , ! , ) 
and quasiorthogonal projective spaces (P(F), i- i) , ( P ( F ) , ± 2 ) , . . . , ( P ( F ) , l r ) 
such t h a t ± i : = ±,,1/.= 1, r ( ± J = 1, r{LJ = 2 , . . . , r (X,) = r ,P(T r ) = P(F) , 
P(T r _ 1 ) = {HeJf(P(F)) : Tr_, e if},. . . ,P(71) = {ff e ^ ( P ( F ) ) : 7i c H}, and 
for every je{2,.. . ,r} we have: 

tf I j G o Z ^ f f ' G ' = 0 for H, G e P ( r r + w ) , 

lJ = (±J_l\P(Tr+l-j)xP(Tr+l-j))u±J, 

VHeP(Tr.j) V G e P ( T r + 1 _ , ) ( H J L ^ G ) . 

This shows the principle concept of quasiorthogonal projective spaces 
and the method of construction of such structures. To construct a qps (P(V), J.) 
it is sufficient to choose a sequence of subspaces T0,...,Tr such 
that P(V) = T0 $ 7; $ ... $ TT_t £Tr = 0, and next to define relations 
l l C ^ ( P ( F ) ) x j f ( P ( F ) ) , l 2 c P ( r r _ 1 ) x P ( T r _ 1 ) , . . . , l r c P ( r 1 ) x P ( T 1 ) such 
that ( P ^ ) , ! ! ) , ( P * ( T r _ J , l 2 ) (P*(f 1),J. r) are orthogonal projective 
spaces. Then (P(F),JL r) is a qps and r(X,) = r. 

2. Polarity and duality. Consider an arbitrary n-dimensional qps (P(V), _L). 
Each point peP(V) such that any hyperplane passing through p is orthogonal 
to a given hyperplane He jV(P(V)) is called a polar of H. The set of all polars 
of a given hyperplane H is denoted here by the symbol p(H), Le. 

p(H):= {peP(V): VGej?(P(V)) (peG=>H±G)} for H e j f (P(*0). 

Denoting by p* a pencil of hyperplanes passing through p i.e. 

p*:= { H 6 j f ( P ( F ) ) : petf} for p e P ( F ) , 
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we may write 

(1) p{H) = {peP(V): V G e p * (H_LG)} for HeJtr(P(V)). 

Analogically we define a polar hyperplane of a given point p e P ( V ) and a set 
P{p) of all polar hyperplanes of p by the formula 

(2) P(p):= {HeJ?(P(V)): V G e p * ( f l ± G ) } for p e P ( F ) . 

In other words we have the equivalence HeP(p)opep(H). Now we have the 
following: 

L E M M A 1. Let < ± > < 4 o «-+i> = ((A1 A B l ) ( A ^ + i , . . . , A B + 1 )), 
Hejr(P(V)),lśjśr,Vie{nj+l n + l } ( H ' = 0) and S i e f n ^ + l 
rij) (Hl * 0). Then 

(i) i / V i G ^ . i + l nj}(A,*0) then pep(H) iff 

V i e f l , . . . , ^ } (p, = 0) 
and 

3 p e F \ { 0 } V i e f n ^ + l n,} (p, = pA,H'), 

(ii) i f n ^ + l śkj<nj, V i e f n ^ + l k,} (A,?t0) 
ana" 

Vie{fc 7 +l , . . . ,n ,} (A, = 0) 
then 
(a) i / 3 i e { n j _ 1 + l,. . . ,fc,}(JJ'#0) tfeen pep(ff) i# 

V f e f l , . . . , ^ . ! } (p, = 0), V i e { k , + l,...,n,} (p, = 0) 
and 

3peF\{0} V i e f n ^ + l k,} (p, = pA,H<), 

(b) i f V i e f r ^ + l *.} (H ' = 0) tfum p(H) = P(*0, 
(iii) if j = rand V i e + 1 n+l}(A, = 0) tńen p(tf) = P ( F ) . 
Proof , (i) "=>". According to our assumptions there exists an 

se{nJ^l + l,...,n,} such that Let pep(H) and p = (px,...,pB+ 

Then from Theorem 1 and (1) it follows that pt 0, since if this were not true 
we could put G* = 1 and G ' = 0 for i e { l n+l}\{s} and obtain Gep* and 
H JLG, contradicting the assumptions. Now let us suppose that j > 2 and 
p t ^ 0 for some t e { l , . „ , n ^ } . Putting G* = pt,Gt = —p, and Gl = 0 for 
i e{ l , . . . , n+ l} \{ t , s} we again find that Gep* and H JLG. This contradiction 
proves that: 

1. V i e f l , . . . , ^ } (p, = 0}. 

Now, if n}—n,_x = l , then 5 = n^_ l + l , p l l / _ l + 1 ^ 0 and putting p = 
&y-i+i#"'~,+1r w e h a v e p ^ _ 1 + 1 = Let us assume 
additionally that nJ—nJ_1>l. Then for any t e n ^ + l n^}, taking 
into account a hyperplane G such that G* = p„ G* = —p„ G' = 0 for 
i e{ l , . . . , n+ l} \{ t , s} we see that Gep* and H±G iff pt = pXtH* and 
pt = pXfH* for peF\{0}. In this way we obtain 
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2. 3peF\{0} V i e f n ^ + l n,} (pt = p ^ i f ) . 

"<=". We assume that p = (0 O, J l a , _ 4 + 1 l T - ' - » + 1 Xn.HH>, p„J+1,..., 
n+l 

Vn+d~ Gep*. Hence S^ t f '<?+ £ p,G' = 0. Now, if G1 * O for some 

i e{n j+ l , . . . , n+ l} then from Theorem 1 we have H ± G because 
V i e { n 7 + l , . . . , n + l } (H ' = 0). In the opposite case, if V i e { n j + l , . . . , n + l } 
(G' = 0) then iSXflG1 = 0 but this equation gives H I G as well Thus H 1 G 
for every Gep*, Le. pep(H). 

The proof of the case (ii) (a) is similar to the proof of (i) and in the cases (ii) 
(b) and (iii) it is sufficient to observe that H is a singular hyperplane, Le. 
VGejf(P(V)) (HJ.G). 

R E M A R K . For the simplicity of notation we shall denote the canonical 
form of a relation 1 by (*), Le. the symbol (*) always denotes here the equation 
<-L><0<> *••!> — ((̂ 1 Kd (^»r-l + l » " ' > ^ » + l ) ) -

Now, from Lemma 1 we can easily deduce the following: 
L E M M A 1 //(*), V i e { l , . „ , n + 1 } (A, *0), 1 <y < r,p = (0 , . . . , P l v _ 1 + 1 , . . . , 

pH+1)„ and 3 i e f n ^ + l , . . . , n;} (p, * 0) then HeP(p) i/and on/y i / 3 peF\{0} 
V i e f n ^ i i j j C H ' - W ^ and V i e f y + l , . . . , n+1} ( H ' = 0). 

We may say that points p, qeP(V) are conjugate with respect to a relation 
J . in a qps (P(P), 1) and we may write pl*q if and only if p lies on some polar 
hyperplane of q, Le. 

(3) p±*q :o 3HeP(p) (qeH) for p,qeP(V). 

From (1), (3) and Lemma 2 we directly obtain the following 

L E M M A 3. If (*) and V i e { l n+ l} & # 0 ) tnen V p . g e P ( F ) 
(p_L*go(3 i e { l n j (p, * 0 v qt * 0) A TtW^PtQt - 0 v 3 ;e{2 r} 
(Vf6{ l , . . . , n ,_ 1 } 0>i = 9ł = 0) A 3 i e { n , _ 1 + l,...,n,} (p, ,t 0 v g, * 0) A 

These lemmas describe the polarity and the relation _L* in any non-
degenerated qps. We may now consider the case of a degenerated qps. First we 
have the following: 

L E M M A 4. If(*),je{l r}, nt_x < s < nJt X„ = 0 and V i e { l n + l } \ 
{s} (Xt * 0) then 

(i) = 1 then p±*qop,qt = 0 for p,qeP{V), 
(ii) if j > 1 tfien p ± * g o ( 3 i e { l n ^ } (p, * 0 v qt * 0) v V i e { l 

"j-i) (Pi = <li = 0) A p,g, = 0)). 
Proof, (i). We consider three cases: 
I. If qt = 0, then putting H' = 1 and H ' = 0 for i e { l , . . . , n+l}\{s} from 

Theorem 1 we obtain H I G for every Gejf (P(V)), hence for any peP(V) we 
have HeP(p) and consequently p.L*£. 
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n . If q„ O and p f = O, then putting Hl = (XD~1pi for ie{I,..., n j \{s} , 
H' = -(g ł)" 1(ai)" 1 Pigi+ - + ( V I ) " 1 P , - 1 9 , - I + ( ^ . + I ) " 1 P . H 4 . + I + - + 
(A B l ) - 1 Pi , t 9 B l ) and H ' = 0 for i e {n x +1 n+1} we obtain qeH and H I G for 
every Gep* and consequently again p±.*q. 

HI. Let p, # 0 and # 0. There is i e { n r _ i +1,. . . . n+1} such that I # s 
and there is an Heq* such that Hl * 0. Putting G' = 1, G* = -p,(p,)~ ł and 
G' = 0 for ie{l , . . . ,n+1}\{J,s} we obtain p e G and H JLG because XtHx ± 0. 
Hence pJL*q and also g/.*p because we can exchange p for q. 

The proof of (ii) is analogous. 
The next step is the following: 
L E M M A 5. If (*) and 3 fc , / e{ l , . . . , n+ l} (k * I A Xk = Xt = 0), then 

V p , g e P ( F ) (p l*«) . 
P roof . Let us assume Xk — Xx = 0 and / ^ fc for some i , fce{l,...,n+l}. It 

is evident that for every point qeP(V) there exists a hyperplane Heq* such 
that H ' = 0 for i e { l , . . . , n + l } \ { k , !}• From Theorem 1 we obtain 
VGeje(P(V)) (H1G) and consequently pl*q for every peP(7) . 

The Lemmas 3, 4 and S imply the following: 
L E M M A 6. If(P(y),±) is a qps then V p , qeP(V) (p±*qoq±*p). 
It was stated in Section 1 that P(V) and (P(V)) are treated here as 

mutually dual projective spaces. Now for any co-ordinate (n+2)-frame 
<a0,..., a" + 1> of P(V) we define a dual co-ordinate (n+2)-frame 

<a0,...,fl"+1>*:=a0.-.^+i> 
of (P(*0) = P*(7) putting = (1 1)~ and 

f l when i = n+2—y', 
Alj= < for i , y e { l , . . . , n + l } , 

1̂ 0 w h e n i ^ n + 2 — y', 

where (A) , . . . , are homogeneous coordinates of the hyperplane Aj with 
respect to < a ° , . . . , a " + 1 > for y' = 0 ,1, . . . , n+1. It is well known that if a point 
peP(V) has homogeneous coordinates (pt P„+i)~ with respect to 
< a ° , . . . , a " + 1 > then with respect to < a ° , . . . , a " + 1 > * it has coordinates 
(p 1,—>PB + 1)~ where p '*=p B +2-ł f°r i = 1 n+1. This property, Theorem 
1 and Lemmas 3, 4 and 5 allow the following lemma to be formulated: 

L E M M A 7. If(P(V), 1) is a qps then (P*(V), 1*) is a qps. Furthermore, if 
(*) then 

(i) if A , * 0 for i e { l n + 1} then <±*> < a o fl»+i>. = ({{Xn+iyl 

(Vi+ir1.-.^,)-1) Wi)"1). 
(ii) tnere is an s e f l , . . . , ^ } sucn tnat A, = 0 and A £ # 0 /or 

i e { l , . . . , n + l}\{s} then <±*> < Bo „-i>* = ( (M I » - > /VH ) ) wfc«re A I b + 2 - , = 1 
and / i , = 0 for i e { l , . . . , n + l } \ { n + 2 - s } , 

(iii) if there are je{l,...,r—l} and se{nj+l,...,nJ+l} such that X„ = 0and 
X^Ofor ie{l , . . . ,n+l}\{s} then <±*> < f lo ^+i>. = ((/i 1 , . . . , / i ) 1 + 2_ l l i ,(0,. . . ,0)) 
where p,H+2-s=z 1 and p.t = 0 for ie{l,...,n+2—nj}\{n + 2—s), 

90 



(iv) if there are s,Ze{l,...,n+1} such that X, = Xt = 0 and Z#s then 
<-L*><ao = ((0 0)). 

According to our conventions we have (P(V))** = (P*(V))* = P(V) and 
« a 0 , „ . , a " + 1 > * ) * = <a° , . . . , f l" + 1 > and there is a relation 

1**: = (1*)* c (P (F)) x J f (P (F)). 

A direct consequence of Theorem 1 and Lemma 7 is the following: 
T H E O R E M 2. If (P(V), 1) is a quasiorthogonal projective space then 

(P*(V), 1*) and (P(V), J.**) are also quvsiorthogonal projective spaces. The 
equation 1 — 1** is satisfied if and only if(P (V), _L) is either nondegenerated or 
totally degenerated or is a l-dimensional quasiorthogonal projective space. If 
(P(V), _L) is a degenerated quasiorthogonal projective space and dimP(F) > 1 
then (P(F), J.**) is a totally degenerated quasiorthogonal projective space. 

3. The connection between real quasiorthogonal projective spaces and projec
tive spaces with general projective metrics. Let us consider an n-dimensional 
projective space P ( R " + 1 ) with an arbitrary co-ordinate (n+2)-frame 
<fl 0,..., a" + 1> and let us fix arbitrary integer numbers r, n 0 ,n l t . . . , nr, llt..., lr 

such that K r < n+1 and 0 = n 0 < ZA < n A < l2 < ... < n , . ! < /, < n, = n+1. 
Let us put 

f r 

1 when ie \J {n^.j + l , . . . , lj}, 

- 1 when i e ( J {^+1,...,^}, 
^ i=i 

T0 := P ( R " + 1 ) and 7} := {peP(R" + 1 ) : V i e { l nj (p, = 0} for ; = 1 r. 
ni 

Now denning the quadric surface Q := { p e P ( R " + 1 ) : £ ej(?i) 2 = 0} the 
i=i 

set P ' := P ( R " + 1 ) \ Q we may define the following subsets of the Cartesian 
product P ' x P ' : 

D1:={(p,q)eFxF: V A , / i e R ( V i e { l n1}(Xpi+/iqi = 0)=>X = u = 0)}, 

Dr:={(p,q)eFxF: 1 XeR\{0} V i e { l n r _ J (p, = ^ , )} , 

^ : = { ( P , « ) e P ' x P ' : 3AeR\{0} ( V i e { l , . . . , n ^ } ( p r = ^ , ) 

A 3 i ^ { " j _ i +1 nj)ipt*Xq$} for ye{2 r - 1 } . 
It is easy to verify that Dt\j ...\jDt = F xP' and Dir\DJ = 0 for i ? * ; , 
i , ; e { l , . . . , r } . Moreover, if pq denotes the projective line passing through 
distinct points p,q, then D 4 = { (p ,g )eP 'xP ' : p=*gApgn7i = 0}, 
A - = { ( P » « ) e P ' x P ' : p = qvp*q ApqnTr_l = 0} and Dj = {(p,q)eP'x 
F: p ± q ApqnT^^ 0 ApqnT} = 0} for ; e{2 r - 1 } . 
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Now we may define mappings Ó1:DX-*C, 52:D2-+C 5r:Dr->C as 
follows: 

^—p—w^mw^) { o i ^ e D -
( typ ,« ) ) 2 = ^ e , ( p , - g , ) 2 for (p,q)eDj and ye{2, . . . , r} , 

where p is some fixed nonzero real or pure imaginary number, the homo
geneous coordinates of points p, q are normalized by the condition: 

(p,fl)eD,=>(!S(p,) 2 = ±p2 A V i e { l nj-J (p, = qj) 

for y*e{2,...,r}, and for every ye{ l , . . . , r} and (p,q)eDj we adopt 
lmSjip,fl)>0. The sequence (Sit...,5r) is said to be (see [4]).a general 
projective metric on P ( R " + 1 ) and the structure (P (R" + 1 ) , (5t 5r)) is called 
either a semi-elliptic projective space S"ł " p ~ 1 (when lt = nt for every 
i e{ l , . . . , r } ) or a semi-hyperbolic projective space , l , ł S" ł " r _ 1 (when /, ̂  n, 
for some ie{ l , . . . , r} ) . 

It is evident that each authomorphism of the structure (P (R" + 1 ) , (<5lt..., &r)) 
(an isometry) is a projective transformation <jf>:P(R"+1) - * P ( R " + 1 ) such that 
9>(r i)=T 1 <p(rr_1) = r r _ 1 , c>(Q) = Q and 5t(p,q)=:5t(q>(p),ę(q)) for 
every i e { l r} and (p,q)eDi. Moreover, we can define similarities of 
( P ( R " + 1 X (5t 5T)) as projective transforations \fi : P ( R " + 1 ) - » P ( R " + 1 ) such 
that * (Tx) = T, ^ (T r_ t ) - TT. i , * (Q) = g and V p , q, s, re P ' Vy e { 1 , r } 
((p,q)eDjA(s,t)eDjA dj(p, q) = tys, t) =>0$(p), tfr(q)) = tytfr(s), tfr(t)). 

Now we can easily prove the following: 
T H E O R E M 3. / / ( P ( R " + 1 ) , (8lt..., ST)) is a real projective space with general 

projective metric (5 t , . . . , 5r) and <p : P ( R B + 1 ) ->P(R" + 1 ) is an arbitrary projective 
transformation, then at is a similarity o / (P(R" + 1 ) , (5lt..., 5r)) if and only tf q> is an 
automorphism of a quasiorthogonal space (P (R" + 1 ) , ±) , where <-L><«o „ n * ^ = 

( ( e i » - " »
 fi«i)>"'> ( C B r - l + l » " * » * B + l ) ) ' 

This last theorem shows that quasiorthogonal projective space is a common 
generalization of orthogonal projective spaces (see [3], [5]) and real projective 
spaces with general projective metrics (see [4]). 

This work is second part of the author's doctoral thesis entitled "Weak 
structures of orthogonality on projective spaces of finite dimension" (in Polish), 
completed under the supervision of doc. dr Edward Siwek at the Silesian 
University in Katowice. The authors wishes to thank dr hab. Marek Kordos 
for valuable suggestions. 
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