
B R U N O N SZOCIŃSKI* 

ON SPACES WITH VECTOR STRUCTURE 

Abstract In [1], using the notion of linear space of translations of the set over the field, 
n-dimensional Klein spaces over arbitrary field were defined. In [2] the definition of vector 
structure over the field was given and used to introduce the concept of n-dimensional generalized 
elementary Klein space. 

The aim of present paper is to define (Section 1) and state some of the properties of, so called, 
spaces with vector structure, without the use of Klein's ideas. In Section 2 it is shown that afiine 
and Euclidean space are the examples of such spaces. Other examples are the elliptic and projective 
space. Using the notion of vector structure, in Section 3 the definition of tangent bundle is given 
and some properties of it are observed, with the aim to introduce (Section 4) the concept of 
m-dimensional hyperplane in spaces with vector structure. 

1. Vector structure of a set over the field. The group of transformations 
F (M) of a nonempty set M will be called a group of translations of this set iff it 
acts straightly transivitely, i.e. for any p,qeM there exists one and only one 
xefiM) such that i(p) = q. 

Let K be an arbitrary field, with zero and unity denoted by 0 and 1, 
respectively. Note that Abelian group of translations 9~{M) with outer 
operation 

(1.1) • : K x ^ ( M ) - » ^ ( M ) , 

satisfying, for all a,beK and T 1 , T 2 , T e ^ " ( A f ) , conditions: 

fl'(Ti0T2) = ( a -T 1 ) ' ' ( a -T 2 ) , 

^ (a+b)-T = (a-T)°(b-z), 

(ab)'x = fl'(fc-T), 

1 - T = T , 

is a linear space over K. 
According to the definition given in [1], the Abelian group of translations 

$~(M) with outer operation (1.1) satisfying conditions (1.2) will be called 
a linear space of translations of the set M over the field K and denoted by 
&~(M, K). 
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In [2] the notion of the group of translations and the linear space of 
translations of the set M will be generalized as follows. 

The group of transformations &"D(M) of the set M will be called a group of 
quasi-translations of this set with quasi-domajn D ( 0 # f l c M ) , iff it acts 
straightly transitively on D and for all xe&~D(M) the condition = i d M X D 

holds. Abelian group of quasi-translations FD(M) with outer operation: 

satisfying for all a, beK, xlt x2, xe&~D(M) conditions (1.2) we will call a linear 
space of quasi-translation of the set M over the field K, and denote by 
^i>(M,K). 

In particular, when D = M, the linear space of quasi-translations is a linear 
space of translations of M over K. 

D E F I N I T I O N 1.1. Let {fD(M, K)}BeA be a system of linear spaces of 
quasi-translations of M over K, where A is a family of quasi-domains of these 
spaces, and let {sfp(M)}peU be a system of groups of transformations of M, 
satisfying, for all p e M and aes/p(M) the equality a(p) = p. The pair 

(1.3) ( { ^ , ( M , K)}DeA, {stp(M)}peM) 

is called a vector structure of the set M over the field K iff the following axioms 
remain true: 

V I . For all D,D'eA, D* D' and each xefD(M,K), T ' e ^ , , ( M j K ) , aeK 
the following conditions hold: xiD^eA and 

X o <TD.{M, K) ° T - 1 = ^(D')(Af, K), 

X°(a'Xr)°X~1 = o ^ T n ' n - 1 ) . 

V2. For each p,qeM there exists a quasi-domain DeA such that p, geD. 
V3. For all p e M , De/1 and xefD(M, K) 

T O ^ A / J ^ - ^ J / ^ M ) . 

V4. There exists a point p e M such that for every two quasi-domains D', D" 
of the family 

Ap:= {DeA: peD) 

there exists one and only one transformation aes/p(M) satisfying conditions: 
(a) a(D') = D" and a°rn.{M,K)°a_1 = PD..(M,K), 
(b) for each a e K and T'e&~D.(M, K) the relation 

a ° ( a - T ' ) ° a - 1 = a - ( a ° T ' o a - 1 ) 

holds true, 
(c) for each T ' e ^ " D . ( M , K ) , T " G ^ , „ ( M , K ) such that T'(P) = r"(p), qua

si-translations a ° T ' o a - 1 and x" are linearly dependent 
The question, whether these axioms are independent was not considered. 
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Now, let 
(1.4) ^ ( M , K ) : = U ? D ( M , K ) 

DsA 

and consider, for x e ^ ( M , K ) , the function 

(1.5) Z * : ^ i ( M , K ) - ^ ( M , K ) , L*(f) = T o f o T - i . 

As an immediate consequence of axioms V I — V 4 we get the following two 
corollaries: 

C O R O L L A R Y 1.1. For each T e ^ ( M , K ) mapping (1.5) is a bijection. 
Moreover, for any DeA, its restriction is a linear isomorphism of linear 
space fD(M,K) onto ^ ( D ) ( M , K ) . 

C O R O L L A R Y 1.2. Conditions stated in axiom V 4 are satisfied in any point 
peM. 

Using these corollaries and axioms V I — V 4 , one can prove (cf. [2]) that the 
following corollary is true. 

C O R O L L A R Y 1.3. All linear spaces of the system {STD(M, K)}DeA are 
isomorphic. 

In virtue of Corollary 1.3 we can observe that all linear spaces of the system 
{&~D(M,K)}DeA are of the same dimension. 

D E F I N I T I O N 1.2. Common dimension of all linear spaces ^ ( M , K), 
DeA, will be called a dimension of vector structure (1.3). 

Now, let 9~{M, K) be a linear space of translations of the set M over K and 
let for each peM s/p(M) be a trivial group {idu}. Observe that the pair 

(1.6) (0T(M,K)} , {S/PMUM), ^pm-= {i<U for p e M , 
satisfies axioms - V I — V 4 and is, therefore, a vector structure of the set M over 
the field K . In [2] the pair (1.6) was called an elementary vector structure. 

D E F I N I T I O N 1.3. The set M with determined n-dimensional vector 
structure (1.3) ever K will be called an n-dimensional space with vector 
structure over K and denoted by M"(K) or, shortly, M. 

2. Examples of spaces with vector structure. It is well known that the affine 
space over the field K with free vector space V we call the set M with such 
a mapping to: M x M - * V (called an atlas of this space) that the following 
axioms are satisfied: 

A l . For each peM and veV there exists exactly one point qeM such that 
oi{p,q) = v. 

A2. For each p,q,reM the equality 

(o(p,q)+(o(q,r) = a>(p,r) 
holds true. 

In virtue of axiom A l , for arbitrarily fixed vector ve V we can define the 
mapping iv\M-*M as follows: 

*„(?) = A (o(p,q) = v. 
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In particular, for zero-vector 0 we have t e = idM. Moreover, by axiom A2, 
the equality xv+w = xw°xv holds. Since the additive group of linear space is 
Abelian, xv°xw = xw°xB. Therefore the mapping x„ is a bijection and the set of 
all such mappings forms an Abelian group of transformations of the set M. 
This group will be denoted by 9"(M). 

It is easily seen that group &~(M) acts straightly transitively on the set M . 
Moreover, the group with multiplication by elements of K defined by the 
formula: a-xv'.= xa.v forms a linear space ^ " ( M , K ) over K . 

The transformation q>:V-*#~(M,K), <p(v) = xv is a linear isomorphism. 
Hence, linear space V is isomorphic with defined above linear space of 
translations ^ " ( M , K ) of M over K . Let us note that the transformation 
<5:M x M - * ^ " ( M , K ) defined by the formula <5(p,g) = T, where x is the 
unique translation satisfying condition x(p) = q, satisfies axioms A l and A2. 
Therefore the set M with such defined transformation is an afline space (over K) 
with the free vector space f(M, K), being equivalent with aSine space with free 
vector space V and linear atlas to. 

Thus we can appropriate the following definition. 
D E F I N I T I O N 2.1. Space with vector structure (1.6) will be called affine 

space over the field K. 
As the different example of the space with vector structure, consider an 

n-dimensional projective space over Ł In [2] the construction of vector 
structure of this space is discussed. By the obvious reasons, Euclidean, 
pseudo-Euclidean and elliptic spaces are also spaces with vector structures. 

3. Tangent bundle of the space with vector structure. Consider an 
n-dimensional space M"(K) (over K) with vector structure and the set 

fM:={(p,x): peM,xerD(M,X),DeAp}. 

We will define a relation in this set, as follows: 
D E F I N I T I O N 3.1. We say that (p, x) and (q, T') are in the relation ~ iff 

p = q and there exists an ctes/p(M) such that a ° T ° a _ 1 = T'. 
It is easily seen that ~ is an equivalence relation. 
D E F I N I T I O N 3.2. Quotient set TM := $~M/„ will be called a tangent 

bundle of the space with vector structure M"(K). Classes of abstraction [(p, T)] 
will be called tangent vectors to the space M"(K) in the point p. The set of all 
tangent vectors to this space in an arbitrary fixed point p will be denoted by 
TpM and called tangent space to the space M"(K) in the point p. 

It follows from Corollary 1.2 and two above definitions that for each 
tangent vector [(P,T)] and each D'eAp there exists one and only one 
quasi-translation x'e^.(M,K) such that (p, T') G [(p, T)]. Moreover, if 

= [(P. *)]» w, = L(P, *)], where T, f e ^ ( M , K), 
and 

(p.T^eD,, (p,i*)ew p, where T ' , f ' e ^ , ( M , K ) , 
then 

(p,x'°xr)e[lip,x°x)'] and {p,a-xt)e\_{p,a-x)'\ for each a e K . 

7 — Annals... 97 



Thus, in every space TpM we can define the union of two vectors 

(3-1) [(p, T)] + [(p, T')] : = C(P, T °f) ] , where T, f e ^ ( M , K) 

and the product of a vector by the element a of the field K 

(3.2) fl[(p,T)]:=[(p,fl-T)3. 

Note, that the following two corollaries are immediate consequences of the 
above. 

C O R O L L A R Y 3.1. In each point p of the space A f (K), the tangent space 
TpM with operations (3.1) and (3.2) forms an n-dimensional linear space over K. 

C O R O L L A R Y 3.2. Vectors tj, = [(p,T,)], wnere T , e ^ ( A f , K ) , D e ^ l , , 
i = 1,2,..., m are linearly dependent iff quasi-translations x,, i = 1,2,..., m are 
linearly dependent. 

In each point p the zero tangent vector Op is one-element class of 
abstraction [(p,idM)]. 

If M"(K) is an affine space, the equality T M = M x ^ " ( M , K) holds true. 
Hence, for affine spaces we usually consider the free vector space instead of 
tangent bundle. 

It is easy to note that for each r e ^ ( M , K ) the mapping (cf. [2]) 

(3.3) W.TM-+TM, L t([(p,f)]):= [ ( T ( p ) , T » f " T - ł ) ] 

is well defined and is a bijection. 
D E F I N I T I O N 3.3. Mapping (3.3) will be called a parallel transfer of 

tangent bundle TM. If L,(»p) = w t ( r t we say that tangent vector is 
a parallel transfer of tangent vector vp from the point p to x(p). 

By axiom V2, each vector vp can be parallelly transferred from arbitrary 
point p to arbitrary point q. 

It is easy to note that for each te^A(M, K), peM, vp, wpe TpM and a e K 
we have: 

Lx(v,+™py = Lz(vp)+Lx(wp), Lx{avp) = aLx{vp). 

Therefore the following corollary is true. 
C O R O L L A R Y 3.3. Each parallel transfer (3.3) is a bijection. Moreover, for 

each peM its restriction L^Trti is a linear isomorphism of tangent space TpM 
onto tangent space T^M. 

4. Straight fines in spaces with vector structure. Using tangent bundle TM 
we can define m-dimensional hyperplane in n-dimensional space with vector 
structure M"(K) (0 < m < n). First, we will formulate and observe some basic 
properties of straight lines. 

D E F I N I T I O N 4.1. Let vp be a non-zero tangent vector to M"(K). The set 

(4.1) HHV,):={(C-T)(P): ceK,(p,x)evp} 
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will be called a straight line or one-dimensional hyperplane of the space M"(K) 
determined by vector vp. Tangent vector vp will be called a directional vector of 
the straight line (4.1). 

It can be shown that if M"(K) is an affine (projective) space, then the straight 
line as defined above is also affine (projective) straight line. 

Since for each {p,x)evp — [(p,t 0)], we have 

(ex) (p) = (c^aoTo-a - 1 )) (p) = («a ( c -To ) "a - 1 ) (p) 

= (a ° c • x0) (p), where a 6 J*P(M), 

then every straight line determined by vector vp can be also defined by the 
formula 

(4.2) H 1([(p,t 0)]) = {(ao C-T 0)(p): a e ^ M ) , c e K } . 

This equality does not depend of the choice of representative of the vector 

Now, we will study some properties of straight lines. 
L E M M A 4.1. If there exists a common point of straight lines H 1 ^ and 

flVA different fr am p, then directional vectors vp and wp are linearly dependent. 
Proof . Let q be a common point of straight lines H\vp) and H 1 (w p ) 

different from p. Then, according to Definition 4.1, there exist non-zero c', 
c " e K and ( p . ^ e r , , (p,x")ewp such that 

q = (ć~S)(p) = (c"x")(p), 

where x'e%T,(M, K), x"e&~D:(M, K), D', D" eAp. Thus, by Corollary 1.2, there 
exists a transformation a.es/P(M) such that quasi-translations a ° (c'* T ' ) 0 a - 1 

and C " - T " are linearly dependent Since (p, a ° T ' ° a - 1 ) e » p , then, in virtue of 
Corollary 3.2, tangent vectors vp and wp are linearly dependent 

Now, we will formulate the necessary and sufficient condition for the 
equality 

(4.3) HL(VP) = V , ) , where w,e TPM. 

T H E O R E M 4.1. Straight lines H\vp) and H 1 (w p ) coincide iff vectors vp and 
wp are linearly dependent. 

Proof . If (4.3) holds, then the point q = x{p\ where (p, x)evp is a common 
point of these straight lines. Then, by Lemma 4.1, vectors vp and wp are linearly 
dependent 

Conversely, if vp = [(p, T)] and wp = [(p, f)], where T , f e ^ ( M , K) , D e^ p , 
are linearly dependent, then, by Corollary 3.2, quasi-translations x and f are 
linearly dependent as well. Hence, by Definition 4.1, we get (4.3). 

T H E O R E M 4.2. For any quasi-translation xeFJJSt, K), the image Tfff 1^,)) 
of the straight line Hv(vp) is a straight line determined by vector L,{vp), being the 
parallel transform (3.3) of vp from point p to point x(p), ie. the equality 
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(4.4) x(H 1(»,)) = H 1 (L t ( i ; ; ) 

holds true. 

Proof . If Dp = lip, f)], q = i(p), wi = Lz{vp), then, according to Definitions 
4.1 and 3.3 and axiom V I we get 

H 1 ( V V 4 ) = { ( C - T O ( 9 ) : ceK,(q,^ew9} 

= {(c-(T°f°T - 1 ) (T(p)) : c e K , (p,x)evp) 

= {T((C-T) (p)): c e K , (p,f)et>,} = T f i J 1 ^ ) ) , 

which proves equality (4.4). 
L E M M A 4.2. J/(p,T)et>,, then 

(4.5) ff^cT^*,)). 

Proof . Let (p,x)evp, where x e ^ ( M , K ) , D e A , and let q be an arbitrary 
point of the straight line H1^^. Then there exist such a e K , T ' e ^ , ( M , K ) , 
D'eylp that ( p . ^ e r , and 

(4.6) 5 = (a-T')(p). 

Consider two cases: 
a) qeD. Then there exists such f e ^ ( M , K ) that f(p) = q. Then, by (4.6), 

(a-xr) (p) = x{p). In virtue of Corollary 1.2, there exists a transformation 
u'.D'-*D, ctes/p(M) such that quasi-translations a ° ( a ' T O o a - 1 and f are 
linearly dependent. It is easily seen that a ° T ' ° a _ 1 = T . Thus, for some beK, 
i' — b'x. Therefore 

q = f (p) = ( i - T ) (p) = T(( (6-1)T) (p)), 

which means that g e i ( H 1 (»,)). 
b) q £ D . Then x(q) = q, and also qexiH1^)). Thus, we have proved the 

implication 

qeH\vp)*>qex{H\vp)), 

proving inclusion (4.5). 
L E M M A 4.3. If (p,x)evp, then 

(4.7) Hl(vp) = x(HHvp)). 

Proof . Let vp = [(p,T)], g = x(p), wą = ^(o,). Hence, obviously, - w , = 
[ ( g , T - 1 ) ] . By Lemma 4.2, 

HH-^czx-HHH-^))-

Simultaneously, in virtue of Theorems 4.1 and 4.2 we know that Hl(—w4) = 
ff>,) = x(Hl(Vp)). Hence x(HHvp)) c T " 1 ^ ^ 1 (»,))) = H 1 ^ , ) - Thus, by Lem
ma 4.2, we get equality (4.7). 
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Using above lemmas and theorems, we will prove the following: 
L E M M A 4.4. If pi^qeH1^^ and x is a quasi-translation satisfying 

condition x(p) = q, then 

(4.8) H1(i;J,) = H 1(L t(» J >)). 

P roof . Since q is a common point of straight lines Hx(vp) and Hl(£(p, T)]), 
different from p, then, by Lemma 4.1, vectors vp and [(J>,T)] are linearly 
dependent Thus, by Theorem 4.1, we get the equality fl1^ = Hl((£(p,x)'}). 
In virtue of Lemma 4.3, H a ( [ ( P , T ) ] ) = x(Hl([(p,x)]) and, therefore, 
H1(vp) = x(H1(vp)). Hence, by Theorem 4.2, we get equality (4.8). 

Now, we will show the necessary and sufficient condition for the equality 

(4.9) H1 (vp) = H1 (wq) with p * a 

to hold true. 
T H E O R E M 4.3. Two straight lines H1^) and fl1^) determined by tangent 

vectors in different points, coincide iff qeH*(vp) and vectors Lt(vp) and w ( are 
linearly dependent, where x is an arbitrary quasi-translation satisfying condition 
x(p) = q. 

Proof . If the given straight lines coincide, then qeHl(vp). Thus, by Lemma 
4.4, we get Hl(vp) = H^L^c , ) ) = HA(w,). Hence, in virtue of Theorem 4.1, 
vectors Lz(vp) and wt are linearly dependent 

Conversely, if qeH1^.) and vectors L£vp) and w« are linearly dependent, 
then, by Theorem 4.1, H^iL^v^) = H 1(w,), whereas in virtue of Lemma 4.4 
equality (4.8) holds. That proves (4.9). 

According to axiom V2, through every two points p x and p2 runs a straight 
line, namely Hl([(p1,x)J), where x is a quasi-translation satisfying r ( p j = p2. It 
is easy to note that for each straight line running through points pt and p2 the 
equality = H 1([(p 1,x)]) holds true. It follows that we can consider 
straight lines in a space with vector structure, without considering their 
directional vectors. Moreover, we have the following: 

T H E O R E M 4.4. Through every two distinct points of space with vector 
structure one and only one straight line runs. 

It can be shown that similar properties are possessed by m-dimensional 
hyperplanes defined (cf. (4.2)) as follows: 

D E F I N I T I O N 4.2. Let vt, = [(p, T^], where T , e ^ ( A f , K ) , DeAp for 
i = l , 2 , . . . ,m , 0 < m < n , be a system of linearly independent tangent 
vectors in the point p to the space M"(K). The set 

IFivi*, v2, iv) 

{(*°(ci'xl°c2-x2°...°cm-xj)(p): ae j / , (Af) , C j e K f o r i ^ l m} 

will be called an m-dimensional hyperplane in the space M"(K), determined by 
vectors vir, i= l , 2 , . . . , m 
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