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UNIQUENESS OF THE SOLUTION OF THE CAUCHY
PROBLEM FOR THE PARTIAL DIFFERENTIAL
EQUATIONS AND THE CONVOLUTION EQUATIONS

Abstract. The method of construction of classes of uniqueness of solutions for differential and
convolutional equations (containing the classical partial difierential equations) is presented in this
paper. It tries to explain the anomaly of uniqueness of solutions for the Laplace and wave
equations and non-uniqueness for the equation of heat.

Introduction. This paper present the method of the construction of classes of
the uniqueness of the Cauchy problem for the linear partial differential
equations of order n with constant coefficients and equations with convolution.
The method takes the advantage of the operational calculus given by
J. Mikusiniski in [1]. Some preliminary notes connected to the operational
calculus will be given nearer.

The operational function in the Mikusinski’s sense is the function defined
on the interval J x R with values in the field % of Mikusinski’s operators [1]. In
this paper we will consider the special case of the operational functions of the

form
x(4) = q{y(4, 9},

where ge# and y(-, *) is the function defined on JxR* (J — an interval

included in R) with values in R or C. If the function y(-, ‘) belongs to the class

&™ on J x R* we say that x(-) belongs to €™ in the operational sense.
The derivative of such a function x() we define by the formula

Dx(l) = q{%yu, t)}.

The definition of the derivative fulfils the fundamental condition: if
x'(4) = 0 on the interval J then x(4) = const on the interval.

Similarly we may define the n-th derivative of the function x(°).

In the case when g = 1 the function x() is called the parametric function.

It is the one-to-one transformation of parametric functions of the class ¢®
(in the operational sense) to the set of real (complex) functions of two variables
of the class €™.
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It is given in [1] that there is the similarity between linear differential
equations considered in the set of operational functions and linear partial
differential equations with solutions in the class €™ by applying the differential
operator se%. For example the equation

Px(h 1) 9*x(, 1)

o2 T
with the initial conditions:
x(4, 0) =0,
0
il 0) =
atx(/l, ) =0

transforms to the operational form
x"(A)—as?x(4) = 0.
Similarly the equation of heat
0*x(4, t) 0x(4, t)
a2

with the initial condition
x(4, 0)=0

transforms to the operational equation
x"(A)—asx(2) = 0.

Problems of the uniqueness of the solution for the last equation (in the
halfplane) were considered by A. Tychonoff in [3]. The similar results were
given by J. Mikusinski in [1] taking the advantage of the estimation of
operational functions of the exponential type [2]. The solution of the linear
operational differential equation is formed by the sum of exponential functions
with polynomial coefficients. Applying the estimation of such functions he gave
the sufficient conditions which formed the class of uniqueness of the Cauchy
problem in the halfplane for the heat equation.

Preliminary theorems. The operational equation has the form

M) > AD() = f().

Methods used in solving the operational equation are similar to ones
applied in the ordinary differential equation with constant coefficients and the

solution has the similar from
k ri—1

Q) u =Y Y c M +h(d),

i=1j=0
where w; are certain roots of the characteristic equation

3) T A =0

=0
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in the field of operators #. r; means the mulitiplicity of the root w; and c;; are
operators belonging to #. h(-) is a certain solution of the equation (1). Each
root of the equation (3) has the form

) w= 3 bst™h,
1=0

where p, g€ Q (the set of rational numbers), g >0 and b, e C (the set of complex
numbers).

The root w generates the exponential function e** if and only if p<1 or in
the case p =1 and byeR.

LEMMA 1.1. If p< —1 then w given by form (4) is a classical continuous
Jfunction.

The proof is given in [1].

LEMMA 1.2. If fe% o, ) and A>0 then there exists a continuous function
H(, -) defined on R xR™ such that the exponential function e* has the form

e =1+{H(4, 1)}

The proof is given in [1].
LEMMA 1.3. Let T >0 be fixed and H(:, *) be the function given by Lemma 1.2.
Then for AeR*
max [H(4, t)] SAM(T)exp[TAM(T)],

where (0.7
M;(T) = max |f()l.
te[0,T]
Proof. The function H(-,) has more precise characterization ([1])
B 9] fk /{k
HG 0= 2 T

where f* denotes the convolution of k functions f.
By the method of the mathematical induction we get that
max | f*()| < T* ' [M(T)]"
te[0,T]

Hence by the form of the function H we get the estimation.

The method used by J. Mikusinski for the heat equation will be applied to
the differential-convolutional equation of the order n. In the construction of the
class of uniqueness of the solution for such equations we will apply the
generalization of the theorem given in [2].

The generalization reads as follows.

THEOREM 1.1. Let the operational function

6) (i) = B

be defined on R*, where for 1€{2, ..., n}
p.>p, pe(—1,1 and p,e(0 1),
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b,eC, b, =d,+ie, d, ¢cR and d,<0
and
() eyl <ld;|(1-2""") ctg[p, (n/2)].

Then the function x(A) = {F(J, t)}, i.e. x(") is the parametric function for 1>0.
Moreover, there exist positive constants C, and C, such that if i, t>0 and
A/t>C, and A[(t?*)>C, then there exist positive constants G, and G, such that
the inequality

t) IF(4, t)|<c;1<%>1%mexp[_gz<t_f;>l—:‘;]

holds.

The proof is given in [4].

LEMMA 1.4. Let the function x(°) fulfil the assumptions given in Theorem 1.1.
Let f(-) and g(°) belong to the set of the continuous functions defined on R*. Then
the function

©) v = 2 gy et = (NG 1),

i.e. Y() is the parametric function for A>0. Moreover, for each T >0 there exist
positive constants C;, G, and G, such that if A>C, and 0<t<T then
(10) IN(4, t)] < max |g(t)|G,exp[— G4 AP,

te[0, T]

Proof. Following Lemmas 1.1, 1.2, 1.3 and Theorem 1.1 we have thatY(4)
is the parametric function. Moreover, we get the estimation

T
max |N(4, 1)< max |g(t)[{1+ TAM(T)exp[TAM(T)1}{|F(A, t)| dt.
te[0, T] te[0, T] 0

For A>max {C,T, C,T?'} we have

¢ T 1 ANT=7
_“F(/l, t)|dl‘.<61/11‘111jt_l-ptexpli—G2<—> ]dt.
o 0

Thus, changing the variable . .

w=G AT-pt T p,
we get the estimation

T G p 1

le(?», t)|dt<—1exp|:—-G2T_1-m ,ll-px:l.

0 G2
Hence and following the fact that Aexp[TM/(T)A}>1 for A>max{l, C,T,
C,T?} we get
max |[N(4, 1) <

te[0, T]

P1 1
< max |g(t)|%[l +TM(T)]- A-exp[TM(T)A—G,T 1=p1 AT-p1 ].
te[0, T] 2
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Let us denote
G,
= —[1+TM.(T)]
Gy = GHI1+ TM,(T)]
Following the inequalities
1/1—py)>1 and G,T tr/07PIl5Q
we get that there exists a constant Gy(T) such that for A>Gy(T)

Aexp[TM,(T)A—(1/2) G, T o5 AT=% 1> 1.

Hence, putting
P1
G4 = (1/2)G2T1_P1,

we get condition (10) for A>max{1, G(T), C,T, C,T?'} = C,

Theorem 1.2 will show that if one of roots of the characteristic equations is
generated by p=1 and byeR then solution (2) does not generate the
parametric function.

THEOREM 1.2. Let p=1 and 0 # byeR and 0 ;é ced then ce** (w has
form (4)) is not the parametric function defined on the whole real axis.

Proof. Let w has form (4), ie.

e o)
w=Y bs'h.
1=0

Let us denote by w, the power series

Wo =bs'7l+b,st T4+ .
Following [1] we obtain that there exists a function 0 # ge g™ (in the
classical sense) such that ge*® is the parametric function on R.

Let us suppose that there exists 0 # ce® such that ce®s**9* js the
parametric function on R (it is a contradiction to the thesis of the theorem). We
do not loose the generality if we suppose that ce . We will make the
additional assumption that b,>0. The proof in the case b, <0 is similar. The
function ce®o***9)1 being the parametric one on R is, of course, the parametric
function for A>0. Let us put {M(4, t)} = ce®***94(M(-, -) means a continuous
complex function defined on RxR™). By a simple calculation we have

ge = e *CN[{M(4, t)}ge™ ],

where the function g is that one for which ge ™ *°* is the parametric function on R.
The values of the operational function e™*®°# are translation operators
([1]). Denoting by Q(f) the support number of the function f, i.e.

Q(f) = sup{r: f(x) = 0 if x<r},
Q(gc) = Q{e™*®D[{M(4, t)}ge™"*]} >b,\.

The number 4 may be chosen arbitrarily and then cg = 0 on R™. Hence ¢ = 0
by Titchmarsh Theorem and we get a contradiction to the hypothesis.

we get
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Following the theorem we get that the solution of (1) being the parametric
function may only be expected in the case p<]1.

The operational function (6) is the parametric one if and only if the each
part of the sum is the parametric function. Hence coefficients p; are less than
one.

Main theorem. Let us consider the differential-convolutional equation

' m; ny I+r m2 n2 l
1) ¥ Y apzul 9+ % 3 b,,j(t yFr ozl »dy = fG. D
I1=0r=0 1=0r=0
with the initial condition
ar
(12) ﬁu(}t, 0)=0 for r=01,..,n-1

defined on the region R xR*. Constants q,,, b, are complex numbers and
¢,eQ and ¢,> —1. The function f(, )eCrug+-

A solutlon of (11), (12) is a smooth function on R xR™*, fulﬁhng equation
(11) and initial conditions (12). J. Mikusinski presented in [1] the connection
between equation (11), (12) and the operational equation

(13 S ADu() = 10,

where m, = max{m,m,}, e

(14) A = i a,s" "+ i b, I'(c,+1)s*,

c= _ max {c,+1}, d,:—oc—c,—lrf_oor re{0,1,2,...,n,}, and
s 1) = {10, D)},

Let us denote by %, the set of smooth complex functions u(-, -) defined on
R xR* such that for each fixed T>0 there exist constants ¢>0 and M, >0
that the inequality

(16) lu(A, )] <M, gexp[|A|E-9-¢]

holds for (4, t)eRx [0, T].
Theorem 2.1 will present the sufficient condition for the class %, in which
equation (11) — (12) has at most one solution.
THEOREM 2.1. Let equation (13) be the equation connected to equation (11) —
— (12) and let its general solution has form (2), ie.
k ri—1

u() =Y, Y c;Ae* +h(d)
i=1j=0
and all w; have the expansions
(17) wy= Y bs?T for ie{l,... k}.
=0
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Let
Po= min {p,} and py,e(0, 1)

Let for je{l,...,k} by; =’E‘;:;-¥ik;0j’ where dy;,e,;€R and
(18) |leo;| <[1—1/2%)]|dy;lctglp;(m/2)]

and in the case when p; = p,

(19) leo;—€orl <[1—1/277]|do;—doy | ctelp;(n/2)].

Then equation (11) — (12) has at most one solution in the class %, .

Proof. The previous remarks lead to the conclusion that the only
interesting case of the proof is if all p,€(0, 1). In the opposite case the solution
of (13) (if it exists) is not a parametric function on RxR™*.

From the form of the general solution of (13) we may deduce that it is
sufficient to prove that all coefficients c;;€ % vanish (the only solution of the
homogeneous equation is the trivial one).

Let us assume, without loosing the generality, that w; are in the decreasing
order considering their coefficients p;, i.e. w; follows w; if p,>p,. Numbers p,
may be equal for different w; and in this case w;,_follows w; if |d; |>|d;,|. The
last case is when p, = p; and |d0,.j| = |dg;, | then w, follows w; if d,; >O0.

Let us assume that a function u, being a solution of (13) and fulfilling
previous assumptions belongs to %, . Following (2) and (17) it has the form

[

koril (S pspi—la)d

(20) {uh, s} = ¥ ¥ cij,pe(1=o 14571 145)
i=1j=0

for (A, t)eRxR*. Without loosing the generality we may assume that

€;j€ o, «y- It is enough to prove that for each (i, j) ¢;; = 0 and then it follows

that 4 vanishes on R.

We will show that for each T>0 and (i, j)

max |¢;(#)] = 0.
te[0, T]
Taking the advantage of ordering of the parts of the sum (20) at first we will
estimate ¢,, _,, then c¢,, _, and so on up to c,,, after that we will estimate
Cy,,—1 UP 10 ;4 and then we will follow the estimation up to c;,. The method
of estimation will be shown in the case of the function c;, _;.
At first we will calculate ¢,, _; using the equality (20). We have

© ri—2
- 18Py —lay i—ry
1) {ey, -1 @)} = {u@, 9}A7 e (2 = > {eg 7T
j=o0
k -1 . isPi—lay 5 118P1 — 14y
- Z Z {Cij(t)}'l‘i_""'le(xzzobl 1230,, i)k

i=2j=0
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Without loosing the generality we may assume that d,, >0. We will show that
for >0 each part of the sum on the right side of the last equality is the
parametric function. In the case dy, <0 we can prove it in the similar way for
A<0.

Let us consider the function

* ]
—( Z busl’l—l‘ll)l —( ﬁ busl’l—lql)l —( Z b“sP1—1411)}.
€ ‘i=o =e 1=0 e

l=p+1

where u fulfils the conditions p, —pu-q, > —1and p, —(u+1) g, < — 1. If follows
from Theorein 1.1 that the function

( fbuspl*lql)l N
e\i=o

is parametric for 1>0.

Taking into account the conditions given on x and p, and Lemma 1.1 we

o0}
notice that —< Y b,ls”"’ql> is the classical continuous function and then
I=p+1
¥ '
— brisP1—1a91 )4
e (l=u+1“ P et and  fe%, o

By virtue of Lemma 1.2 there exists a continuous function H(:, *) such that
e/* = 1+{H(4, t)}. Hence the first part of sum (21), ie.

@ , .,
{u()\" t)}?»‘”“e _(lgo 115P1 1)}.
is the parametric function. The second part of sum (21), ie.

ri—2

> {clj@)}lj_rl+l

j=0
is the parametric function by the definition of parametric functions. The third
part of sum (21) equals

L= 2]
kori—1 ; ( Y busPi~lei Y bysP1-191)4
E: {Cﬁ(ﬂ}ﬂ/_"+le <o =<0 )'
) i=2j=0 _
The function

(22)
is of the form

]

@0
( E byisPi 14 _ Z b“sPl“lql)),
e\r=o =o

1

- bisP1) 2
{2
and it may be distributed into two parts
o u -
(23) » e(lgobzsl’z)l _ e(!§ob1sl’1)). . e( l=§,ﬂb1s 1)),

where p fulfils conditions p,> —1 and p,,,; < —1. On account of Lemma 1.2
the second exponential function on the right side of equality (23) has the form
e/* = 1+ {H(4, 1)}. Taking into account the ordering of w; (d,, >0) and the fact
that p, €(0, 1) we see that the assumptions of Theorem 1.1 are fulfilled and the
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first exponential function on the right side of equality (23) is the parametric
function. Hence the third part of sum (21) is the parametric function.

Now we will estimate each part of sum (21). Let us fix T>0. By the
assumptions of Theorem 1.2 we notice that the function

5 sPy—lay sP1~lay
{Cu(t)} e( Z Pt lgobll l )l
fulfils the assumptions of Lemma 1.4. Hence there exist constans C¥, G, and
GY such that for A>CY and te[0, T]

1 i lql_ 115P1 79y . . 1
{c,;(t)} e ( Z e §b l )l‘< max |c;(t)| G exp[ - G{ A1-p1].
te[0, T1

There also exist constans C3, G3 and G$ such that for A>C9

IR I L) —r+1 0 0 21/(1=p1)
(u@d, han+te Ut < max |u(i, ]A~"*! GOexp[— G AP,

te[0, T]

Putting

C; = max{C¥, C3}, G, = max{G';, G3}, G, = max{G¥, G}
(%) (tH @ J)
we get for A>C,

max ¢y, _,(6)| < max |u(d, A" Gyexp[—G, AV TPY]

te[0, T] te{0, T}
r—2
+ Y, max |cy(B)|A !
_ote[O,T]
k ri—1
<Z ). max Icu(t)l/lJ ”“)
i=2j= 0te[O

. exp[— Gd'l/(l -m)]_

The function u(-, )e%,,. Thus there exist ¢>0 and M,;>0 such that for

sufficiently large 4 .

max [u(d, t)] <M, pexp[At-po™"].
te[0, T]
Following the fact that p,<p, and then 1/(1—p,)—e<1/(1—p,) we get

lim {G, max |u(4, t)|]A""*texp[ -G, AV ~PV]} = 0.
A=+ tef0, T]
For each je{0,1,...,r,—2} we have j—r,;+1<0 whence

ri—2
lim{ Y. max |cij(t)|/lf"l+1} = 0.

Arol ;_gtelo,T]

Finally, due to the fact that —G, A ~?Y<(, we obtain

k ri-l
lim{G3< Y ) max |cij(t)|/1j_”+1>exp[-—G411/“V’"]} _

A= ® i=2j=0te[0,T]
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and hence max |c1,1_ ()| = 0. Then c¢,,, _,(t) = 0 on [0, T] and, consequently,
tel0, T

¢y -1 =0o0n R+ since the constant T was chosen arbitrarily. This means that
in fact the function c,,,_ A" " 'e”* does not exist in sum (20).

Repeating the applied method to the each coefficient c;; we get finally that
each of them vanishes and this fact finishes the proof.

REMARKS. The result obtained in Theorem 2.1 leads to the explanation of
a certain anomaly lying in different behaviour of the uniqueness of the solution
of the wave equation and the heat equation. The wave equation has only the
trivial solution in the class of smooth functions defined on the halfplane but the
uniqueness for the heat equation depends on the degree of increasing of the
solution.

The following example will try to explain this anomaly.

EXAMPLE. Let us consider the family of equations

1
4 (i, 0 = e L

where ¢, = (n—1)/(n+1). This family of equations is conneted to the family of
operational equations

u(d, r)dr

25) D2u(A)—s*1u(l) = 0
Let us notice that for n = 1 equation (23) has the form
(26) D?u(A)—su(d) =

and operational equation (26) is connected to the heat equation with the null
initial condition. When »n tends to infinity equations (24) transforms to the form

27 D2u(A)—s%u(l) =0

Equation (27) is connected to the wave equation with null initial conditions.
The general solution of (24) is

(28) u(d) =8 pc,et A
and the sets %, consist of the smooth functions fulfilling the condition
(29) lu(4, o) <exp[|A"**7°],

where £>0 is arbitrarily small. It follows from (29) for n = 1 that %, = %, and
it is the same class of functions for which Tichonoff Theorem of uniqueness
holds. In the case n— oo, by (29), we get no restrictions, agreely to the
d’Alembert Theorem of the existence and uniqueness of the solution of the
wave equation.
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