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ON A PROBLEM OF Z. DARÓCZY 

Abstract Some conditions on F.X-+R {X = (0, oo) or X = N) which guarantee that all 
solutions of the equation 

F(x) = F(x+1)+F(x(x + 1)) 

F(l) 
have to be of the form F(x) = are given. 

x 

During the Twenty-fourth International Symposium on Functional Equa
tions in South Hadley Z. Daróczy posed the following problem (see [3]): Let 
X = N or X = (0, oo). Find some weak conditions on solutions F: of the 
equation 

(1) F(x) = F(x +1) + F(x(x +1)) 

under which the function F is of the form 

(2) F{x) = ~ - , xeX. 

In the case X = N he conjectured that the positivity of the solution is such 
a condition. This, however, has been recently disproved by M . Laczkovich and 
R. Redheffer (see [4, Corollary 2], also [6, Problem 19 and Remarks 27 and 
28]). Some answer to Daroczy's question was given by K. Baron [1] who 
proved that the solution F:X-*R has form (2) provided there exists a finite 
limit 
(3) lim ; c^ 0 OxF(x). 

Recently he has strengthened this result showing that if F:X->R is a solution 
of equation (1) and the limit (3) exists then it is necessarily finite (see [2, 
Theorem]). 

Below we provide a few conditions satisfying the request of Z. Daróczy. As 
K. Baron observed (cf. [2, Remark]), making use of a result of M . Kuczma, one 
can derive some of them from the theorem presented in [2]. This concerns 
Theorem 1 as well as the "continuous" parts of Theorems 2 and 3. Nevertheless, 
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we present them here for their independent and immediate proofs. Moreover, 
Theorems 2 and 3 deal also with discrete versions of the proposed conditions. 
Theorem 4 yields another answer to Daroczy's question. 

Let us start with a simple observation showing that equation (1) may be 
reduced to the Cauchy equation on the graph of a function. Namely we have 
the following fact. 

R E M A R K 1. A function F:(0, oo)-»R is a solution of equation (1) if and only 
if the function (0, OO)BX)->F(\/X) satisfies the equation 

(4) (p(x + f(x)) = ę(x) + cp(f(x)) 

where /:(0, oo)->R is given by 

/ { x ) = i+yrT4/x' 
Indeed, putting (p(x) = F(l/x), xe(0, co), we see that the condition 

F(x) = F(x +1) + F(x(x +1)), x e (0, oo), 

holds if and only if 

which can be rewritten as 

^ ) = ^ ) + ^ r ) y e ( 0 ' 0 0 ) 5 

or equivalently, putting x = y2 

y+h 

ę(x + f(x)) = ę{x) + (p(f(x)), xe(0, oo). 

This remark explains the situation a little. It is known that usually no 
continuity or regularity condition guarantees the uniqueness of solutions of the 
Cauchy equation on the graph of a given function. In the case of equation (1) 
(so consequently for equation (4) also) this was observed by Z. Moszner. He 
proved in [5] that if X = (0, oo) then the general solution as well as continuous 
solutions of (1) depend on an arbitrary function. So it seems that conditions 
giving the uniqueness in the problem of Z. Daróczy have to be of a "geometric" 
or "asymptotic" type like these from Baron's results or Theorems 1—4 below. 
On the other hand it should not be expected that the reduction of equation (1) 
to the Cauchy equation (4) will produce some new interesting results. As one 
can easily check applying a result of M . C. Zdun (cf. [7, Theorem 1]) to 
equation (4) we obtain another proof of Baron's theorem presented in [1], But 
it seems that none of known results concerning equations of type (4) is helpful 
in proving his theorem in the more general setting from [2]. 

Before stating results we formulate and prove a useful fact. 
L E M M A . Let x0 be a positive number and let F0:(x0, oo)nX->R be 

a function satisfying equation (1). Then there is exactly one solution F:X-*R of 
equation (1) such that F\{XOiao)nX = F0. 
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Proof. Choose an m e N 0 in such a manner that 

m<x 0 <m +1. 

First assume for a moment that m ^ l and for every n = l,...,m define the 
function F„:(x0 — n, oo)nX->R by 

(5) F„(x) = F n _ 1 (x+ l ) + F „ _ 1 ( x ( x + l)). 

Clearly Fm is a (unique) extension of the function F0 to a solution of equation 
(1) that is defined on the set (x0 — m, oo)nX. This procedure shows that we can 
assume in fact the relation 0 < x o ^ l . 

Now put 
^ x ^ i + l - l 

and observe that 
0 < x „ < x „ _ 1 ; neN, 

l i m n ^ 0 0 x „ = 0, 
and, for any n e N , 

if x ^ x „ then x+1, x(x + l )^x B _ 1 . 
Thus the formula 

F(x) = F„(x), x e ( x „ , co)r\X, neN, 

where the functions F„:(x„, oo)nX->R are given by (5), correctly defines the 
function F that is a (unique) extension of F 0 to a solution of equation (1) defined 
on the set X. 

T H E O R E M 1. Let F:XeR be a solution of equation (1). Assume that, for 
a non-negative number a, the function (a, ao)nX3 xF(x) is monotonie. Then 
the function F is of form (2). 

Proof. Putting 

<P(x) = xF(x), xeX, 

and making a simple computation we get 

(6) <P(x) = ^-<P(x + l) + -^-<P(x(x + l)), xeX. 
X "t* A X I i 

Assume for instance that the function <P| ( f l i 0 0 ) r i X is increasing. Let us put 
x 0 = max{l, a} and fix an xe(x 0 , oo)nX. Then 

x(x + l)>x +1 >x>a 
whence, by (6), 

* ( x ) ^ - ^ * ( x + l )+-^<P(x + l) = *(x+l)>#(x), 

and, consequently, $(x + l) = $(x). Thus the function $\ { X 0 t x ) n X is constant 
which, due to Lemma, gives our assertion. 

In the sequel, in the case X — N , convexity of the function F will mean that 

„ , „ F(n) + F(n + 2) 
F(n + 1)< neN. 
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In can be easily shown that every such a function is the restriction of a convex 
function defined on the half-line (0, oo). (Any continuous function F * : (0, oo)-*R 
coinciding with F on N , linear on each interval (n — 1, ri], n e N , and such that 

F*(0+)>2F(l)-F(2) 

satisfies the requirement.) Consequently, given a convex function F : X - > R we 
can assert that 

F(kx + (1 - l)y) ̂  XF(x) + (1 - X)F(y) 

for any x, yeX and Ae[0,l] such that /bc + (l — k)yeX and that the function 
F is monotonie in a vicinity of infinity. 

As an immediate consequence of Theorem 1 we have the following fact. 
C O R O L L A R Y Let F:X->R be a solution of equation (1). Assume that, for 

a non-negative number a, the function (a, co)n>X BXI—>XF(X) is convex (concave). 
Then the function F is of form (2). 

T H E O R E M 2. Let F.X-+R be a solution of equation (1). Assume that, for 
a non-negative number a, the function (a, oo)r>X 3xh->x2F(x) is convex (concave). 
Then the function F is of form (2). 

Proof. Fix an integer n>max{l, a}. Then 

n+l = (l-l-^n+~n(n+l). 

Thus 

(n + l)2F(n + l)^(l-^ n2F(n) + ̂  n2(n + l)2F(n(n +1)), 

and, making use of equality (1), 

(n + \)2F(n +1) < (n2 - l)F(n) + (n + l)2(F(n) - F(n +1)), 
i.e. 

2(n + l) 2F(n +1) ^ 2n(n + l)F(n). 
This means that 

(n + l)F(n+l)^nF(n), n e N , n>max{l, a}, 

whence, in virtue of Theorem 1, 

n2F(ri) = F(\)n, neN. 

Thus the function N 3 x i-* x2F(x) is linear. So, due to the convexity of the 
function (a, oo)nX3x\-^x2F(x), 

x2F(x) = F(l)x, xe(max{l, a}, oo)nX. 

Making use of Lemma we complete the proof. 
T H E O R E M 3. Let F:X-*R be a solution of equation (1). Assume that, for 

a non-negative number a, either 

F(x)>0, xe(a, co)nX, 
or 

F(x)<0, xe(a, oo)nX, 
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and the function (a, oo)nX BX\-> 1/F(X) is convex (concave). Then the function 
F is of form (2). 

Proof. Without loss of generality we may assume that 

(7) F(x)>0, xe(a,:oo)nX, 

which, by equality (1), gives the relation 

(8) F ( x ) - F ( x + 1)>0, xe{a, ao)nX. 

Fix an integer n>max{l, a}. Then we have 

whence 

H + l = l l - ^ J n + ^ n C H + l), 
n v n 

F{n +1) ^ V "7 F(") " 2 F ( n ( n +!))' 
and, using equality (1), 

1 / A l l 1 
U t -=7T + ^ -

Therefore 
F(n +1) V "7 n -*•(" +1) 

1 1 l _ F ( « ) - ( F ( n ) - F ( n + l ) ) 

i.e. 
F(n +1) F{n) n2 F(n) (F(n) - F(n +1)) ' 

F(n)-F(n+1) 1 F(n+1) 
F(n)F(n+l) ^ F(n) (F(n) - F(n +1))' 

Hence, according to inequalites (7) and (8), we get 

(F(n)-F(n + l ) ) 2 ^ F ( n + l ) 2 

and, using (7) and (8) again, we infer that 

F(n)-F(n+l)^-F(n + l). 
n 

Thus 

( n + l ) F ( n + l ) ^ n F ( « ) , neN, n>max{l, a}, 

whence, due to Theorem 1, 

In other words, by the convexity of the function (a, 0 0 ) 0 X 9 x 1 - * 1/F(x), 

-x, xe(max{l, a], cc)nX. 
F(x) F(l) 

Now to complete the proof it is enough to apply Lemma. 
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T H E O R E M 4. Let F:(0, oo)-»R be a solution of equation (1). Assume that, 
for a positive number a, the function (0, a ) sx i -» -F ( l / x ) is convex (concave). Then 
the function F is of form (2). 

Proof. Fix an integer n>max{l, I/a}. Then 

1 1 1 
< ~<-<a n(n+\) n + l n 

and 

1 - d - V + i . 1 

n + l \ n) n nn(n + l)' 

Hence, because of the convexity of the function (0, a)9xi->-F(l/x), 

F(n +1) ^ (1 - -) F(n) + - F(n (n +1)), 
\ n n 

1\ 1 
F(n +1) ^ (1 — F(n) + - (F(n) - F(n +1)). 

n] n 

i.e., taking into account equality (1), 

Consequently 

(n + l)F(n+l)^nF(n), n e N , n>max{l, l/a}, 

whence, in virtue of Theorem 1, 
F(n) = ^ , neN. 

n 

Since the function (0, a)3xi->F(l/x) is convex it follows that 

In other words 

F ( - ) = F(l)x, xe(0, min{l, a}). 
i xl 

F(l) 
F(x) = ^ - ( xe(max{l, l/a}, co). 

Recalling Lemma we end the proof. 
The results given above suggest to ask about the uniqueness of solutions of 

equation (1) first of all in the class of convex functions. However, as follows 
from the quoted result of Laczkovich and Redheffer and from the following 
simple remark, in the case X = N the answer is negative. 

R E M A R K 2. Let F : N - » R be a non-negative solution of equation (1). Then 
the function F is decreasing and convex. 

Indeed, in view of equality (1), we have 

F(n) - F(n +1) = F(n(n +1)) ^ 0, ne N , 

i.e. the function F is decreasing. Moreover, for every n e N , 

F(n) - 2F(n +1) + F(n + 2) = (F(n) - F(n +1)) - (F(n +1) - F(n + 2)) 

= F(n(n +1)) - F((n +1) (n + 2)) ^ 0 
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whence 
2F(n + l)<F(n)+F(n + 2) 

which means that the function F is convex. 
In the case X = (0, oo) the problem of the uniqueness of convex solutions 

seems to be still open. If the answer was negative it would be interesting to 
study the problem in smaller classes, for instance for completely monotonie 
functions or logarithmically convex functions. 

Regarding the case of the "continuous" variable we have only the following 
simple observation. 

R E M A R K 3. Let F: (0, oo)-*R be a convex solution of equation (1). Then F is 
the zero function or the function F is positive and strictly decreasing. 

To prove this assume at first that F(x0) = 0 for an x 0e(0, oo). If x 0e(0, 1) 
then, by (1), F(x x) = 0 for an xy e [x 0(x 0 +1), x 0 +1]. In general, if the function 
F vanishes at a point x„e(0, 1), neN, then F ( x „ + 1 ) = 0 for an x n + 1 e [ x „ ( x „ + l ) , 
x „ + l ] . Since x „ + 1 > x „ and 

x„+i-xn>x„(xn + l)-x„ = xl 

it follows that x „ e [ l , oo) for an neN. Thus we may assume without loss of 
generality that x 0 e [ l , oo). 

We shall define by induction a sequence (x„: n e N) of numbers greater than 
1 such that 

(9) F(xn) = 0, n e N , 

and 

(10) l i m „ ^ 0 0 x n = oo. 

If the number x „ e [ l , oo) is defined it follows from (9) that the function 
F vanishes at a point x „ + j e [x„ +1, x„(x„ +1)]. Since x„ + 1 ^ x„ +1 the sequence 
( x „ : n e N ) has evidently property (10). From (9) and (10), because of the 
convexity of F, we get 

F(x) = 0, xe[x 0 , oo), 

which, on account of Lemma, means that 

F(x) = 0, xe(0, oo). 

Now suppose that F takes a negative value at a point. Then, according to 
the first part of the proof, F(x) ^ 0 for every positive x, whence, by the 
continuity of F, 

(11) F(x)<0, xe(0, oo). 

Since F is convex there exists an ae(0, oo) such that the function F | ( a > 0 0 ) is 
monotonie. If it were increasing then, due to (11) and the convexity of F, the 
function F | ( 0 > x ) would be costant and negative which, by (1), is impossible. If 
the function F | ( 0 ^ were decreasing then, using (1) and (11), we would have 

F(x) = F(x +1) + F(x(x +1)) < F(x +1) < F(x) 

for every x e (a, oo) which is also impossible. 
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Therefore we can assume that 

(12) F(x)>0, xe(0, oo). 

If the function F were not decreasing then, because of its convexity, there would 
exist an ae(0, oo) such that the function F | ( f l is increasing. But then, by (1) 
and (12), we would have 

F{x) = F{x +1) + F(x(x +1)) > F(x +1) ^ F(x) 

for every xe(a, oo). It is also clear that the function F is in fact strictly 
decreasing. Otherwise, since F is decreasing and convex, there would exist an 
ae(0, oo) such that the function F | ( o > m ) is constant and (cf. (12)) positive. But 
such a function does not satisfy equation (1). 
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