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SOME REMARKS CONCERNING 
THE ONE-DIMENSIONAL BURGERS EQUATION

Abstract. The behaviour of solutions of the Burgers system (1)—(3) is studied. In earlier 
papers [4], [5] the problem of the global stability of the constant solution (17, v) = ^ v “  , oj 

when < v was solved. The behaviour of those solutions (17,v) which do not converge 
to the constant solution when t tends to infinity is studied here. In part 3 some of its 
properties are studied, while in parts 2 and 4 several a priori estimates needed in the proof 
of existence of solutions are presented.

1. Introduction. In 1939 J.M. Burgers gave the model of the motion of 
a viscous fluid in a channel. This model has the form:

(1) _d^7W = p  _  vU(t) _  [ V2(t>x) dXj U(m = u
dt o

(2) v,(t,x) = U(t) v(t,x) + vvxx(t,x) -  (v 2(t,x ))x,

t ^  0, x  £ (0,7i), where P,v are positive constants (pressure, viscosity), with 
the conditions

(3) v(0,x) = cp(x), v(t,0) = v(t,n) = 0.

Notation. The following symbols are used:

I  = (0,n), D  = [0,T] x/, z(t) = ||u(t, -)||

For simplicity partial derivatives are denoted by vt, vx etc.. The usual 
notation is used for the L p and Sobolev spaces H (‘ , H 2, Wm,p ([6], 
[7], [8], [10]). The C^*(D) space of Holder continuous functions (denoted 
[6, p. 61] as H^“) and the space CX(I )  are also considered. The symbols 
L p(0,T; B) (B is a Banach space) are defined in [7].
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The following estimates are used several times:
c 1

Cauchy inequality: xy < —  x 2 + —  y2, e > 0 arbitrary,
2 2a

a version of the Poincare inequality (Wirtinger inequality [4]):

V  \\f\\22 <ILfJ22 = : ll/ll 2i
/sHim L (I) L (I) " 0(/)

Sobolev Imbedding Theorem ([10]): i/G is a smooth bounded domain 
in R n, then fo r  0 < n = m -  -  j  <  1 holds, CJ+"(G ) e  Wm,p(G), and

3 V  ii/ iî ^  c i i / i i ^ .
c > 0  / e C '* ’

DEFINITION 1 ([4]); By a weak solution o/( 1)—(3) (<;peL2(l) )  we mean 
a pair (t/,«), such that U e C1([0,T]) (one side derivatives in t = 0, T), ve  
L 2(0,T; H* (/)) n C° (0,T; L 2(I)), and (17,u) satisfies (1) and the equalities

J v' w da; + v J vxwx dx + 2 $ v v x w d x - U $ v w d x  = 0 
i i i  i

for any w e ( I )  and almost all te [0 ,T] (time derivative v' is understood 
here as the distributional derivative with values in L 2(i) [4], [7]).

The existence of such solutions for arbitrary T > 0 (global weak 
solutions) shown in [4], allows us to study the asymptotic behaviour of 
U and v when t tends to infinity.

By a C1,2(D) solution o f  (2) we mean the classical solution having con­
tinuous in D  derivatives v„ vx, vxx.

2. Introductory a priori estimates. We start with the following. _ 
LEMMA 1. LetJJJ,v) be the weak solution o f (  1)—(3) and let q e C°(I). 

I f v  is also a C1,2(D ) solution, then (U,v) is bounded globally, more pre­
cisely

(4) 3 V  |U(t)| ^  ci; ||v(t,•) II 2 < c2, |r;(t,x)| < c3
c1,c2,c3> 0  t > 0  L  <'>

xeJ

with cp c2, c3 dependent only on P, v, U0 and || ę ||c0 and independent on T. 

P r o o f. It is easy to see that the (Liapunov) function 

L ( t ) : = U2(t) + || v(t, •) ||2 s  U2(t) + z(t)
L2(I)

remains bounded as long as U and v exist. In fact, when multiplying (1) by 
U, multiplying (2) in L 2(I) by v and summing the results we have

x  J r L(t) = p  Uit) ~ vUHt) ~ vj (v j2  dx>
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or with the use of the Cauchy (e = v) and Wirtinger inequalities

<5> 4 "  ^ L ( t ) ^ - : ! - P 2 + ( ^ - v ) U 2( t ) - v  Ju2 (M :)d x ^  
2 dt 2v 2 j

Differential inequality (5) ensures the global boundedness of L

L(t) ^  max j.L(0), P 2

and hence estimates for both |J7| and z simultaneously. To close the proof 
it remains merely to estimate v in the uniform norm. This estimate is 
based on an interesting method given by N.D. Alikakos in [1, Theorem 
3.1]. The existence of a weak solution of (1)—(3) was shown in [4], hence 
we will now study the properties of the separate problem (2), (3) thinking 
about 17 as a given (as a part of the weak solution) ’’coefficient” of a class 
C1. Multiplying (2) by v 2 ~1,k  =  1, 2,..., and integrating over I  we verify 
that

(6) 2 * -J7- f u2*(t,x) dx = U(t) f v 2k(t,x) dx -  
d t j /

-  v J vx(t,x) (v2k~1(t,x)'jx dx -  J (v2(t,x)^xv 2k ~ 1 (t,x) dx = 

U(t) j V k(t,x) dx -  v |[(v2<1 X)x] 2 dx,
I

since

J- (v2(t,x)^xv2k \t,x) dx = $ (v2k+ 1(t’x ^  dx =

v2k + \t,x) |x = 0i7C = 0 .
2k + l

Denoting

v*: = v 2k 1, vfc: = v — — » ak '■ ~ ci 2* \
2 1

and remembering that |l/(t)| < c1 for t ^  0 , we arrive at the estimate

(7) — ( — $ (u*)2 dx] ^  -  v* f T(u*)J2 dx +  at J ( v * )2 dx,
dt ^2 i  ' i i
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which is identical with (3.8) in [1] (the non-negativity of v is not essential; 
see [2]). Since we have shown previously the global boundedness of the 
L 2(I) norm of v(t, •), remembering that

II v(t, • )||x.i(/) ^ y/n\\v(t, •) ||£,2(1)) 

the final estimate of [1, Theorem 3.1] gives

I | wG > -) I Il ® (/ )  ^  2 ® C 2 K  =  : c 3-

with

K  = max 1, sup f|u(t,x)| dx, ||<p|| _ >.
I t»o i c <'>J

REMARK 1. The reason why the Alikakos proof was applicable to 
our nonlinear problem is that the component in (6) corresponding to (v2)x 
vanishes. It is interesting to note that since the function U has an 
undetermined sign, the result of Lemma 1 is inaccessible with the use of 
the classical maximum principle type arguments.

3. Some remarks concerning the instability of the constant solu­
tion (-E  ,0) o f (1)—(3).

DEFINITION 2. For a non-zero function /eHJ(l) let us define its 
complication

m 2
(8) K(f ) : = ------ , K(0): =  1.

l l / l l  2 2  L  (/)

As a consequence of the Wirtinger inequality, K(f) ^ 1 for all 
functions /eHJ(I).

DEFINITION 3. We say that a classical solution (U,v) is trivial (or 
simply v is trivial), if

3  v(t0,x) = 0 for x e  1.
t0SO

It was shown in [4] that the weak solution (U,v) of (1>—(3) is uniquely 
determined, for t ^ t, by its value U(t) e R, v (t ,  ) e L 2(I). This observation 
is all the more valid for classical solutions. It is thus easy to see that any 
trivial classical solution has the form

v(t,x) = 0, U(t) = U(t0)exp( -  v(t -  t0)J + - L ( l -  exp( -  v(t -  t0)j 

for t ^ t0.

The complication K,(v) of a C1’2 solution which is not trivial, is well 
defined (the denominator is strictly positive). We have:

2 — Annales 17



THEOREM 1. Let >v. Then, fo r  every existing fo r  all t ^  0 C1’ 2 

solution v which is not trivial, one o f the alternative conditions

p
lim sup K,(v) Ss —  or lim sup \\v(t, -)ll 2 > 0

holds.

P ro o f .  It remains to show the implication

[lim sup K,(v) <  ] =>[~ ( l lu(t’ ' ) llL2 / ->0» t ~y+  °°)]-

Multiplying the equation for W (t): = U(t) -

(9) = -  vW -  f v2(t,x) dx
d t }

by W and multiplying (2) in L 2(I) by v, we get (z(t) = \\v(t, -)||22 )

(10) - L  = -  vW2 -  zW,
2 d t

<u > 4  = ( w  + -^  I z -vH ^ t ,  )!!2! - o .
2 dt \ v / hq(/)

As a consequence of our assumption K,(u) < **7^ for sufficiently small
v

postive 5 and all t ^  T0(<5). If, on the contrary, we assume that z(t)-*0, 
t~* + oo, then

3 V  0 < z(t) < d
T,>T0 t»T,

(the estimate z(t) > 0 is valid for all v which are not trivial). Subtracting
(10) from (11), for t ^  T 1 we get

(12) dj. (z -  W 2) = vW2 + 2Wz + [-£■ -  vK,(v)]z,

or further (0 < z < 3 < 1)
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-I- (z -  W 2) > 2Wz + vW2 + A  2 >  vW2 + 2Wz + - L  z 2 = 
d t v v

- ( y r w + i z ) ’ .

Hence for T 1 the function (z -  W2) is weakly increasing and conver­
ges to some a eR. But z tends to 0, hence W 2(t)~* -  a when t tends to 
infinity.

I f  a = 0, then for some T2 >  T,

Wit) 5* ~ - Ł , for t >  T2,
2v

or with the use of (11) and the definition of T0

i a f  = W z + [ - T  - » « . < » > > > £ * .

which means (ziT2) >  0J, that z is unbounded and contradicts Lemma 1. 

I f  a # 0, then by (9)

_  -  vW -  z —► -  va, t-*- + oo,
dt

hence W is unbounded, which again contradicts Lemma 1. The proof is 
thus finished.

As was observed in Lemma 1, the nonlinear term corresponding to 
iv2)x vanishes in (6). Thus all the estimates of Lemma 1 and Theorem
1 remain unchanged if instead of (2) we take

(13) v, = Uv + vvxx + Xiv2)x

with arbitrary X e R  (the last term in (2) is invalid in these estimates!). We
want to express the role of this last component by considering the
Fourier coefficients of the solution Vx of (1), (13), (3). We have

LEMMA 2. FortheFouriercoefficientsvkit) = \Vx{t,x)sinkxdxwith
/2c. 1

the numbers k > x /— - the following estimate holds: 
v  v

lim sup |u*(0 | ^ * /— — ^ 2 ----
t-*- + 00 v y/vk2 -  2cj

P r o o f .  Multiplying (13) in L 2(Z) by sin kx, k = 1,2,..., and using the 
identities
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| (Vx)xx sin fcx dx = -  k2vk(t),
i

J(V2)X sin fcx dx = —k jV 2 cos kx dx,

we obtain 

(15) = U(t)vk(t) -  vk2vk(t) + Ak JV2 cos kx dx. 
dt /

Since the last term is estimated by |A| k c2 (the bound of Lemma 1 remains 
valid for all V ), then multiplying (15) by vk(t) we have

(16) \  I t  ^ [m )  ~ vfc2]u" (t) + Wkc* |u‘ (t)l ^

<[cj -  vfc2]uf(t) + |- y ^ v 2k(t) + - i  P  cgj.

Solving this differential inequality for k >
2c

i we obtain

v\(t) < uf(0) exp 

hence further

Mi)| < \vk(0)\ exp

vfc2

(c-

+
P c i  1 “ exP

vfc2
* . - f )

vfc2

vfc W c 2

v /̂vfc2 -  2c,

Passing with t to infinity in this last inequality, we get (14). We have thus 
estimated the rate of decay to zero (fc—► + oo) of the Fourier coefficients 
with large numbers fc.

4. Existence o f smooth solutions o f (1)—(3). We give the proof of 
existence of classical solutions of (1)—(3) having the additional properties

(17) U e C 2 + i ([0,T]), v e C 1 + i -2 + i (D).

THEOREM 2. For any initial function <peC2 + i ( I )  satisfying the 
compatibility conditions (p(0) = <p(n) = 0 and

U0(p(x) + v (pxx(x) -  (V (x ) )A =  0 ,

* = o ,n

there exists a classical solution o/ (l)—(3) satisfying (17).
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The proof is divided into three parts. Fundamental here are the 
a priori estimates of Lemma 1 and Lemma 3 (below). As in Lemma 1 we 
restrict our considerations to the problem (2), (3) (with U given in 
CH[0,T]) as a part of the weak solution).

LEMMA 3. For any C 12(D) solution v o f (2), (3)

(18) \\v,(t, -)|| 4 ^ c 4, te[0,T], c4 = c4(cj, c2, c3, T, v)
L  ( I )

holds.

P ro o f .  The solution considered does not usually have the derivative 
v,,', therefore instead we must study the difference quotients for vt. From 
(2) (for fixed h >  0 the difference quotient is well defined for te[0,T-h], 
hence also the estimates below works for such t) we deduce

(19) h~ 1 [v,(t + h,x) -  v,(t,x)^ = U(t + h) h~1 [u(t + h,x) -  r(t,x)J +

+ v(t,x) h~ 1 [U(t + h) -  t/(£)| + vh~ 1 [z?(t + h,x) -  v(t,x) |xx +

+ [v(t + h,x) h ~1 (v(t + h,x) -  v(t,x)j +

+ v(t,x) h~ 1 (v{t + h,x) -  u(i,x)YL.

Denoting for simplicity f h( t ) : = + h) -  fit)j, and multiplying (19)

in L 2(I) by vfct,x), we obtain

(20) -1— f v£(t,x) dx = U(t + h) f v£(t,x) dx +
4 d t 1 i

+ Uh(t) $v(t,x) vftt,x) dx -  v J^ fc(t,x)jx[u^t,x)jx dx + 

+ j[u(t + h,x) vh(t,x) + v(t,x) vh(t,x)^x v^t,x) dx.

Some of the components in (20) are estimated below. First we have 

\Uh(t) Ju(t,x) vftt,x) dx| <  c || v(t, 0 1| 4 Wvfrt, OH *
j L> (I) L\I)

cs [4 -  \v4h(t>x ) dx + -4- \v,4(t>x ) da;].L 4 j 4 j J

where the Holder and Young ([7, p. 74]) inequalities are used, and the 

constant : = P  + vCj + c2 dominates (in the presence of (4)j the right
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hand side of (1) ( and hence c5 alone dominates Uh(t) for t e [0,T] and for all 

h <  h0, h0 small). Further

J [w»(t,*)]x[wXt.*)], dx =  -|- \  [(t\ft,x)2)x] 2 dx,

and the last two components are estimated in the same way (we consider 
the first one):

= — -|— Jv(t + h,x) vftt.x) (vftt,x)Jx dx,

then using Holder and Cauchy inequalities we verify that

| f(u(t + h,x) vh(t,x)jx v'i(t,x) dx\ <

< c3 ( W&aO dx j ł   ̂\(yt(t,x)xy  d x j ł  ^

< 3Ca Jv*(t,x) dx + -3- c3e J lYujfftx) ')* ]2 dx,
2 e i 2 i LV ' J

(e > 0 is arbitrary). Collecting all the estimates we have

A  |  v%(t,x) d x  ^  [  -  3v +  12sc3J J [(ujffox) ) , ]2 d x  +

+ 4 [cj + —  c5 + —  cal fv%(t,x) dx + c5 c\n.
L 4 £ J

The last with e = gives an a priori bound
3

(21) J v$(t,x) dx ^ fv*(0,x) dx exp (yt) + c5 c*3n 6XP ^ — —
i i  '

r  ̂ 12c2 n 
with y = 4 ci + - f  c5 + ------ • Passing with h to zero in the estimate

L 4 v -1

(21) we finally obtain

J- vf(t,x) dx ^ j  vf(0,x) dx exp (yT) + const. = : c4. 
i i

It is noteworthy that if v is the C 1,2(D) solution, then u,(0,x) can be found



(through the continuity) from the equation (2) and its L 4(T) norm will be 
estimated proportionally to U0 and the W2,4(l) norm of (p. The proof is 
thus completed.

LEMMA 4. For any C1,2(D) solution v an a priori estimate

I N I * . * - < c 5, c5 = c5(c2,c4)
C (D)

holds.
P ro o f .  Fixing an arbitrary t e [0,T] we may look at (2) as an elliptic 

problem (t is a parameter)

vvxx(t,x) -  2 v(t,x) vx(t,x) + U(t) v(t,x) = v,(t,x)

with the ’’right side” v,(t, ■) bounded in L 4(I) and the ’’coefficients” v(t, •), 
U(t) bounded in L X(I). As a simple consequence of Calderon-Zygmunt 
type estimates ([9, p. 233]) we have

(22) l|w(t,-)l| 2,4 const. ( ||u,(t,Oil 4 + M t ,  Oil j ),
W (I) \  L (Ii L (/)/

with the right side bounded uniformly for te(0,T] (Lemmas 1,3). Then it 
follows from the Sobolev Imbedding Theorem (n = 1) that

(23) l|w,(t,-)ll i -  <  const. \\v(t,-)|| 2,4 ,
CT (J ) W ( I )

hence vx is Holder continuous in x  uniformly for t e (0,T]. As a consequen­

ce of Lemma 3, v,eL™(0,T; L 4(I)j c  L 4 (D), also as a conse­

quence of (22) and since v is a C1,2(D) solution, then 

vxe L cĉ 0,T; L* (I )j c: L 4(D), and these two conditions together with the 

Sobolev Imbedding Theorem (n = 2) ensure that ueCi,ł(D) and

(24) IN  4>4_ ^ const. (||v, || 4 + | | 4 ).
C (D ) V L  m  L  (D)/

The proof of Lemma 3 is then completed.
As is well known (c.f. [8, p. 509]) a priori estimate (24) is equivalent 

(through the Leray-Schauder Principle) to the C1 + i,2 + 4(D) solvability of
(2),(3). We omit the standard proof here.

We have thus shown, under the conditions specified in Theorem 2, 
that v e C 1 + i,2 + i (D). Now returning to the full system (1)—(3), since 
||t?(t, )ll22 eC 1 + *([0,T]) we have

L </)

[7eC2 + ł ([0,T]), 

which completes the proof of Theorem 2.
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