TOMASZ DŁOTKO*

SOME REMARKS CONCERNING THE ONE-DIMENSIONAL BURGERS EQUATION

Abstract

The behaviour of solutions of the Burgers system (1)-(3) is studied. In earlier papers [4], [5] the problem of the global stability of the constant solution $(U, v)=\left(\frac{P}{v}, 0\right)$ when $\frac{P}{v} \leqslant v$ was solved. The behaviour of those solutions (U, v) which do not converge to the constant solution when t tends to infinity is studied here. In part 3 some of its properties are studied, while in parts 2 and 4 several a priori estimates needed in the proof of existence of solutions are presented.

1. Introduction. In $1939 \mathrm{~J} . \mathrm{M}$. Burgers gave the model of the motion of a viscous fluid in a channel. This model has the form:

$$
\begin{equation*}
\frac{\mathrm{d} U(t)}{\mathrm{d} t}=P-v U(t)-\int_{0}^{\pi} v^{2}(t, x) \mathrm{d} x, \quad U(0)=U_{0}, \tag{1}
\end{equation*}
$$

$$
\begin{equation*}
v_{t}(t, x)=U(t) v(t, x)+v v_{x x}(t, x)-\left(v^{2}(t, x)\right)_{x}, \tag{2}
\end{equation*}
$$

$t \geqslant 0, \boldsymbol{x} \in(0, \pi)$, where P, v are positive constants (pressure, viscosity), with the conditions

$$
\begin{equation*}
v(0, x)=\varphi(x), \quad v(t, 0)=v(t, \pi)=0 \tag{3}
\end{equation*}
$$

Notation. The following symbols are used:

$$
I=(0, \pi), \quad D=[0, T] \times I, \quad z(t)=\|v(t, \cdot)\|_{L^{2}()^{\prime}}^{2}
$$

For simplicity partial derivatives are denoted by v_{t}, v_{x} etc.. The usual notation is used for the L^{p} and Sobolev spaces $H_{o}^{1}, H^{2}, W^{m, p}$ ([6], [7], [8], [10]). The $C^{\frac{\alpha_{2}^{\alpha}}{2}}(\bar{D})$ space of Hölder continuous functions (denoted [6, p. 61] as $H^{\frac{\alpha}{2}, \alpha}$) and the space $C^{\alpha}(\bar{I})$ are also considered. The symbols $L^{p}(0, T ; B)(B$ is a Banach space) are defined in [7].

[^0]The following estimates are used several times:
Cauchy inequality: $x y \leqslant \frac{\varepsilon}{2} x^{2}+\frac{1}{2 \varepsilon} y^{2}, \varepsilon>0$ arbitrary, a version of the Poincaré inequality (Wirtinger inequality [4]):

$$
\underset{f \in H_{0}^{1(I)}}{\forall} \quad\left\|f_{L^{2}(I)}^{2} \leqslant\right\| f_{x}\left\|_{L^{2}(I)}^{2}=:\right\| f_{H_{0}^{1}(I)}^{2}
$$

Sobolev Imbedding Theorem ([10]): if G is a smooth bounded domain in \boldsymbol{R}^{n}, then for $0<\mu=m-\frac{n}{p}-j<1$ holds, $C^{j+\mu}(\bar{G}) \subset W^{m, p}(\bar{G})$, and

$$
\underset{c>0}{\exists} \quad \underset{f \in \mathrm{C}^{j^{+}}}{\forall} \quad\|f\|_{\mathrm{c}^{j^{+\mu}}} \leqslant c\|f\|_{\mathrm{w}^{m, \phi}} .
$$

DEFINITION 1 ([4]). By a weak solution of (1)-(3) ($\varphi \in L^{2}(I)$) we mean a pair (U, v), such that $U \in C^{1}([0, T])$ (one side derivatives in $\left.t=0, T\right), v \in$ $L^{2}\left(0, T ; H_{0}^{1}(I)\right) \cap C^{0}\left(0, T ; L^{2}(I)\right.$, and (U, v) satisfies (1) and the equalities

$$
\int_{I} v^{\prime} w \mathrm{~d} x+v \int_{I} v_{x} w_{x} \mathrm{~d} x+2 \int_{I} v v_{x} w \mathrm{~d} x-U \int_{I} v w \mathrm{~d} x=0
$$

for any $w \in H_{0}^{1}(I)$ and almost all $t \in[0, T]$ (time derivative v^{\prime} is understood here as the distributional derivative with values in $L^{2}(I)$ [4], [7]).

The existence of such solutions for arbitrary $T>0$ (global weak solutions) shown in [4], allows us to study the asymptotic behaviour of U and v when t tends to infinity.

By a $C^{1,2}(\bar{D})$ solution of (2) we mean the classical solution having continuous in \bar{D} derivatives $v_{t}, v_{x}, v_{x x}$.
2. Introductory a priori estimates. We start with the following.

LEMMA 1. Let (U, v) be the weak solution of (1)-(3) and let $\varphi \in C^{0}(\bar{I})$. If v is also a $C^{1,2}(\bar{D})$ solution, then (U, v) is bounded globally, more precisely

$$
\begin{equation*}
\underset{\substack{c_{1}, c_{2}, c_{3}>0}}{\exists} \underset{t}{t \geqslant 0} \mathbf{x \in I} \backslash|U(t)| \leqslant c_{1}, \quad\|v(t, \cdot)\|_{L^{2}(J)} \leqslant c_{2},|v(t, x)| \leqslant c_{3} \tag{4}
\end{equation*}
$$

with c_{1}, c_{2}, c_{3} dependent only on P, v, U_{0} and $\|\varphi\|_{C^{0}}$ and independent on T.
Proof. It is easy to see that the (Liapunov) function

$$
L(t):=U^{2}(t)+\|v(t, \cdot)\|_{L^{2}(l)}^{2} \equiv U^{2}(t)+z(t)
$$

remains bounded as long as U and v exist. In fact, when multiplying (1) by U, multiplying (2) in $L^{2}(I)$ by v and summing the results we have

$$
\frac{1}{2} \frac{\mathrm{~d}}{\mathrm{~d} t} L(t)=P U(t)-v U^{2}(t)-v \int_{I}\left(v_{x}\right)^{2} \mathrm{~d} x,
$$

or with the use of the Cauchy ($\varepsilon=v$) and Wirtinger inequalities

$$
\begin{align*}
\frac{1}{2} \frac{\mathrm{~d}}{\mathrm{~d} t} L(t) \leqslant & \frac{1}{2 v} P^{2}+\left(\frac{v}{2}-v\right) U^{2}(t)-v \int_{I} v^{2}(t, x) \mathrm{d} x \leqslant \tag{5}\\
& \leqslant-\frac{v}{2} L(t)+\frac{P^{2}}{2 v} .
\end{align*}
$$

Differential inequality (5) ensures the global boundedness of L

$$
L(t) \leqslant \max \left\{L(0), \frac{P^{2}}{v^{2}}\right\},
$$

and hence estimates for both $|U|$ and z simultaneously. To close the proof it remains merely to estimate v in the uniform norm. This estimate is based on an interesting method given by N.D. Alikakos in [1, Theorem 3.1]. The existence of a weak solution of (1)-(3) was shown in [4], hence we will now study the properties of the separate problem (2), (3) thinking about U as a given (as a part of the weak solution) "coefficient" of a class C^{1}. Multiplying (2) by $v^{2^{k}-1}, k=1,2, \ldots$, and integrating over I we verify that

$$
\begin{align*}
2^{-k} \frac{\mathrm{~d}}{\mathrm{~d} t} & \int_{I} v^{2^{k}}(t, x) \mathrm{d} x=U(t) \int_{I} v^{2^{k}}(t, x) \mathrm{d} x- \tag{6}\\
& -v \int_{I} v_{x}(t, x)\left(v^{2^{k-1}}(t, x)\right)_{x} \mathrm{~d} x-\int_{I}\left(v^{2}(t, x)\right)_{x} 2^{2^{k-1}}(t, x) \mathrm{d} x= \\
& =U(t) \int_{I} v^{2^{k}}(t, x) \mathrm{d} x-v \frac{2^{k}-1}{2^{2 k-2}} \int_{I}\left[\left(v^{2^{k-1}}\right)_{x}\right]^{2} \mathrm{~d} x,
\end{align*}
$$

since

$$
\begin{aligned}
\int_{I}\left(v^{2}(t, x)\right)_{x} v^{2^{k-1}}(t, x) \mathrm{d} x & =\frac{2}{2^{k}+1} \int_{I}\left(v^{2^{k+1}}(t, x)\right)_{x} \mathrm{~d} x= \\
& =\left.\frac{2}{2^{k}+1} v^{v^{k+1}}(t, x)\right|_{x=0, \pi}=0 .
\end{aligned}
$$

Denoting

$$
v^{*}:=v^{2^{-1}}, v_{k}:=v \frac{2^{k}-1}{2^{k-1}}, a_{k}:=c_{1} 2^{k-1}
$$

and remembering that $|U(t)| \leqslant c_{1}$ for $t \geqslant 0$, we arrive at the estimate

$$
\begin{equation*}
\frac{\mathrm{d}}{\mathrm{~d} t}\left(\frac{1}{2} \int_{I}\left(v^{*}\right)^{2} \mathrm{~d} x\right) \leqslant-v_{k} \int_{I}\left[\left(v^{*}\right)_{x}\right]^{2} \mathrm{~d} x+a_{k} \int_{I}\left(v^{*}\right)^{2} \mathrm{~d} x, \tag{7}
\end{equation*}
$$

which is identical with (3.8) in [1] (the non-negativity of v is not essential; see [2]). Since we have shown previously the global boundedness of the $L^{2}(I)$ norm of $v(t, \cdot)$, remembering that

$$
\|v(t, \cdot)\|_{L^{1}(I)} \leqslant \sqrt{\pi}\|v(t, \cdot)\|_{L^{2}(I)},
$$

the final estimate of [1, Theorem 3.1] gives

$$
\|v(t, \cdot)\|_{L^{\infty}(I)} \leqslant 2^{5} \sqrt{\pi} c_{2} K=: c_{3}
$$

with

$$
K=\max \left\{1, \sup _{t \geqslant 0} \int_{I}|v(t, x)| \mathrm{d} x,\|\varphi\|_{c^{0}(\bar{I})}\right\} .
$$

REMARK 1. The reason why the Alikakos proof was applicable to our nonlinear problem is that the component in (6) corresponding to $\left(v^{2}\right)_{x}$ vanishes. It is interesting to note that since the function U has an undetermined sign, the result of Lemma 1 is inaccessible with the use of the classical maximum principle type arguments.
3. Some remarks concerning the instability of the constant solu$\operatorname{tion}\left(\frac{P}{v}, 0\right)$ of (1) (3).

DEFINITION 2. For a non-zero function $f \in H_{0}^{1}(I)$ let us define its complication

$$
\begin{equation*}
K(f):=\frac{\|f\|_{H_{\delta(I)}}^{2}}{\|f\|_{L^{2}(I)}^{2}}, \quad K(0):=1 . \tag{8}
\end{equation*}
$$

As a consequence of the Wirtinger inequality, $K(f) \geqslant 1$ for all functions $f \in H_{0}^{1}(I)$.

DEFINITION 3. We say that a classical solution (U, v) is trivial (or simply v is trivial), if

$$
\underset{t_{0} \geqslant 0}{\exists} v\left(t_{0}, x\right)=0 \text { for } x \in \bar{I} .
$$

It was shown in [4] that the weak solution (U, v) of (1)-(3) is uniquely determined, for $t \geqslant \tau$, by its value $U(\tau) \in \boldsymbol{R}, v(\tau, \cdot) \in L^{2}(I)$. This observation is all the more valid for classical solutions. It is thus easy to see that any trivial classical solution has the form

$$
v(t, x)=0, \quad U(t)=U\left(t_{0}\right) \exp \left(-v\left(t-t_{0}\right)\right)+\frac{P}{v}\left(1-\exp \left(-v\left(t-t_{0}\right)\right)\right.
$$

for $t \geqslant t_{0}$.
The complication $K_{t}(v)$ of a $C^{1,2}$ solution which is not trivial, is well defined (the denominator is strictly positive). We have:

THEOREM 1. Let $\frac{P}{v}>v$. Then, for every existing for all $t \geqslant 0 C^{1,2}$ solution v which is not trivial, one of the alternative conditions

$$
\limsup _{t \rightarrow+\infty} K_{t}(v) \geqslant \frac{P}{v^{2}} \quad \text { or } \quad \lim \sup _{t \rightarrow+\infty}\|v(t, \cdot)\|_{L^{2}(I)}>0
$$

holds.

Proof. It remains to show the implication

$$
\left[\limsup _{t \rightarrow+\infty} K_{t}(v)<\frac{P}{v^{2}}\right] \Rightarrow\left[\sim\left(\|v(t, \cdot)\|_{L^{2}(t)} \rightarrow 0, \quad t \rightarrow+\infty\right)\right]
$$

Multiplying the equation for $W(t):=U(t)-\frac{P}{v}$

$$
\begin{equation*}
\frac{\mathrm{d} W}{\mathrm{~d} t}=-v W-\int_{I} v^{2}(t, x) \mathrm{d} x \tag{9}
\end{equation*}
$$

by W and multiplying (2) in $L^{2}(I)$ by v, we get $\left(z(t)=\|v(t, \cdot)\|_{L^{2}(I)}^{2}\right)$:

$$
\begin{equation*}
\frac{1}{2} \frac{d W^{2}}{d t}=-v W^{2}-z W \tag{10}
\end{equation*}
$$

$$
\begin{equation*}
\frac{1}{2} \frac{\mathrm{~d} z}{\mathrm{~d} t}=\left(W+\frac{P}{v}\right) z-v\|v(t, \cdot)\|_{H_{0}^{1}(I)}^{2}-0 \tag{11}
\end{equation*}
$$

As a consequence of our assumption $K_{t}(v)<\frac{P-\delta}{v^{2}}$ for sufficiently small postive δ and all $t \geqslant T_{0}(\delta)$. If, on the contrary, we assume that $z(t) \rightarrow 0$, $t \rightarrow+\infty$, then

$$
\underset{T_{1} \geqslant T_{o}}{\exists} \quad \underset{t \geqslant T_{\mathrm{t}}}{\forall} \quad 0<z(t)<\delta
$$

(the estimate $z(t)>0$ is valid for all v which are not trivial). Subtracting (10) from (11), for $t \geqslant T_{1}$ we get

$$
\begin{equation*}
\frac{\mathrm{d}}{\mathrm{~d} t^{-}}\left(z-W^{2}\right)=v W^{2}+2 W z+\left[-\frac{P}{v}-v K_{t}(v)\right] z \tag{12}
\end{equation*}
$$

or further ($0<z<\delta<1$)

$$
\begin{aligned}
& \frac{\mathrm{d}}{\mathrm{~d} t}\left(z-W^{2}\right)>2 W z+v W^{2}+\frac{\delta}{v} z \geqslant v W^{2}+2 W z+\frac{1}{v} z^{2}= \\
&=\left(\sqrt{v} W+\frac{1}{\sqrt{v}} z\right)^{2} .
\end{aligned}
$$

Hence for $t \geqslant T_{1}$ the function $\left(z-W^{2}\right)$ is weakly increasing and converges to some $\alpha \in \boldsymbol{R}$. But z tends to 0 , hence $W^{2}(t) \rightarrow-\alpha$ when t tends to infinity.

If $\alpha=0$, then for some $T_{2} \geqslant T_{1}$

$$
W(t) \geqslant-\frac{\delta}{2 v}, \text { for } t \geqslant T_{2},
$$

or with the use of (11) and the definition of T_{0}

$$
\frac{1}{2} \frac{\mathrm{~d} z}{\mathrm{~d} t}=W z+\left[\frac{P}{v}-v K_{,}(v)\right] z>\frac{\delta}{2 v} z, \quad t \geqslant T_{2},
$$

which means $\left(z\left(T_{2}\right)>0\right)$, that z is unbounded and contradicts Lemma 1 . If $\alpha \neq 0$, then by (9)

$$
\frac{\mathrm{d} W}{\mathrm{~d} t}=-\nu W-z \rightarrow-v \alpha, \quad t \rightarrow+\infty,
$$

hence W is unbounded, which again contradicts Lemma 1. The proof is thus finished.

As was observed in Lemma 1, the nonlinear term corresponding to $\left(v^{2}\right)_{x}$ vanishes in (6). Thus all the estimates of Lemma 1 and Theorem 1 remain unchanged if instead of (2) we take

$$
\begin{equation*}
v_{t}=U v+v v_{x x}+\lambda\left(v^{2}\right)_{x} \tag{13}
\end{equation*}
$$

with arbitrary $\lambda \in \boldsymbol{R}$ (the last term in (2) is invalid in these estimates!). We want to express the role of this last component by considering the Fourier coefficients of the solution V_{λ} of (1), (13), (3). We have

LEMMA 2. For the Fourier coefficients $v_{k}(t)=\int_{I} V_{\lambda}(t, x) \sin k x \mathrm{~d} x$ with the numbers $k>\sqrt{\frac{2 c_{1}}{v}}$ the following estimate holds:

$$
\begin{equation*}
\limsup _{t \rightarrow+\infty}\left|v_{k}(t)\right| \leqslant \sqrt{\frac{2}{v}} \frac{|\lambda| c_{2}^{2}}{\sqrt{v k^{2}-2 c_{1}}} \tag{14}
\end{equation*}
$$

Proof. Multiplying (13) in $L^{2}(I)$ by $\sin k x, k=1,2, \ldots$, and using the identities

$$
\begin{gathered}
\int_{I}\left(V_{\lambda}\right)_{x x} \sin k x \mathrm{~d} x=-k^{2} v_{k}(t), \\
\int_{I}\left(V_{\lambda}^{2}\right)_{x} \sin k x \mathrm{~d} x=-k \int_{I} V_{\lambda}^{2} \cos k x \mathrm{~d} x,
\end{gathered}
$$

we obtain

$$
\begin{equation*}
\frac{\mathrm{d} v_{k}(t)}{\mathrm{d} t}=U(t) v_{k}(t)-v k^{2} v_{k}(t)+\lambda k \int_{I} V^{2} \cos k x \mathrm{~d} x . \tag{15}
\end{equation*}
$$

Since the last term is estimated by $|\lambda| k c_{2}^{2}$ (the bound of Lemma 1 remains valid for all V_{λ}), then multiplying (15) by $v_{k}(t)$ we have

$$
\left.\begin{array}{rl}
\frac{1}{2} \frac{\mathrm{~d}}{\mathrm{~d} t}\left(v_{k}^{2}(t)\right) & \leqslant\left[U(t)-v k^{2}\right] v_{k}^{2}(t)+|\lambda| k c_{2}^{2}\left|v_{k}(t)\right| \leqslant \tag{16}\\
& \leqslant\left[c_{1}-v k^{2}\right] v_{k}^{2}(t)+\left[\frac{\nu k^{2}}{2} v_{k}^{2}(t)+\frac{1}{2 v}\right.
\end{array} \lambda^{2} c_{2}^{4}\right] .
$$

Solving this differential inequality for $k>\sqrt{\frac{2 c}{v}}$ we obtain

$$
v_{k}^{2}(t) \leqslant v_{k}^{2}(0) \exp \left[2\left(c_{1}-\frac{v k^{2}}{2}\right) t\right]+\frac{\lambda^{2} c_{2}^{4}}{v} \frac{1-\exp \left[2\left(c_{1}-\frac{v k^{2}}{2}\right) t\right]}{\frac{v k^{2}}{2}-c_{1}},
$$

hence further

$$
\left|v_{k}(t)\right| \leqslant\left|v_{k}(0)\right| \exp \left[\left(c_{1}-\frac{v k^{2}}{v}\right) t\right]+\sqrt{\frac{2}{v}} \frac{|\lambda| c_{2}^{2}}{\sqrt{v k^{2}-2 c_{1}}} .
$$

Passing with t to infinity in this last inequality, we get (14). We have thus estimated the rate of decay to zero ($k \rightarrow+\infty$) of the Fourier coefficients with large numbers k.
4. Existence of smooth solutions of (1) (3). We give the proof of existence of classical solutions of (1)-(3) having the additional properties

$$
U \in C^{2+\frac{1}{2}}([0, T]), \quad v \in C^{1+\frac{1}{2} \cdot 2+\frac{1}{2}}(\bar{D}) .
$$

THEOREM 2. For any initial function $\varphi \in C^{2+\frac{1}{2}}(\bar{I})$ satisfying the compatibility conditions $\varphi(0)=\varphi(\pi)=0$ and

$$
U_{0} \varphi(x)+v \varphi_{x x}(x)-\left.\left(\varphi^{2}(x)\right)_{x}\right|_{x=0, \pi}=0,
$$

there exists a classical solution of (1)-(3) satisfying (17).

The proof is divided into three parts. Fundamental here are the a priori estimates of Lemma 1 and Lemma 3 (below). As in Lemma 1 we restrict our considerations to the problem (2), (3) (with U given in $C^{1}([0, T])$ as a part of the weak solution).

LEMMA 3. For any $\mathrm{C}^{1,2}(\overline{\mathrm{D}})$ solution v of (2), (3)

$$
\begin{equation*}
\left\|v_{t}(t, \cdot)\right\|_{L^{4}(I)} \leqslant c_{4}, \quad t \in[0, T], \quad c_{4}=c_{4}\left(c_{1}, c_{2}, c_{3}, T, v\right) \tag{18}
\end{equation*}
$$

holds.
Proof. The solution considered does not usually have the derivative v_{t}; therefore instead we must study the difference quotients for v_{t}. From (2) (for fixed $h>0$ the difference quotient is well defined for $t \in[0, T-h]$, hence also the estimates below works for such t) we deduce

$$
\begin{align*}
h^{-1} & {\left[v_{t}(t+h, x)-v_{t}(t, x)\right]=U(t+h) h^{-1}[v(t+h, x)-v(t, x)]+} \tag{19}\\
& +v(t, x) h^{-1}[U(t+h)-U(t)]+v h^{-1}[v(t+h, x)-v(t, x)]_{x x}+ \\
& +\left[v(t+h, x) h^{-1}(v(t+h, x)-v(t, x))+\right. \\
& \left.+v(t, x) h^{-1}(v(t+h, x)-v(t, x))\right]_{x} .
\end{align*}
$$

Denoting for simplicity $f_{h}(t):=h^{-1}(f(t+h)-f(t))$, and multiplying (19) in $L^{2}(I)$ by $v_{h}^{3}(t, x)$, we obtain

$$
\begin{align*}
& \frac{1}{4} \frac{\mathrm{~d}}{\mathrm{~d} t} \int_{I} v_{h}^{4}(t, x) \mathrm{d} x=U(t+h) \int_{I} v_{h}^{4}(t, x) \mathrm{d} x+ \tag{20}\\
& \quad+U_{h}(t) \int_{I} v(t, x) v_{h}^{3}(t, x) \mathrm{d} x-v \int_{I}\left[v_{h}(t, x)\right]_{x}\left[v_{h}^{3}(t, x)\right]_{x} \mathrm{~d} x+ \\
& \quad+\int_{I}\left[v(t+h, x) v_{h}(t, x)+v(t, x) v_{h}(t, x)\right]_{x} v_{h}^{3}(t, x) \mathrm{d} x .
\end{align*}
$$

Some of the components in (20) are estimated below. First we have

$$
\begin{aligned}
& \left|U_{h}(t) \int_{I} v(t, x) v_{h}^{3}(t, x) \mathrm{d} x\right| \leqslant c_{5}\|v(t, \cdot)\|_{L^{4}(I)}\left\|v_{h}^{3}(t, \cdot)\right\|_{L^{\frac{1}{(}(t)}} \leqslant \\
& \quad \leqslant \mathrm{c}_{5}\left[\frac{3}{4} \int_{I} v_{h}^{4}(t, x) \mathrm{d} x+\frac{1}{4} \int_{I} v^{4}(t, x) \mathrm{d} x\right],
\end{aligned}
$$

where the Hölder and Young ([7, p. 74]) inequalities are used, and the constant $\frac{c_{5}}{2}:=P+v c_{1}+c_{2}$ dominates (in the presence of (4)) the right
hand side of (1) (and hence c_{5} alone dominates $U_{h}(t)$ for $t \in[0, T]$ and for all $h \leqslant h_{0}, h_{0}$ small). Further

$$
\int_{I}\left[v_{h}(t, x)\right]_{x}\left[v_{h}^{3}(t, x)\right]_{x} \mathrm{~d} x=\frac{3}{4} \int_{I}\left[\left(v_{h}(t, x)^{2}\right)_{x}\right]^{2} \mathrm{~d} x,
$$

and the last two components are estimated in the same way (we consider the first one):

$$
\begin{gathered}
\int_{I}\left[v(t+h, x) v_{h}(t, x)\right]_{x} v_{h}^{3}(t, x) \mathrm{d} x=-\int_{I} v(t+h, x) v_{h}(t, x)\left(v_{h}^{3}(t, x)\right)_{x} \mathrm{~d} x= \\
=-\frac{3}{2} \int_{I} v(t+h, x) v_{h}^{2}(t, x)\left(v_{h}^{2}(t, x)\right)_{x} \mathrm{~d} x,
\end{gathered}
$$

then using Hölder and Cauchy inequalities we verify that

$$
\begin{aligned}
\mid \int_{I}(v(t+h, x) & \left.v_{h}(t, x)\right)_{x} v_{h}^{3}(t, x) \mathrm{d} x \mid \leqslant \\
& \leqslant \frac{3}{2} c_{3}\left(\int_{I} v_{h}^{4}(t, x) \mathrm{d} x\right)^{\frac{1}{2}}\left(\int_{I}\left(v_{h}^{2}(t, x)_{x}\right)^{2} \mathrm{~d} x\right)^{\frac{1}{2}} \leqslant \\
& \leqslant \frac{3 c_{3}}{2 \varepsilon} \int_{I} v_{h}^{4}(t, x) \mathrm{d} x+\frac{3}{2} c_{3} \varepsilon \int_{I}\left[\left(v_{h}^{2}(t, x)\right)_{x}\right]^{2} \mathrm{~d} x,
\end{aligned}
$$

($\varepsilon>0$ is arbitrary). Collecting all the estimates we have

$$
\begin{aligned}
\frac{\mathrm{d}}{\mathrm{~d} t} \int_{I} v_{h}^{4}(t, x) \mathrm{d} x & \leqslant\left[-3 v+12 \varepsilon c_{3}\right] \int_{I}\left[\left(v_{n}^{2}(t, x)\right)_{x}\right]^{2} \mathrm{~d} x+ \\
& +4\left[c_{1}+\frac{3}{4} c_{5}+\frac{3}{\varepsilon} c_{3}\right] \int_{I} v_{n}^{4}(t, x) \mathrm{d} x+c_{5} c_{3}^{4} \pi .
\end{aligned}
$$

The last with $\varepsilon=\frac{\nu}{4 c_{3}}$ gives an a priori bound

$$
\begin{equation*}
\int_{I} v_{h}^{4}(t, x) \mathrm{d} x \leqslant \int_{I} v_{h}^{4}(0, x) \mathrm{d} x \exp (\gamma t)+c_{5} c_{3}^{4} \pi \frac{\exp (\gamma t)-1}{\gamma} \tag{21}
\end{equation*}
$$

with $\gamma=4\left[c_{1}+\frac{3}{4} c_{5}+\frac{12 c_{3}^{2}}{v}\right]$. Passing with h to zero in the estimate (21) we finally obtain

$$
\int_{I} v_{t}^{4}(t, x) \mathrm{d} x \leqslant \int_{I} v_{t}^{4}(0, x) \mathrm{d} x \exp (\gamma T)+\text { const. }=: c_{4} .
$$

It is noteworthy that if v is the $C^{1,2}(\bar{D})$ solution, then $v_{t}(0, x)$ can be found
(through the continuity) from the equation (2) and its $L^{4}(I)$ norm will be estimated proportionally to U_{0} and the $W^{2,4}(I)$ norm of φ. The proof is thus completed.

LEMMA 4. For any $C^{1,2}(\overline{\mathrm{D}})$ solution v an a priori estimate

$$
\|v\|_{\left.c^{\frac{1}{2}, \frac{1}{(} \bar{D}}\right)} \leqslant c_{5}, \quad c_{5}=c_{5}\left(c_{2}, c_{4}\right)
$$

holds.
Proof. Fixing an arbitrary $t \in[0, T]$ we may look at (2) as an elliptic problem (t is a parameter)

$$
v v_{x x}(t, x)-2 v(t, x) v_{x}(t, x)+U(t) v(t, x)=v_{t}(t, x)
$$

with the "right side" $v_{t}(t, \cdot)$ bounded in $L^{4}(I)$ and the "coefficients" $v(t, \cdot)$, $U(t)$ bounded in $L^{\infty}(I)$. As a simple consequence of Calderon-Zygmunt type estimates ([9, p. 233]) we have

$$
\begin{equation*}
\|v(t, \cdot)\|_{W^{2,4}(I)} \leqslant \text { const. }\left(\left\|v_{t}(t, \cdot)\right\|_{L^{4}(I)}+\|v(t, \cdot)\|_{L^{1}(I)}\right), \tag{22}
\end{equation*}
$$

with the right side bounded uniformly for $t \in(0, T]$ (Lemmas 1,3$)$. Then it follows from the Sobolev Imbedding Theorem ($n=1$) that

$$
\begin{equation*}
\left\|v_{x}(t, \cdot)\right\|_{c^{t}(\bar{I})} \leqslant \text { const. }\|v(t, \cdot)\|_{W^{2}, 4(I)}, \tag{23}
\end{equation*}
$$

hence v_{x} is Hölder continuous in x uniformly for $t \in(0, T]$. As a consequence of Lemma 3, $v_{r} \in L^{\infty}\left(0, T ; L^{4}(I)\right) \subset L^{4}(D)$, also as a consequence of (22) and since v is a $C^{1,2}(\bar{D})$ solution, then $v_{x} \in L^{\infty}\left(0, T ; L^{4}(I) \subset L^{4}(D)\right.$, and these two conditions together with the Sobolev Imbedding Theorem ($n=2$) ensure that $v \in C^{\frac{1}{2}, t}(\bar{D})$ and

$$
\begin{equation*}
\|v\|_{C^{\frac{1}{2} \frac{1}{(D)}}} \leqslant \text { const. }\left(\left\|v_{t}\right\|_{L^{4}(D)}+\left\|v_{x}\right\|_{L^{4}(\boldsymbol{D})}\right) . \tag{24}
\end{equation*}
$$

The proof of Lemma 3 is then completed.
As is well known (c.f. [8, p. 509]) a priori estimate (24) is equivalent (through the Leray-Schauder Principle) to the $C^{1+\frac{1}{2}+\frac{1}{2}}(\bar{D})$ solvability of (2),(3). We omit the standard proof here.

We have thus shown, under the conditions specified in Theorem 2, that $v \in C^{1+\frac{1}{2+\frac{1}{2}}}(\bar{D})$. Now returning to the full system (1) (3), since

$$
U \in C^{2+t}([0, T]),
$$

which completes the proof of Theorem 2.

REFERENCES

[1] N.D. ALIKAKOS, An application of the invariance principle to reaction-diffusion equations, J. Differential Equations 33 (1979), 201-225.
[2] N.D. ALIKAKOS, L^{P} bounds of solutions of reaction-diffusion equations, Comm. Partial Differential Equations 4 (1979), 827-868.
[3] J.M. BURGERS, Mathematical Examples Illustrating Relations Occurring in the Theory of Turbulent Fluid Motion, Trans. Roy. Neth. Acad. Sci., Amsterdam, 17 (1939), 1-53.
[4] T. DEOTKO, On the one-dimensional Burgers' equation; existence, uniqueness and stability, Prace. Mat. UJ 23 (1982), 157-172.
[5] T. DLOTKO, The classical solution of the one-dimensional Burgers' equation, Prace Mat. UJ 23 (1982), 173-182.
[6] A. FRIEDMAN, Partial Differential Equations of Parabolic Type, Prentice Hall, Inc.,Englewood Cliffs, 1967.
[7] J.L. LIONS, Quelques Méthodes de Résolution des Problèmes aux Limites non Linéaires, Dunod Gauthier-Villars, Paris, 1969.
[8] O.A. LADYŽENSKAJA, V.A. SOLONNIKOV, N.N. URAL'CEVA, Linear and Quasilinear Equations of Parabolic Type, Nauka, Moscow, 1967.
[9] O.A. LADYŽENSKAJA, N.N. URAL'CEVA, Linear and Quasilinear Equations of Elliptic Type, Nauka, Moscow. 1973.
[10] L. NIRENBERG, Topics in Nonlinear Functional Analysis, Courant Institute, New York, 1974.

[^0]: Received June 30, 1987.
 AMS (MOS) subject classification (1980). Primary 35Q99. Secondary 76E99.

 * Instytut Matematyki Uniwersytetu Ślaskiego, Katowice, ul. Bankowa 14, Poland.

