KIM DOK YONG*

REMARKS ON MAPS OF INVERSE LIMITS

Abstract. The aim of this note is to give a short proof of the Ščepin theorem concerning maps of inverse limits. This theorem was generalized by several authors; see e.g. W. Kulpa [5], A. Archangelskii [1] and M.G. Tkačenko [7], [8].

Our method of the proof gives also the most general version of the Ščepin theorem due to Tkačenko. It can be also applied for obtaining in a very general setting the theorem of H.H. Corson and J.R. Isbell [3], [4] concerning maps from products.

LEMMA 1. Let Z be a Hausdorff space and $f: X \xrightarrow{onto} Y$, $g: X \to Z$ be continuous maps. If the space Z has a base \mathbb{Z} such that for each $U \in \mathbb{Z}$ there exists an open set $W \subset Y$ such that

(1)
$$g^{-1}(U) = f^{-1}(W),$$

then there exists a continuous map $h: Y \rightarrow Z$ such that $h \circ f = g$.

Proof. Let us verify that for each $y \in Y$ the set $g(f^{-1}(y))$ consists of a single point. It suffices to show that:

(2) if $U \in \mathcal{B}$ and $U \cap g(f^{-1}(y)) \neq \emptyset$ and $g^{-1}(U) = f^{-1}(W)$, where W is open in Y, then $y \in W$.

To show (2), let $z \in U \cap g(f^{-1}(y))$. There exists a point $x \in f^{-1}(y)$ such that z = g(x). Hence $x \in g^{-1}(W)$. Therefore $y = f(x) \in W$. Thus, define h(y) to be the single point in the set $g(f^{-1}(y))$. Clearly, $h \circ f = g$. The map $h: Y \to Z$ is continuous. Indeed, let us fix a point $y \in Y$ and an open set $U \in \mathcal{B}$ such that $h(y) \in U$. By the condition (2), there exists an open subset W of Y such that $y \in W$ and $g^{-1}(U) = f^{-1}(W)$. Hence $h(W) = g(f^{-1}(W)) = g(g^{-1}(U)) \subset U$, i.e. $h(W) \subset U$. The lemma is proved.

An inverse system $\{X_a, p_a^{\beta} : \alpha < \beta < \tau\}$ of topological spaces and continuous maps, where τ is an (uncountable) cardinal, will be called continuous if $X_{\gamma} = \lim_{\alpha \to \infty} \{X_{\alpha}, p_{\alpha}^{\beta} : \alpha < \beta < \gamma\}$ for each limit ordinal $\gamma < \tau$.

Received August 17, 1987.

AMS (MOS) subject classification (1980). Primary 54B25. Secondary 54A20.

^{*} Instytut Matematyki Uniwersytetu Śląskiego, Katowice, ul. Bankowa 14, Poland.

A continuous inverse system $\{X_{\alpha}, p_{\alpha}^{\beta} : \alpha < \beta < \tau\}$ will be called *regular* if τ is a regular cardinal and weight of X_{α} (denoted by $w(X_{\alpha})$) is less than τ .

Let C(T) denote the family of all cozero-sets of the space T.

LEMMA 2. Let us assume that the inverse system $\{X_{\alpha}, p_{\alpha}^{\beta} : \alpha < \beta < \tau\}$ is regular, where all X_{α} 's are compact and let $X = \underline{\lim} \{X_{\alpha}, p_{\alpha}^{\beta} : \alpha < \beta < \tau\}$. If g is a continuous map from X into a compact space Z and there exists a base $\mathcal{B} \subset C(Z)$ such that $|\mathcal{B}| < \tau$, then there exists an $\alpha < \tau$ such that for all $\beta \ge \alpha, \beta < \tau$ and $U \in \mathcal{B}$ there exists a $W \in C(X_{\beta})$ such that

$$p_{f}^{-1}(W) = g^{-1}(U).$$

Proof. Let $\mathcal{B} = \{U_{\xi}: \xi < \gamma\}$, where $\gamma < \tau = \operatorname{cf}(\tau)$. Clearly, $g^{-1}(U_{\xi}) \in C(X)$ for each ξ . Thus $g^{-1}(U_{\xi})$ is an open F_{σ} -set, i.e. there exists a family $\{F_n: n < \omega\}$ of compact subsets of X such that $g^{-1}(U_{\xi}) = \bigcup \{F_n: n < \omega\}$. Clearly, sets of the form $p_{\alpha}^{-1}(W)$, where W is open in X_{α} for $\alpha < \tau$, form a base in X. Then for each $n < \omega$ there exist an $\alpha_n < \tau$ and an open set $W_n \subset X_{\alpha_n}$ such that $F_n \subset p_{\alpha_n}^{-1}(W_n) \subset g^{-1}(U_{\xi})$. Since $\operatorname{cf}(\tau) > \omega$, $\alpha(\xi) = \sup \{\alpha_n: n < \omega\} < \tau$. It is easy to calculate that $g^{-1}(U_{\xi}) = p_{\alpha_{\alpha}(\xi)}^{-1}(W_{\xi})$, where $W_{\xi} = \bigcup \{(p_{\alpha_n}^{\alpha(\xi)})^{-1}(W_n): n < \omega\}$ is an open subset of $X_{\alpha(\xi)}$.

Let $\beta = \sup_{\alpha \in \mathcal{I}} \{ \alpha(\xi) : \xi < \gamma \}$. Since $\gamma < cf(\tau)$, we have $\beta < \tau$. Therefore $\{ g^{-1}(U_{\xi}) : \xi < \gamma \} \subset \{ p_{\beta}^{-1}(W) : W \in C(X_{\beta}) \}$, which means that for some W from $C(X_{\beta})$ we have $g^{-1}(U_{\xi}) = p_{\beta}^{-1}(W)$. Thus, our lemma is proved.

THEOREM 1 (E.V. Ščepin). Let us assume that $X = \underline{\lim} \{X_{\alpha}, p_{\alpha}^{\beta}: \alpha < \beta < \tau\}$ and $Y = \underline{\lim} \{Y_{\alpha}, g_{\alpha}^{\beta}: \alpha < \beta < \tau\}$, where all X_{α} 's and Y_{α} 's are compact and the inverse systems are regular. Then for each continuous map (homeomorphism) $f: X \rightarrow Y$ there exist a closed unbounded set $S \subset \tau$ and a family of continuous maps (homeomorphisms) $f_{\alpha}: X_{\alpha} \rightarrow Y_{\alpha}, \alpha \in S$, such that

$$f_{\alpha} \circ p_{\alpha} = q_{\alpha} \circ f \quad for \ \alpha \in S.$$

Proof. Let $\alpha < \tau$ and $\mathcal{B}_{\alpha} \subset C(Y_{\alpha})$ be a base in Y_{α} such that $|\mathcal{B}_{\alpha}| < \tau$. Let $g = q_{\alpha} \circ f$. From Lemma 2 it follows that there exists a $\beta(\alpha) < \tau$ such that for each $U \in \mathcal{B}_{\alpha}$ the exists a $W \in C(X_{\beta(\alpha)})$ such that $g_{1}^{-}(U) = p_{\beta(\alpha)}^{-1}(W)$. Hence, by Lemma 1, there exists a continuous map $f_{\alpha}^{\beta(\alpha)}: X_{\beta(\alpha)} \to Y_{\alpha}$ such that $q_{\alpha} \circ f = f_{\alpha}^{\beta(\alpha)} \circ p_{\beta(\alpha)}$. We may assume that $\alpha < \beta(\alpha)$.

We construct by induction a sequence $\{\alpha_n : n < \omega\} \subset \tau$ such that:

a) α_0 is an arbitrary ordinal less than τ and

b) $\alpha_{n+1} = \beta(\alpha_n)$.

Thus, we get maps $f_n = f_{\alpha_n}^{\beta(\alpha_n)}$, $n < \omega$, such that

$$q_{a_n} \circ f = f_n \circ p_{a_{n+1}}.$$

Let $\delta = \sup \{\alpha_n : n < \omega\}$. Since cf $(\tau) > \omega$, then $\delta < \tau$. Since $\alpha_n < \alpha_{n+1}$, then δ is a limit ordinal. Let us set $X_{\delta} = \underline{\lim} \{X_{\alpha_n}, p_{\alpha_n}^{\alpha_n+1} : n < \omega\}$ and $Y_{\delta} = \underline{\lim} \{Y_{\alpha_n}, q_{\alpha_n}^{\alpha_n+1} : n < \omega\}$. There exists the limit map $f_{\delta} = \underline{\lim} \{f_n : n < \omega\}$. To finish the proof, we shall show that $f_{\delta} \circ p_{\delta} = q_{\delta} \circ f$. Suppose that there exists an $x \in X$ such that $f_{\delta}(p_{\delta}(x)) \neq q_{\delta}(f(x))$. Since these points belong to Y_{δ} , there exists $n < \omega$ such that $q_{\alpha_n}^{\delta}(f_{\delta}(p_{\delta}(x))) \neq q_{\alpha_n}^{\delta}(q_{\delta}(f(x))) = q_{\alpha_n}(f(x))$. Since $f_{\delta} = \underline{\lim} \{f_n : n < \omega\}$, $q_{\alpha_n}^{\delta} \circ f_{\delta} = f_n \circ p_{\alpha_{n+1}}^{\delta}$. So $f_n(p_{\alpha_{n+1}}^{\delta}(p_{\delta}(x))) = f_n(p_{\alpha_{n+1}}(x)) \neq q_{\alpha_n}(f(x))$, which contradicts the condition (3). The proof is complete.

For every topological space X, let $\mathcal{L}(X)$ be minimal cardinal number τ such that for every open covering $\not \supset$ of X there exists a subcovering $\not \supset \subset \not \supset$ such that $|\not \supset [\leq \tau$. Note that for every compact space X, $\mathcal{L}(X) \leq \aleph_0$.

THEOREM 2 (M.G. Tkačenko). Let assume that $X = \lim_{\alpha \to \infty} \{X_{\alpha}, p_{\alpha}^{\beta}: \alpha < \beta < \tau\}$, where all X_{α} 's are completely regular, and the inverse system is regular and $\mathcal{L}(X) < \tau$. Then for each continuous map $f: X \longrightarrow X$ there exists a closed unbounded set $S, S \subset \tau$ such that for each $\alpha \in S$ there exists a continuous map $f_{\alpha}: X_{\alpha} \longrightarrow X_{\alpha}$ such that $f_{\alpha} \circ p_{\alpha} = p_{\alpha} \circ f$ for each $\alpha \in S$.

Proof. The complete regularity of X_{α} and $\mathcal{L}(X) < \tau$ imply the existence of a base $\mathcal{B}_{\alpha} \subset C(X_{\alpha})$ such that $|\mathcal{B}_{\alpha}| < \tau$. If $U \in \mathcal{B}_{\alpha}$, then $H = f^{-1}(p_{\alpha}^{-1}(U))$ is an open F_{σ} -set. Thus $H = \bigcup_{n < \omega} F_n$, where all F_n 's are closed subset of X. The family $\not \gg = \{p_{\alpha}^{-1}(U) : U \in \mathcal{B}_{\alpha} \text{ and } \alpha < \tau\}$ is a base in X.

Let $\mathcal{R}_n = \{ W \in \mathcal{D} : F_n \cap W \neq \emptyset \text{ and } W \subset H \}$. But $\mathcal{L}(F_n) \leq \mathcal{L}(X), F_n$ being closed and $\mathcal{L}(X) < \tau$. Hence there exists $\mathcal{R}_n \subset \mathcal{R}_n$ such that $|\mathcal{R}'_n| < \tau$ and $F_n \subset \bigcup \mathcal{R}_n$. Thus there exist $\beta_n < \tau$ and an open set G_n of X_{β_n} such that $\bigcup \mathcal{R}'_n = p_{\beta}^{-1}(G_n)$.

Let $\beta(U) = \sup \{ \beta_n : n < \omega \}$. Then there exists an open set W' of $X_{\beta(U)}$ such that $H = p_{\beta(U)}^{-1}(W')$.

Let $\beta(\alpha) = \sup \{\beta(U) : U \in \mathcal{B}_{\alpha}\} < \tau$. For each $U \in \mathcal{B}_{\alpha}$ there exists an open set W of $X_{\beta(\alpha)}$ such that $f^{-1}(p_{\alpha}^{-1}(U)) = p_{\beta(\alpha)}^{-1}(W)$. Now, it suffices to apply Lemma 1. Thus the theorem is proved.

H.H. Corson [3] and H.H. Corson and J.R. Isbell [4] have proved that every continuous function which maps a product of spaces with countable bases into a metrizable space depends only on countable number of coordinates.

By the use of our methods we are able to prove a more general result.

Note that the relations between the Ščepin theorem and the theorems on maps defined on products were pointed out by Tkačenko [7]. THEOREM 3. Let \mathcal{R} be a family of topological spaces and $\overline{X} \subset \Pi \{X : X \in \mathcal{R}\}$. If f is a continuous map from \overline{X} into a regular space Z, then there exist a family $\mathcal{R}_1 \subset \mathcal{R}$ and a continuous map $h: \Pi_{\mathcal{R}}(X) \longrightarrow Z$ such that $|\mathcal{R}_1| \leq w(Z) + \mathcal{L}(X)$ and $h \circ \Pi_{\mathcal{R}} = f$.

Proof. Let \mathcal{B} be a base in Z such that $|\mathcal{B}| = w(Z)$. Let $\tau = w(Z) + \mathcal{L}(X)$. Since Z is regular and $w(Z) \leq \tau$ for each $U \in \mathcal{B}$, there exists a family \mathcal{F}_{v} of closed subsets of \overline{X} such that $|\mathcal{F}_{v}| \leq \tau$ and $\bigcup \mathcal{F}_{v} = f^{-1}(U)$.

Let us fix an element $F \in \mathcal{F}_{U}$. For each $x \in F$ there exists a basic set $W_x \subset \Pi\{X: X \in \mathcal{R}\}$ such that $x \in W_x \cap \overline{X} \subset f^{-1}(U)$. Then $\{W_x \cap \overline{X}: x \in F\} \cup \{\overline{X} - F\}$ is a covering of \overline{X} . Since $\mathcal{L}(\overline{X}) \leq \tau$, there exists a family \not{P}_F of basic sets of $\Pi\{X: X \in \mathcal{R}\}$ such that $F \subset \bigcup \not{P}_F \cap \overline{X} \subset f^{-1}(U)$ such that $|\not{P}_F| \leq \tau$. Hence there exists a family \not{P}_U of basic subsets of $\Pi\{X: X \in \mathcal{R}\}$ such that $f \subset \bigcup \not{P}_F \cap \overline{X} \subset f^{-1}(U)$ such that $|\not{P}_F| \leq \tau$. Hence there exists a family \not{P}_U of basic subsets of $\Pi\{X: X \in \mathcal{R}\}$ such that $f^{-1}(U) = \overline{X} \cap \bigcup \not{P}_U$ and $|\not{P}_U| \leq \tau$, because $|\mathcal{F}_U| \leq \tau$. Clearly, each element $H \in \not{P}_U$ is of the form $\Pi^{-1}_{\mathcal{R}}(G)$, where $\mathcal{R} \subset \mathcal{R}$ is finite and G is open in $\Pi\{X: X \in \mathcal{R}\}$. Hence there exists $\mathcal{R}_U \subset \mathcal{R}$ such that $|\mathcal{R}_U| \leq \tau$ and $f^{-1}(U) = \Pi^{-1}_{\mathcal{R}_U}(W_U) \cap \overline{X}$, where W_U is an open set in $\Pi\{X: X \in \mathcal{R}_U\}$. Let us set $\mathcal{R}_1 = \bigcup_{U \in \mathcal{R}} \mathcal{R}_U$. Clearly, $|\mathcal{R}_1| \leq \tau$ and for each $U \in \mathcal{B}$ there exists an open set $W_U \subset \Pi\{X: X \in \mathcal{R}_1\}$ such that $f^{-1}(U) = \Pi^{-1}_{\mathcal{R}_1}(W_U) \cap \overline{X}$. Now it suffices to apply Lemma 1. Thus the theorem is proved.

REFERENCES

- [1] А.В.АРХАНГЕЛЬСКИЙ, Распростраене спектральной теоремы Е.Б. Щепина на вполне регулярные пространства, Dokl. Akad. Nauk. SSSR 233 (1977), 265—268.
- [2] R. ENGELKING, General topology, PWN, Warszawa, 1977.
- [3] H.H. CORSON, Normality in subsets of product spaces, Amer. J. Math. 81 (1959), 785-796.
- [4] H.H. CORSON and J.R. ISBELL, Some properties of strong uniformities, Quart. J. Math. Oxford 11 (1960), 17-33.
- [5] W. KULPA, Factorization theorems and properties of the covering type, Prace Naukowe Uniwersytetu Śląskiego w Katowicach 350, Uniwersytet Śląski, Katowice, 1980.
- [6] Е.Б. ЩЕПИН, Топология предельных пространств несчетных спектров,. Uspekhi Mat. Nauk. 31 (1976), 191—226.
- M.G. TKAČENKO, Some results on inverse spectra 1, Comment. Math. Univ. Carolin. 22 (1981), 621-633.
- [8] M.G. TKAČENKO, Some results in inverse spectra 2, Comment. Math. Univ. Carolin. 22 (1981), 819-841.