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WITOLD JARCZYK*

EXISTENCE AND UNIQUENESS OF CONTINUOUS
SOLUTIONS OF NONLINEAR FUNCTIONAL
EQUATIONS ARE GENERIC PROPERTIES

Abstract. Fundamental properties of equations of the form (1) are discussed from the Baire
category point of view. After showing that they are generic in a suitable function space the density of
the set of equations (1) having no solutions is studied. Results of the paper are “product versions” of
these proved in [3].

1. Introduction. Here we study some sets of equations of the form
(1) e{x) = h(x,(pIf{x)J),

where e is an unknown function. We are interested in such fundamental
properties of their continuous solutions as existence, uniqueness, continuous
dependence and convergence of successive approximations to a solution. Similar
problems for equations of various types have been studied by J. Myjak (e.g. [7])
and many other authors. The present paper refers strongly to results and methods
presented in [3]. Assuming/being fixed the author proved there that for almost
all (in the sense of the Baire category) elements h of a function space equation (1)
has all properties mentioned above. Results of the present paper deal with a set of
pairs (f h) and are “product versions” of those given in [3],

In the whole paper we shall assume that (X , g) is a metric space and (K 1 ll) is
a finite-dimensional Banach space.

Given topological spaces 3C and denote by the space of all
functions mapping 3C continuously into . In the sequel we shall treat it as
a topological, space endowed with the compact-open topology (cf. [6, §44]).

Let us fix a point X and denote by J* the set of all functions/e (X, X)
satisfying the inequality

g(f(x).£) ~ ¥f(g(x.£;)), xeX,

where yf is an increasing and right-continuous real function defined on an
interval | containing the origin, and yf(t) < t for every te A{O}.

In some important cases the definition of 3F becomes more clear due to the
following characterization given by K. Baron (cf. [1, Theorem 3.3)).

LEMMA 1 Suppose that

(2) the set {x e X: q(x,e) @(x0,<I;)} is compact for every x0OeX.

Then is the set of all functions fe ~ (X ,X) such that /(£) = £ and satisfying
the inequality

Q(f(x),2)<e(x,Z), xeX\{£}.
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The next lemma gives basic properties of elements of the space (cf. [3,
Remark 1]).

LEMMA 2 Iffe & then the sequence {fk:k e N)*' converges to £ uniformly
on every compact subset of X and, in particular, £ is the unique fixed point o ff

Here, asin [3], we confine ourselves to the study of equation (1) assuming that
fetF. Results of [4] show that equations of the form (1) with a function
feV (X ,X) may have no continuous solutions for almost all functions h. The
behaviour of such a function / must be much more complicated than this of
elements of the space 2P described in Lemma 2.

Fix apointrje Y. We shall look for solutions of equation (1) in the class <Pof all
mappings (pe” (X, 7) satisfying the equality (p{E) — a Because of this and the
fact that ¢ is afixed point offit is natural to confine ourselves only to the functions
he” (X xY,Y) taking the value t] at the point (<;, ¥). The set of all such functions
will be denoted by ZC.

REMARKS. 1 If X is a separable locally compact space then Jf' is a to-
pologically complete space (metrizable by the metric of the uniform convergence on
all compact sets).

2. IfX isatopologically complete space satisfying condition (2) then , 3”and

X are topologically complete spaces (metrizable by the metric of the uniform
convergence on all compact sets).

To justify the above remarks we shall need the following simple fact.

LEMMA 3 If X satisfies condition (2) then it is a separable locally compact
space.

Proof. If there exists an xOe X such that q{x, £)  £5x0, £) for every xe X
then

X = {xeX: e(X,£)  e(x0,£)},

whence, in view of (2), X is a compact space.
If for any x e X there exists an xe X such that @(x, £) > @(x, £) then we may
choose a sequence (x,: neN) of points of X satisfying the conditions

\imm x Q{xn,”) = sup{e(x, £): xe X}

and
a(x,,£E) < Q{xn+1,0, ne N.
For every neN the set C, = {xeX: g(x,”) ™ £>(x,,£)} is compact and
C,c {xeX: q(x,£E) < e(x,,+1,£)} < IntC,+1,
thus

A-cU." iC.cU," iIntC.cA-,

and the assertion follows.

*'For every positive integer K,fkdenotes the k-th iterate of/

v
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Proof of Remarks. By Lemma 3 each of the assumptions implies that the
space X X Y is separable and locally compact. Thus, as follows from [6, §44, VI,
Theorems 1and 3], the space ~ (X X Y, Y) is completely metrizable by the metric
of the uniform convergence on all compact sets. Consequently, is a to-
pologically complete space as a closed subset of A (X X VY, Y).

If X is atopologically complete space satisfying (2) then, in view of Lemma 3,
it is separable and locally compact, so we infer that the space & (X,X) is
completely metrizale by the metric of the uniform convergence on all compact
sets. Let (C,;: neN) be a sequence of compact neighbourhoods of £ such that

(3) X =U"1C, and C, cz IntC,, +1, neN,
(cf. [6, 841, X, Theorem 8]). In virtue of Lemma 1 and 2 we have
& = n;=i {f*{X,X)\ g(f{x),£) < max{1l/n, £(x, £)}, xeC,},

so isa Gasubset of N (X, X) and, by Alexandrov Theorem (cf. [5, 8§33, VI]), is
topologically complete.

2. Generic properties. The results of this section are “product versions” of
results given in [3] (cf. [3, Lemmas 3and 4, Theorem 1, Lemma 5, Theorem 3, and
Corollary]).

Let us denote by the subset of consisting of all functions taking the
value Ain a neighbourhood of (£, ri). For any (f, h)e  x jf’ define the mapping
T(f, <P by

T(f,h){q>)(x) = Zi(x,<jo[/(X)]), xeX.

In the sequel, ifC ¢ X and el ,(p2map a subset of X containing C into Y then we
shall write

dc((Pi,92 = sup{]I(Pl(x)-<p2®¥]]: xeC}.
LEMMA 4. Let Cbe acompact neighbourhood of £ such thatf (C) ¢ Cfor any
/e &. Then,for every (/, h)ye 3F x J f0 andfor every positive number e, there exist
open neighbourhoods °Uc(f, h, e) cz J* and f~c{f, h,e)<~J”offand h, respectively,
such thatfor every (7', h') e °Uc{f, h, e) x V~c{f, h, e)
AV A de{T(f',h")k(p), T(f,h)Kp) < e

<pe<> koeN k~ko

Proof. Fixapair(/, h)eS' x 0and choose an open ball V cz C centered at
£ and a positive number a such that

(4) h(x,y) = 1, xeVA\\y-ri\\ " a

Denote by gf hthe unique solution of equation (1) in the class <€(cf. [3, Lemma 2])
and fix a number b in such a manner that

(5) a+ dc((pf hri) < b.
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Fix a number £e(0,a) and choose an integer n such that (cf. Lemma 2)
(6) /"(C)c W

Since the restriction of h to the set Cx{yeY: |y—iN\~" b} is uniformly
continuous, we may find numbers €0,...,en such that

@) 0<£,<...< e0=¢e
and, for every ie {1,...,«},
8) (xl,yl),{x2,y2eCx{yeY: \\yt\\ ™ b},Q(xltx2 < | lyi-y2Il < e;

imply \\h(x1,y12) —h(x2,y2\ < £;_!-£,ee

Wc{f,h,e) = {/'e 3*: /"(C) < V,g(f'i(x), 7'(x)) < £i+1,xeC,i= 1,..., n—1},
Y c(f,h,s) = {/jedf: |1/I'xy)-Zix,y)]] < £, xeC, \\y-ri\\  b}.

Clearly/ e °Uc{j\ h, €) (cf. (6)) and he h, s). We shall show that h, e) is
an open setin 2F. The map F:2F “m~{X, X), given by F (f) =/ "E, is continuous
(cf. [6, 844, Ill, Theorem 1]), Observe also that

Qg (f,h,e) =

= F_1({06~(C,C): gn{C) ¢ K Q{gl{x), fix)) < ei+1,xeC,i = 1, ..., n-1}).

Thus °Uc{f, h, €), as the counterimage of an open set** by the continuous mapping
F, is an open subset of 3F. The openness of the set h, ) may be verified in
a similar way.

Now fix a pair (/', h') e Wc(f, h, s) x Ve (/, h,e)and aee<P and find a positive
integer m in such a manner that

9) \(pX)-i\\ < £, xefmV) ufmV).

In virtue of [3, Lemma 2], the sequence (T(f,h)k(e): ke N) converges to
(of "huniformly on C, so by (5) we can additionally assume that

(10) de(T{F,h)K(p),(pf'H < b -a-d cfpfih,rf), k™ M.
Fix an xeV Since f m1(x)efm-1V) ¢ V, we obtain, by (9), (7), and (4)
T(F,h)(<p) U m=1W ] = M/nt 1W ,<p[/mx)]) = 1.
Similarly
= Kr-\x),cpU'mXx)-]) = I/,
so, by inequalities (9), (5) and by the definition of s),
m/"N(<P)[/ nmlw]-17ii =
=11 (x), el /7" (x)])?2/"XDN < e,

*'To see this use simply the metric of the uniform convergence in 'S (C, C) (cf. [6, 8§44, V, Theo-
rem 2J).
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By induction we get

T(F,MK(p) M KX)-] = »f, T(/".fe)*(@)l/™-*(x)] =,

\\T(f, K(p)[f'm KXj]-ri\\ <e,, fee{l, ..., m},

whence

T(f,hn<p)(x) = 1, T(r,h)mcp)(x) = 7 and \\T(f',hT(e)-ri\\ < eH
Using induction once more we have
(n) T(f,h)K<p)x) = r, T(f',h)k(e)(x) =,

and [T (f',h")k(e)(x)-ri\\ < e, xeV, k™ m.

Now we shall verify that, for every ie {0, ..., n},
(12) Ir(/", h'f () )] - T MP [ "X D<E,-m

and [T (/°, 2P [/ " {(X)] - 1< b, \\T(f, hk() [/ "-"(*)]-rj 1< b,

xeC, k> m+i.

For i = O, inequalities (12) follow from (11) and (6). Assume (12) for an
ie{0, ..., n—I}.Since/"~(i+1,(x)e/'""~<4+1,(C) & C, we infer, by the definitions
of~rc(/,/j,e)and (/, h, eyand from (12), (7) and (8), that for/c ~ m+ (i+ l)and
xe C

IT(f, hKep) [/ -+ I(X)] - T/, i) [/ - ([i+*(x)] 1 =

-+ 0x), ~ /7~ =~ [/ (x)]) -

-fe(/7-fi+1>(x), - 1Pl
~dife'(/™M-(i+i)(x), Tf/Z "ii'r'w tr-ix)]-

i/ (1) (%), T{f, [/ _ix)DH +

+

Ih (r-@{+(x), T(f, hf-1()[/"-"(X)])-
-fe(/"-<i+1)(x), T(f, hk~L(p) [/ "~iXDIl <
~ (n—(i+ 1 An—i) A An-(itl),
whence, by (10) and (7), we have
IE(/", fr)(<p) [/ ™" <4+~ ()] 21 7~
N ITEN P [/ (+9)(X)] - T (7, fc)» [/7-(i+ ()] I+
+ IT(/, K@) [/ " _(i1+ 1(x)] —<R2/ZKX1 + [P/l <

<e,(+tl)+b-a < b,
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and
\\T{f,hn<p)[f-v+u(x)-]-r\\ <
HT (7, h)k((p) [/ " _<i+1,(x)] — (PE,ALONN + [[(Pf,h(x) —r\|]| <
< ¢,-+nH+b-a < b,
i.e. induction yields (12) for every le {0, ..., n}. Putting i = n in (12) we get

IT /', hf((p)(x)- T{f, hi{<p)X|l < &, xeC,k> m+n,

which completes the proof.

Repeating the proof of Lemma 4 of the paper [3] we get the following result
(the method used in the proof of [3, Lemma 4] follows the pattern given by
J. Myjak in [7, Theorem 1.2)).

LEMMA 5 Let C be acompact neighbourhood of £ such thatf (C) <= Cfor any
/eJ*. Then, for every element (/, h) of the set

(i3) me) = nr-1 {Iv.H **o®c(f',h",i/k)x'rc(r,h",i/k),

equation (1) has exactly one solution cpe<P and for every (pOe<P the sequence
(T(f, hk(Q:k £ N) ofsuccessive approximations converges to puniformly on every
compact subset of X.

THEOREM 1 Suppose that the point £ has a compact neighbourhood in X.
Then the set of all pairs (f,h)e S'X jf such that equation (1) has exactly one
solution g>e<P andfor every (poe O the sequence (T (f, h)k(pO): ke N) of successive
g jnations converges to e uniformly on every compact subset ofX isresidual in

Proof. Since there exists a compact neighbourhood of we can find
acompact ball C centered at £ Observe that/(C) ¢ Cforany/e & The set&(C)
defined by (13) is a G,, set. Moreover, since Jt0 is a dense subset of (cf. [2,
Theorem 1]) and 3F x 0c ~(C), it is also a dense set. Consequently, the set
J*(C) is residual and the theorem follows from Lemma 5.

We shall finish this section giving analogs of results of [3] concerning the
problem of the continuous dependence of continuous solutions of equation (1).
Their proofs will be omitted, because they can be directly reproduced following
these of Lemma 5, Theorem 3 and Corollary from [3],

If(/,h)en™ x and equation (1) has exactly one solution in the class <P, then
we shall denote it by (pf h. Existence of ef hin Lemma 6 follows from [3,

Lemma 2],
LEMMA 6.Let C be acompact neighbourhood of £such that/(C) ¢ Cfor any
f £S'.1f(f, h)eS' x and e is a positive number, then

(/ >h) £°Mc(f, h,e)x,jrc(f, h,e) imply dc(ef er h ™ e

Given asubset C of X denote by <RCthe set of all restrictions of functions from
<P to the set C.
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THEOREM 2. Let C be a compact neighbourhood of £ such thatf(C) a Cfor
any / e# - and let Ot(C) be given by (13). Then the map Ac\$(C) -* 4,
given by

~cifi h) = <P/fe)e

is well defined and continuous in M(C) (which is a residual subset of 3F x

COROLLARY. Let (C,: neN) be a sequence of compact neighbourhoods of
£ satisfying (3) and such thatf (C,) a Crfor every positive integer nandf e 3F. Then
the map A: -> <P, given by

A(fh) = (pf'h,

is well defined and continuous in f) '= Si(Cn (which is a residual subset 0f 3P x M).

REMARK 3. If X isacompact space or a closed subset of a finite-dimensional
Banach space, then it is enough to define C,, as the closed ball centered at £ and
with the radius n for every positive integer n.

3. A density problem. Now it is natural to raise the question: how the set of all
pairs (/, h)e~Fx Jf, for which equation (1) has no solution in the class $, is
scattered in the space 3F x Jf? It turns out that in some interesting cases this set is
dense (cf. Theorem 3 below). But, in general, it is not true. For example, if X is
a discrete space then the set consists of one element only, viz., the constant
function taking the value t, and, consequently, for every (/, h)e & x Jf equation
(1) has exactly one solution in the class 0 (namely, the function h(-,rjj).

LEMMA 7. If X is a convex subset of a normed space, then the set of all
functions f e F such that the set {f k(x0): /ceN} is infinite for an x0e X is
dense in 3F.

Proof. Suppose that A" is a subset of a space endowed with a norm ] |} Fix
a 9e(0,l). Because of convexity of X the formula

g{x) = 3(X-£) + £, xeX,

defines the function g:X -» X and, since9e (0,1),ge .Define #0 as the setofall
functions from 3F which coincide with g on a neighbourhood of We shall show
that #0 is a dense subset of

Fix a nonvoid open subset °ll oigF and let/ e fy. There exist a positive integer
n, compact subsets C1,...,Cnand open subsets Ul,..., Unof X such that

/ en ”~f/ 'e”~gc”™ecf.
Put
sk= min{llu-v Jfuef(CRK), ve X\ UK, Ice (1,...,¢},
and

£= min{£l,...,£1.
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Since/(CK is compact, X\ Ukis closed and/ (CKR n (X\t/R = 0, is positive for

every ke {1,... ,n}, and so is e. Put C = XCk. Clearly

1177X)-Z/X)]] < e xeC} ¢ "i{/'e f'{CRK a UK,
whence
(14) le{l'e &u II/'(xX)-/(X)]] < e xeC} ¢ m.

Since/(£) = g(£), there exists an open neighbourhood U of £ such that
(15) \\g{X)-F{(X)\\ < e, xeU.

Let F be aclosed neighbourhood of Econtained in U. In view of Urysohn Lemma
(cf. [5, 814, IV]) there exists a function pe”™ (X, [0,1]) such that

(16) p(F) ¢ {0} and p{X\U) c {1}.

We shall verify that the function/' = pf+(l —p)g belongs to n °U. Indeed,
since X is convex, / maps X into itself. Moreover, for any x e | we have

HpX)/(x)- )+ L-p(x))(g(x)- 1~
N px) I (x) QI+ (1 -p(x)) -~
POIY/(1IX—"D+ (L —p X))y Al Ix—iND ~
A max{y/Z(1HD-~1D.y9(1 Ix-01D),

whencée/' e 3F. In view of (16), f'\F = g F, so/' e #"0. Moreover, it follows from
(15) and (16) that for every xe X

HZX)-7001T = THA-pONCC)-Z00TT = (I-p(xINNG(X)-F)NN < e

Consequently, on account of (14),/' e °U, which completes the proof of density of
in m¥
Let /7 be an element of and choose a neighbourhood U of £ such that

117°(x)-£H

N

/(X) = 3(x—E)+ £, xeU!.
We can assume that / (U) cz U. If x0e L/N\{<Y then
/kx0 = S\x0-0 +L ke N,

so the set {/ fqx0): /ceN} is infinite.

Using this lemma we obtain, as an immediate consequence of [3, Theorem 2],
the following result.

THEOREM 3.** Suppose that X is a convex subset of a normed space.
Then the set ofall pairs (/, h)e x  for which equation (1) has no solution in the
class <P is dense in $F x Jf.

*'Here (Y, | |) may be an arbitrary nontrivial normed space.
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