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W ITO LD  JARCZYK*

EXISTENCE AN D  UNIQUENESS O F CO N TIN U O U S 
SO LUTIO NS OF N O N LIN E A R  F U N C T IO N A L  

E Q U ATIO NS ARE GENERIC PROPERTIES

Abstract. Fundamental properties of equations of the form (1) are discussed from the Baire 
category point o f view. After showing that they are generic in a suitable function space the density of 
the set of equations (1) having no solutions is studied. Results of the paper are “product versions” of 
these proved in [3].

1. Introduction. Here we study some sets of equations of the form

( 1) ę{x) =  h (x ,(p lf{x )J ),

where ę  is an unknown function. We are interested in such fundamental 
properties of their continuous solutions as existence, uniqueness, continuous 
dependence and convergence of successive approximations to a solution. Similar 
problems for equations of various types have been studied by J. Myjak (e.g. [7 ]) 
and many other authors. The present paper refers strongly to results and methods 
presented in [3]. Assuming/being fixed the author proved there that for almost 
all (in the sense of the Baire category) elements h of a function space equation (1) 
has all properties mentioned above. Results of the present paper deal with a set of 
pairs (f  h) and are “product versions” of those given in [3],

In the whole paper we shall assume that (X , g) is a metric space and (K II II) is 
a finite-dimensional Banach space.

Given topological spaces 3C and denote by the space of all
functions mapping 3C continuously into . In the sequel we shall treat it as 
a topological, space endowed with the compact-open topology (cf. [ 6, §44]).

Let us fix a point X  and denote by J* the set of all functions/ e ^ (X ,  X )  
satisfying the inequality

g ( f (x ) ,£ )  ^  yf (g(x,£;)), x e X ,

where yf  is an increasing and right-continuous real function defined on an 
interval I  containing the origin, and yf (t) <  t for every t e A {0 }.

In some important cases the definition of 3F becomes more clear due to the 
following characterization given by K. Baron (cf. [1, Theorem 3.3]).

LE M M A 1. Suppose that

(2) the set {x e X :  q (x , ę) @(x0,<l;)} is compact for every x0e X .

Then is the set o f all functions f e ^ ( X , X )  such that /(£) =  £ and satisfying 
the inequality

Q(f(x),Z)<e(x,Z),  xeX\{£}.
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The next lemma gives basic properties of elements of the space (cf. [3, 
Remark 1]).

LE M M A 2. I f  f e &  then the sequence {fk: k e N )* ' converges to £ uniformly 
on every compact subset of X  and, in particular, £ is the unique fixed point o f f

Here, as in [3], we confine ourselves to the study of equation (1) assuming that 
f e t F .  Results of [4 ] show that equations of the form (1) with a function 
f e V ( X , X )  may have no continuous solutions for almost all functions h. The 
behaviour of such a function /  must be much more complicated than this of 
elements of the space 2P described in Lemma 2.

Fix a point rj e Y. We shall look for solutions of equation (1) in the class <P of all 
mappings (p e ^ (X ,  7) satisfying the equality (p{E) — ą. Because of this and the 
fact that ć, is a fixed point off i t  is natural to confine ourselves only to the functions 
h e ^ (X  x Y ,Y )  taking the value t] at the point (<!;, >7). The set of all such functions 
will be denoted by ŹC.

REMARKS. 1. I f  X  is a separable locally compact space then Jf’ is a to­
pologically complete space (metrizable by the metric of the uniform convergence on 
all compact sets).

2. I f X  is a topologically complete space satisfying condition (2) then , 3^and
x are topologically complete spaces (metrizable by the metric of the uniform 

convergence on all compact sets).
To justify the above remarks we shall need the following simple fact.
LE M M A 3. I f  X  satisfies condition (2) then it is a separable locally compact 

space.
P ro o f. If there exists an x0e X  such that q {x , £) ^  £>(x0, £) for every x e X  

then

X  =  { x e X :  e (x ,£ ) ^  e (x 0,£)},

whence, in view of (2), X  is a compact space.
If for any x e X  there exists an x e  X  such that @(x, £) >  @(x, £) then we may 

choose a sequence (x„: n e N ) of points of X  satisfying the conditions

\imn̂ x Q{xn,^) =  sup{e(x, £): x e X }

and

q (x„,£) <  Q{xn+1,0 ,  ne  N.

For every n e N  the set C„ =  {x e X :  g (x ,^ ) ^  £>(x„,£)} is compact and 

C„ c  { x e X :  q (x ,£) <  e(x„ + 1,£)} <= IntC„ + 1,

thus

A - c U . "  i C . c U , "  i ln tC .c A - ,  

and the assertion follows.

* ’ For every positive integer k,fk denotes the k-th iterate o f/

IV , I
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P r o o f  of Remarks. By Lemma 3 each of the assumptions implies that the 
space X  x Y is separable and locally compact. Thus, as follows from [ 6, §44, VII, 
Theorems 1 and 3], the space ^ (X  x Y, Y) is completely metrizable by the metric 
of the uniform convergence on all compact sets. Consequently, is a to­
pologically complete space as a closed subset of ^ (X  x Y, Y).

If X  is a topologically complete space satisfying (2) then, in view of Lemma 3, 
it is separable and locally compact, so we infer that the space & (X ,X )  is 
completely metrizale by the metric of the uniform convergence on all compact 
sets. Let (C„: n e N ) be a sequence of compact neighbourhoods of £, such that

(3) X  =  U "  ! C„ and C„ cz IntC„ + 1, n e N ,

(cf. [ 6, §41, X, Theorem 8]). In virtue of Lemma 1 and 2 we have

&  =  n ;= i  { f ^ { X , X ) \  g ( f {x ) ,£ )  <  max{1/n, £>(x, £)}, xeC „} ,

so is a G a subset of ̂ (X ,  X )  and, by Alexandrov Theorem (cf. [5, §33, V I]), is 
topologically complete.

2. Generic properties. The results of this section are “product versions” of 
results given in [3 ] (cf. [3, Lemmas 3 and 4, Theorem 1, Lemma 5, Theorem 3, and 
Corollary]).

Let us denote by the subset of consisting of all functions taking the 
value r\ in a neighbourhood of (£, ri). For any (f ,  h) e x j f ’ define the mapping 
T (  f ,  <P by

T(f,h){q>)(x) =  /i(x,<jo[/(x)]), x e X .

In the sequel, ifC  c  X  and ę l ,(p2 map a subset of X  containing C into Y then we 
shall write

dc ((P i ,9 2) =  sup{||(p1(x )-<p2(x)||: x e C } .

LE M M A 4. Let Cbe a compact neighbourhood o f £ such that f  (C) c  C for any 
/ e  & . Then, for every (/, h) e 3F x J f 0 and for every positive number e, there exist 
open neighbourhoods °Uc (f ,  h, e) cz J* and f~c {f, h ,e )< ^ J ^ o ff  and h, respectively, 
such that for every (/', h') e °Uc {f, h, e) x V~c{f, h, e)

A  V  A  dc{ T ( f ' , h ’)k((p), T ( f ,h )k(<pj) <  e.
<pe<I> koeN  k ^ k o

P r o o f. Fix a pair (/, h) e S' x 0 and choose an open ball V cz C centered at 
£ and a positive number a such that

(4) h(x, y) =  rj, xeV,\\y-rj\\ ^  a.

Denote by cpf  h the unique solution of equation (1) in the class <£ (cf. [3, Lemma 2]) 
and fix a number b in such a manner that

(5) a +  dc((pf  h,ri) <  b.
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Fix a number £e(0 ,a ) and choose an integer n such that (cf. Lemma 2)

(6) /"(C ) c  V.

Since the restriction of h to the set C x { y e Y :  ||y — rj\\ ^  b} is uniformly 
continuous, we may find numbers e0,. . . ,en such that

(7) 0 < £ „ < . . . <  e0 =  e 

and, for every i e { 1 , . . . , « } ,

(8) ( x l , y l ) , { x 2, y 2) e C x { y e Y :  \\y-t]\\ ^  b } , Q ( x l t x 2) <  | |y i-y2ll <  e; 

imply \\h(x1, y 1) — h ( x 2, y 2)\\ <  £;_!-£,••

Wc{f,h ,e ) =  {/ 'e  J*: /'"(C ) <= V ,g ( f ' i(x), / '(x)) <  £ i + 1, x e C , i =  1,..., n— 1},

Y c(f ,h ,s )  =  {/ j'e J f: ||/i'(x,y)-/i(x,y)|| <  £„, x e C ,  \\y-ri\\ b}.

Clearly/ e °Uc {j\ h, e) (cf. (6)) and h e h, s). We shall show that h, e) is 
an open set in 2F. The map F:2F -*■ ^ {X ,  X), given by F ( f )  = / '|c, is continuous 
(cf. [ 6, §44, III, Theorem 1]), Observe also that

<%c (f ,h ,e )  =

=  F _ 1 ({0  6 ^ (C ,C ): gn{C) c  K Q{gl{x), f i x ) )  <  ei+1, x e C , i  =  1, ..., n -1 }).

Thus °Uc{f, h, e), as the counterimage of an open set** by the continuous mapping 
F, is an open subset of 3F. The openness of the set h, e) may be verified in 
a similar way.

Now fix a pair (/', h') e Wc(f ,  h, s) x "V~c (/, h, e) and aęe<P  and find a positive 
integer m in such a manner that

(9) \\(p(x)-ri\\ <  £„, x e f m(V ) u f ' m(V).

In virtue of [3, Lemma 2], the sequence (T ( f ,h )k(ę ): ke  N ) converges to 
(pf 'h uniformly on C, so by (5) we can additionally assume that

(10) dc (T { f ,h )k((p),(pf 'h) < b - a - d c {(pfih,rj), k ^  m.
Fix an x e V  Since f m~1( x ) e f m~1(V) c  V, we obtain, by (9), (7), and (4) 

T(f,h)(<p) U m~1W ]  =  M /m“ 1W ,<p [/m(x)]) =  rj.

Similarly

=  K r - \ x ) , c p U ' m{x)-]) =  I/, 

so, by inequalities (9), (5) and by the definition of s),

m / ^ ( < P ) [ / ,m“ 1w ]- !7 i i  =

=  | | ( x ) ,  ę [ / " " ( x ) ] ) (*), ? [/""(x)])II <  e„.

* ’ To see this use simply the metric o f the uniform convergence in 'S’ (C, C) (cf. [6, §44, V, Theo­
rem 2]).
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By induction we get

T ( f ,h )k( ( p ) l f m- k(x)-] =  »|, T (/ ',fc )* (ę ))[/ '"-* (x )] =  r,

\\T(f, h')k( ( p ) [ f 'm- k{xj]-ri\\ < e „ , fee {1, ..., m},

whence

T (f ,h n < p )(x )  =  r1, T ( r , h ) m(cp)(x) =  rj and \\T(f',hT(ę)-ri\\ <  eH. 

Using induction once more we have 

(n )  T ( f ,h )k(<p)(x) =  ri, T ( f ' , h )k(ę ) (x )  =  r,

and || T ( f ' ,h ' )k(ę)(x)-ri\\ <  e„, x e V ,  k ^  m.

Now we shall verify that, for every i e { 0, ..., n},

(12) || r (/ ',  h’f  (<p) f(x)] -  T (/, *)fc((p) [  ' (x) || <£„-,■

and || T  (/', /z')fc(<p) [/ '" “ {(x)] -  >71| <  b, \\T(f, h)k (<p) [ / " - ' ( * ) ] - r j  || <  b,

x e C ,  k >  m +  i.

For i =  0, inequalities (12) follow from (11) and (6). Assume (12) for an 
i e {  0, ..., n— l}.S ince/ '"~ (i + 1,(x )e/ '"~ <i + 1,(C) c= C, we infer, by the definitions 
o f^ c(/,/j,e)and (/, h, e) and from (12), (7) and (8), that for/c ^  m +  ( i+  l)and 
x e  C

II T ( f ,  h')k(cp) [ / ' " - (i + J)(x)] -  T (/, fc)*(<p) [ / " - (i+^ (x )] || =

=  ||/j'(/'"-(i + 1)(x), ^ / ^ “ ^ [ / ' " " ' ( x ) ] ) -  

- fc (/ " - ‘i+ 1>(x), *)*- 1(<p) [ / " _i(x)]|| ^

^  iifc'(/'"-(i+ i)(x), T f / ' . i i ' r ' w t r - i x ) ] -

-/ i(/ '"“ (l+1)(x), T { f ,  [/ '" _ i(x)])H +

+  IIh ( r - (i + 1 »(x), T ( f ,  h f  - 1 (ę>) [ / ' " - ‘ (X)]) -  

-fc (/ "-< i + 1)(x), T ( f ,  h)k~1((p) [/ "~ i(x)])|| <

^  (^n  — (i +  1) ^n — i )  ^  ^ n - ( i + l ) ,

whence, by (10) and (7), we have

II F (/ ', fr')*(<p) [/ '" “ <i + ̂ (x )] ->?|| ^

^  || T(f\  h')k{<p) [/ 'n- (i + J)(x )] -  T (/, f c ) »  [ / ” - (i+ 1((x)] || +

+  || T(/, h)k((f>) [ / " _(i + 1)(x)] — <P/,/.(x)|| +  ||<P/,*(x) —»j|| <

<  e„_(i+1) +  b - a  <  b,
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and

\ \ T {f ,h n < p ) [f -v+u (x)-]-r,\\ <

I IT ( / ,  h ) k ((p )  [ / " _< i+ 1 ,( x ) ]  —  (Pf,h{x)\\ +  ||( P f , h ( x )  —  r\|| <

<  £ „ - ( i + l )  +  b - a  <  b,

i.e. induction yields (12) for every le  {0, ..., n}. Putting i =  n in (12) we get

|| T (/', h f((p )(x ) -  T { f ,  h)k{<p)(x)|| <  a, x e C , k >  m +  n,

which completes the proof.
Repeating the proof of Lemma 4 of the paper [3 ] we get the following result 

(the method used in the proof of [3, Lemma 4] follows the pattern given by 
J. Myjak in [7, Theorem 1.2]).

LE M M A 5. Let C be a compact neighbourhood o f  £ such that f  (C) <= C for any 
/eJ*. Then, for every element (/, h) o f the set

(i3 ) m e )  =  n r - 1  { J v . H ^ * * o ® c ( f ' , h ' , i / k ) x ' r c (r ,h ', i/ k ) ,

equation (1) has exactly one solution cpe<P and for every (p0e<P the sequence 
(T ( f ,  h)k(<pQ):k £ N ) of successive approximations converges to <p uniformly on every 
compact subset o f X.

THEOREM  1. Suppose that the point £ has a compact neighbourhood in X. 
Then the set o f  all pairs ( f , h ) e S ' X j f  such that equation (1) has exactly one 
solution q>e<P and for every (po e 0  the sequence (T ( f ,  h)k((p0): k e N ) of successive 
approximations converges to ę  uniformly on every compact subset of X  is residual in 3F x ye.

P ro o f. Since there exists a compact neighbourhood of we can find 
a compact ball C centered at £. Observe that/(C) c  C for any/ e & The set &(C) 
defined by (13) is a G,, set. Moreover, since J t 0 is a dense subset of (cf. [2, 
Theorem 1]) and 3F x 0 c  ^ (C ), it is also a dense set. Consequently, the set 
J*(C) is residual and the theorem follows from Lemma 5.

We shall finish this section giving analogs of results of [3 ] concerning the 
problem of the continuous dependence of continuous solutions of equation ( 1). 
Their proofs will be omitted, because they can be directly reproduced following 
these of Lemma 5, Theorem 3 and Corollary from [3],

If (/, h) e ^  x and equation (1) has exactly one solution in the class <P, then 
we shall denote it by (pf  h. Existence of ę f  h in Lemma 6 follows from [3, 
Lemma 2],

LE M M A 6. Let C be a compact neighbourhood o f  £ such that / (C ) c  C for any 
f  £ S ' . I f  ( f ,  h) e S' x and e is a positive number, then

(/  > h') £ °Mc (f ,  h , e )x ,i r c (f ,  h, e) imply dc (ę f  ę r  h)  ^  e.

Given a subset C of X  denote by <PC the set of all restrictions of functions from 
<P to the set C.
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THEOREM  2. Let C be a compact neighbourhood o f  £ such that f ( C )  a  C for 
any / e # - and let 0t(C) be given by (13). Then the map Ac \$(C) -*  4>c , 
given by

^ c i f i  h) =  <P/,fc|c’

is well defined and continuous in M(C) (which is a residual subset of 3F x 
C O RO LLARY. Let (C„: n e N )  be a sequence o f  compact neighbourhoods of 

£ satisfying (3) and such that f  (C„) a  Cnfor every positive integer n andf e 3F. Then 
the map A: -> <P, given by

A ( f h )  =  (pf 'h,

is well defined and continuous in f )  ' = Si(Cn) (which is a residual subset of 3P x M ).
REM ARK  3. If X  is a compact space or a closed subset of a finite-dimensional 

Banach space, then it is enough to define C„ as the closed ball centered at £ and 
with the radius n for every positive integer n.

3. A density problem. Now it is natural to raise the question: how the set of all 
pairs (/, h )e^ F x  J f, for which equation ( 1) has no solution in the class $, is 
scattered in the space 3F x J f  ? It turns out that in some interesting cases this set is 
dense (cf. Theorem 3 below). But, in general, it is not true. For example, if X  is 
a discrete space then the set consists of one element only, viz., the constant 
function taking the value Ł, and, consequently, for every (/, h) e &  x J f  equation 
( 1) has exactly one solution in the class 0  (namely, the function h(-,rjj).

LE M M A 7. I f  X  is a convex subset of a normed space, then the set of all 
functions f  e .‘F  such that the set { f k(x0): /ceN} is infinite for an x 0 e X  is 
dense in 3F.

P ro o f. Suppose that A" is a subset of a space endowed with a norm || ||. Fix 
a 9 e (0 ,l).  Because of convexity of X  the formula

g{x) =  3 (x -£ ) +  £, x e X ,

defines the function g : X  -» X  and, since 9 e (0,1), g e . Define # 0  as the set of all 
functions from 3F which coincide with g on a neighbourhood of We shall show 
that # 0  is a dense subset of

Fix a nonvoid open subset °ll oigF  and let/ e fy. There exist a positive integer 
n, compact subsets C 1, . . . , C n and open subsets U l , .. ., Un of X  such that

/ e n ^ f / ' e ^ g c ^ c f .

Put

sk =  min{IIu - v ||: u e f (C k), v e X \ U k}, Ice (1 , . . . , « } ,

and

£ =  min{£1,...,£ 11}.
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Since/(Ck) is compact, X \ U k is closed and/ (Ck) n  (X\t/k) =  0 , is positive for 
every ke {1,.. .  ,n}, and so is e. Put C =  x Ck. Clearly

||/'(x)-/(x)|| <  e, x e C }  c  " i {/ ' e f ' { C k) a  U k},

whence

(14) / e { / ' e &'■ ll/'(x)-/(x)|| <  e, x e C }  c  m.

Since /(£) =  g(£), there exists an open neighbourhood U  of £ such that

(15) \\g{x)-f(x)\\ <  e, x e U .

Let F  be a closed neighbourhood of Ę contained in U. In view of Urysohn Lemma 
(cf. [5, §14, IV ]) there exists a function p e ^ ( X ,  [0 ,1 ]) such that

(16) p(F) c  {0 } and p{X\U) c  {1 }.

We shall verify that the function/ ' =  p f+ ( l  — p)g belongs to n  °U. Indeed, 
since X  is convex, /  maps X  into itself. Moreover, for any x e l  we have

ll/'(x)-£H =  l|p(x)(/(x) -  f )  +  (1 -p (x ) ) (g (x )  -  Z) II ^

^  p(x) II/ (x) <̂|| + ( 1  - p ( x ) )  ||fif(x)-̂ || SC

<  P(x)y/(||x — |̂|) +  (1 — p(x))y9(||x — î ll) ^

^  max{y/(||x-^||),y9(||x-(J||)},

whenće/' e  3F. In view of (16), f '\ F =  g |F, so/ ' e #"0. Moreover, it follows from 
(15) and (16) that for every x e X

||/'(x)-/(x)|| =  ||(l-p(x))(^(x)-/(x))|| =  ( l -p (xj)\\g(x)-f(x )\\  <  e.

Consequently, on account of (14),/' e °U, which completes the proof of density of 
in ■¥.
Let / be an element of and choose a neighbourhood U  of £ such that

/ (x ) =  3(x — £) +  £, x e U .

We can assume that / (U ) cz U. I f x 0 e L/\{<̂ } then

/ k(x0) =  S\x0- 0  +  L  ke  N ,

so the set {/ fc(x0): /ceN} is infinite.
Using this lemma we obtain, as an immediate consequence of [3, Theorem 2], 

the following result.
THEOREM  3.** Suppose that X  is a convex subset of a normed space. 

Then the set of all pairs (/, h) e x for which equation ( 1) has no solution in the 
class <P is dense in $F x Jf.

* ’Here (Y, || ||) may be an arbitrary nontrivial normed space.
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