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MAREK, K U C Z M A *

NO TE  O N  M U LT IPL IC A T IV E  FU N C TIO N S

Abstract. The author shows how to fill a gap occurring in [3; § 13.1].

1. In [3 ] one finds a lemma (Lemma 13.1.4) dealing with the functional 
equation

( 1) f ( x y ) = f ( x ) f ( y ) .

We quote here this lemma as Lemma 1 (D0 =  D\{0}, R denotes the set of all real 
numbers).

LE M M A 1. I f  D is one o f  the sets

(2) (0,1), [0,1), ( - 1 ,1 ) ,  ( — 1,0) u (0,1), (1, oo),

and if f 0: D -+ R, / 0 ^  0, is a solution o f  (1), then the function 
/ i C D u C ó ^ l l ^ R  given by

(3) f ( x )

f 0(x) if x e D ,

1 i f  x =  1 ,

[/o(* _ 1 ) ] _1 if  x e D ó \

satisfies equation (1) in D u D 0 1 u {1 } andfQ = f\ D .
Unfortunately this lemma is not quite correct, and at any case it does not serve 

its purpose. Lemma 1 was intended to yield the following result (Corollary 13.1.1 
in [3 ]) which would allow one to replace considering equation (1) on a set D of 
a form listed in (2) by considering it on one of the sets

(4) (0, oo), [0, go), ( - o o ,0 )  u (0, oo), R.

LE M M A  2. I fD  is one o f sets (2), andf0:D -> R satisfies equation (1), then there 
exist a set G ofform (4) and a function f  :G -* R satisfying (1) such that D c  G and
f o = f \ D .

The problem lies in the fact that if D is one of

(5) ( - 1 ,1 ) ,  ( - l , 0 ) u ( 0 , l ) ,

then the set D u Dq 1 u {1 } is not one of sets (4): it does not contain — 1. It is not 
even closed under multiplication.

This situation can be easily mended. It is enough to define/at the point 
x =  — 1.

So let D be one of sets (5). For arbitrary x ,y e  D0 we have — x, —y e D 0, and 
by ( 1)

M ~ x ) f 0(y) = f 0( - x y )  = f o ( x ) f o ( - y ) -
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It was shown in [3 ] that/ 0 is never zero in D0 (cf. also Lemma 4 below). Hence, for 
arbitrary x , y e D 0,

(6)

Relation (6) means that

/o(-x) fo(-y)
/oW foiy) '

(7) e =  r  /.a > x e D 0,
f o i - x )

/ o W  ’

is constant. Setting in (6) y =  — x we obtain 

(8) £2 = 1.

Relation (7) may be written as

(9) U-x) = e/0(x)

for x e D 0. As was shown in [3 ] (Lemma 13.1.3; cf. also Lemma 3 below)/o(0) is 
either 0 or 1; in the latter case /0(x) =  1 for all x e D. Thus (9) is fulfilled also for 
x =  0. Consequently (9) holds in the whole of D.

Now we put

(1 0 ) / ( - l )  =  e,

where e is defined by (7). It remains to verify that/ defined by (3) and (10) satisfies 
equation ( l J i n D u O o ' u l l J u l - l } .  Beside the cases dealt with in [3] we need 
consider also the cases where one of x, y, xy is — 1.

I f  x =  — 1, y e D, then (1) results from (3), (9) and (10). If x =  — 1, y =  1, then 
we obtain (1) from (3) and (10). If x =  y =  — 1, then (3), (10) and (8) imply (1). If 
x =  — 1, y e D q \ then also —y e D ó 1 and by (3), (9), (8) and (10)

f ( x y )  = f ( - y ) =  [ / „ ( - y - 1) ] - 1 =  [ e /o C T 1) ] ' 1 =  

=  ^ [ / o C r 1) ] -1  = f ( x ) f ( y ) .

If x e D ,  y e  D q 1, xy =  —1, then y " 1 =  —x and

f { x ) f ( y ) = f 0 ( x ) [ f 0 {y~1) Y 1 — fo (x ) [ / o (  —x )]  =  

= / o W [ « / o W ] _1 = e = f ( x y )

in virtue of (3), (9), (8) and (10).
The cases where y =  —1, or x e D 0_1, y e D, xy =  — 1, follow from those 

already considered in view of the commutativity of the multiplication of real 
numbers.

This takes care of the inaccuracies in [3; § 13.1].
2. The consideration of the preceding section may be put into a more general 

setting.
In the sequel D denotes a multiplicative semigroup of real numbers, i.e. a set of 

real numbers such that x y e D  whenever x e D  and y e D. We put D0 =  D\{ 0}. G0
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denotes the group generated1 by D0 and we write G =  G0 u  D. Thus G = G0 u  
u  {0} if 0 e D ,  and G = G0 if 0 $ D.

Sometimes D will be subjected to further conditions.
(i) For every x e D  n ( 0, oo), x \, there exists an ax >  0 such that if x <  1, 

then yx-1 e D  for every y e D  n  (0,ocx), and if x > 1, then y x ~ l e D  for every 
y e D n  (<xx, oo).

(ii) If 1 e D  and D0\ {  — 1,1} /  0 ,  then there exists an x e  D0\{ — 1,1} such 
that x -1 eD .

REMARK 1. Evidently, if D 0 is a multiplicative group, then D fulfils 
conditions (i) and (ii).

Let F be a group with zero. This means that F is a set endowed with an inner 
binary operation •, and there exists an element 0  e  F such that F0 =  F \ { 0 }  with 
the operation • is a group (not necessarily commutative) and 0 a  =  a 0  =  0  for 
every a e F .  The neutral element of the group F0 will be denoted by e: 
ea — ae — a for every a e F .

We start with two lemmas. Such results were proved in [3] under less general 
conditions, and although the proofs in the present case do not differ essentially 
from those in the special case, we give them here for the sake of completeness.

LEMMA 3. Let D b e a  multiplicative-semigroup o f  real numbers such that 0 e D ,  
and let F b e a  group with zero. I f  a function f \ D - * F  satisfies equation (1) in D, then 
eitherf{O) =  0 o r f  (0) =  e. In the latter case f  (x) =  e for all x e D .

P ro o f. Setting in (1) x = y  =  0 we obtain /(0 ) = / ( 0)2, whence either 
/(0 ) =  0 ,  o r/(0 ) = e. In the latter case we have by (1) for an arbitrary x e D

COROLLARY. Let D =£ {0} be a multiplicative semigroup of  real numbers and 
let F be a group with zero. I f  a function f 0:D —► F satisfies equation (1 )in D, then the 
conditions

are equivalent.
LEMMA 4. Let D be a multiplicative semigroup of  real numbers fulfilling 

conditions (i) and (ii), and let F be a group with zero. I f  a function f  :D —> F satisfies 
equation (1) in D and f ( u)  =  0  for  a u e D 0, then f { x )  =  0  for all x e D .

P ro o f. By (1) we have f ( u 2) =  f ( u ) 2 =  0 .  Therefore we may assume that 
u >  0. We will distinguish three cases.

I. u <  1. Take an arbitrary x e D  n ( 0 ,au) (cf. (i)). Then

/(x )  = f { x ) e  = / ( x ) / ( 0) = / ( 0) = e.

/o ( x )  =  0  for x e D 0

(12) / 0(x) =  0  for  x e D

f ( x ) = f ( x u  1u ) = f ( x u  1) f ( u ) = f { x u  1) 0  =  0 .

1 If D0 = 0  we assume that also G0 =  0 .
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Thus

(13) f ( y )  =  0  for y e D n  (0, au).

For an arbitrary x e D n ( 0 , 1) we may find a positive integer n such that 
x" e D n  (0, au). We get from (1 )/ (x") = /  (x)", whence by (13)/ (x)" = 0 , which 
implies /  (x) = 0 . Consequently

(14) f ( y )  =  0  for y e  D o  (0,1).

Now suppose that 1 e D. Observe that u e D0\ {  — 1,1} so that D0\ {  — 1,1} ¥= 
^  0 .  By (ii) there exists a t e D0\ {  — 1,1} such that t ~ 1 e D, and again we may 
assume that t > 0 (replacing, if necessary, t by t2). Of the two numbers t and t ~ 1 
one belongs to D n  (0,1). By (1) and (14)

(15)  / d ) = / ( t r 1) = / ( 0 / ( r 1) =  0 .

If z e D n ( l,oo), then there exists a positive integer m such that v — 
= uzm e D n  (1, oo), whence f {v )  =  / (u)/(zm) = 0 / (zm) = 0 . Hence for x e D n  
n  (a„, oo)

f { x )  = f { x v ~ h )  = /(x i)_1)/(t;) = /(x u _1) 0  = 0 .

Thus

(16) /(y ) = 0  for y e D n  (aK, oo).

For an arbitrary x e / ) n ( l ,o o )  we have x" e D n  (aK, oo) for a sufficiently large 
positive integer n, whence by (1) and (16) /(x)" = / ( x ”) = 0 . Consequently 
f i x )  =  0  and

(17) /(y ) =  ® for y e D  n ( l ,  oo).

By (14), (15) and (17)

(18) /(y ) = 0  for y e D n  (0, oo).

For an arbitrary x e D 0 we have x 2 e D  n  (0, oo) and by (1) and (18) f ( x ) 2 = 
=  /  (x2) = 0 , whence f i x )  — 0  and consequently

/(y ) = 0  for y e D 0.

In virtue of the Corollary to Lemma 3 we infer hence that/  (x) = 0  for all x e  D.
II. u =  1. Then we have for every x e D

f i x )  = /(« x ) = /(u ) /(x )  = 0 /  (x) =  0 .

III. u > 1. The proof is similar to that in case I.
THEOREM 1. Let D be a multiplicative semigroup o f  real numbers fulfilling 

conditions (i) and (ii), and let F be a group with zero. I f  a function f 0:D -» F,f0 ^  0, 
satisfies equation (1) in D, then there exists a unique function f : G - > F  satisfying 
equation (1) in G and such that f \ D  =  / 0.
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P ro o f. Since/ 0 #  0, we have by Lemma 4

(19) / 0(x) #  0  for x e D 0.

As has been proved in [1] (cf. also [3; Corollary 18.2.1]) there exists a unique 
extension f : G 0 ^ F 0 o f/01D0 onto G0 satisfying equation (1) in G0. It remains to 
define /  at 0 in the case where 0 e D.

So suppose that 0 e D. We put

(20) / ( 0) = / o(0).

Clearly this is the only possible choice i f / i s  to be an extension o f /0, which 
(together with the uniqueness o f f  | G0) proves the uniqueness of the extension. We 
must check that /  satisfies equation (1) in G.

Take arbitrary x , y e G .  If x , y e G 0, then (1) results from the properties of 
/ |G 0. If one of x , y  is zero and /(0 ) =  0 , then

/M /O ')  =  0  = / ( 0) = f ( x y ) .

If one of x, y  is zero and/  (0) =£ 0 , then by (20) and Lemma 3/(x) = / 0(x) =  e for 
x e D ,  and by the uniqueness of the extension /(x )  = e for x eG . Thus (1) is 
fulfilled in this case, too.

REMARK 2. In the proof of Theorem 1 conditions (i) and (ii) were used only 
to derive relation (19). If we assume that f 0 fulfils (19), then conditions (i) and (ii) 
may be removed from the hypotheses of Theorem 1.

THEOREM 2. Let D be an arbitrary multiplicative semigroup of  real numbers, 
let F be a group with zero, and let the function f 0:D -* F satisfy equation (1) in D. 
The function f 0 may be extended onto G to a function f : G - * F  satisfying equation
(1) in G if and only if it fulfils either (11) or (19).-When it exists, the extension is 
unique.

P ro o f. If/ 0 fulfils (19), then the existence and the uniqueness of the extension 
/  results from Theorem 1 and Remark 2.

Iff 0 fulfils (11), then according to the Corollary2 to Lemma 3 it fulfils also
(12). The function

(21) /(x )  = 0  fo r x e G

is an extension of f 0 satisfying equation (1) in G. Suppose that / i s  another such 
extension. In view of Remark 1 we may use Lemma 4 with D replaced by G and 
f b y f .  By (11) we have for any u e D 0 cz G0,since/|Z) =  f 0J { u )  — 0 .B yLem m a4

(22) /(x )  =  0  for x e G .

Consequently/ = /  which means that function (21) is the unique extension of/ 0 
satisfying equation (1) in G.

Conversely, suppose thatf 0 admits an extension onto G to a solutionf : G - * F  
of equation (1). If /(x ) ^  0 in G0, then / 0 =  f \ D  fulfils (19). And if there exists

2 If t> {0}. If D =  {0} (i.e. D0 =  0 ) ,  then the Theorem is trivial and there is nothing to prove.
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a u e G0 such that/  (u) = 0 , then by Lemma 4 (compare Remark l ) f ( x )  = 0  in 
G0 and so f 0 fulfils (11).

3. Let us observe that Lemma 2 follows easily from Theorem 2 and Lemma 4, 
whereas Theorem 1 replaces Lemma 1. On the other hand the results of §2 may be 
applied to many other multiplicative semigroups of real numbers beside (2). (E.g. 
D may be (0,s) or (0,s], s <  1, or (s, oo) or [s, oo), s > 1, or any of these sets 
supplemented by 0 and/or its symmetric reflection on the negative axis, and still 
many other semigroups.)

However, D cannot be quite arbitrary. We are going to show by suitable 
examples that conditions (i) and (ii) in Lemma 4 and Theorem 1 are essential. In 
both examples below we put F =  R.

EXAMPLE 1. Let D =  N be the set of positive integers. D does not fulfil 
condition (i). (It does not fulfil condition (ii) either, but this can be avoided if we 
replace N by N\{ 1}). In this case G is the group of all positive rationals. The 
function

satisfies equation (1) in D (cf. also [2; p. 195]). Obviously Lemma 4 is not valid in 
this case. Also it follows from Theorem 2 that f 0 cannot be extended onto G to 
a function/:G  -*■ R satisfying equation (1) in G.

EXAMPLE 2. Let D = (0,1]. In this case D fulfils condition (i) (ax = x), but 
does not fulfil (ii). Now G =  (0, oo). The function

satisfies equation (1) in D. Obviously also in this case Lemma 4 is not valid and f 0 
cannot be extended onto G to a function f : G  -> R satisfying equation (1) in G.

Of course, what has been said does not mean that (i) and (ii) cannot be 
replaced by other conditions. One such possibility is mentioned in Remark 2. But 
if we postulate (19), then Theorem 1 becomes an almost trivial consequence of the 
result in [ 1],
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fo(x) =
0 for even x,
1 for odd x,
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