KAZIMIERZ NIKODEM*

ON SOME PROPERTIES OF QUADRATIC STOCHASTIC PROCESSES

Abstract

In this paper we prove that every measurable quadratic stochastic process $X: \mathbf{R}^{N} \times \Omega \rightarrow \mathbf{R}$ is continuous and has the form $$
X(x, \cdot)=\sum_{i, j=1}^{N} x_{i} x_{j} Y_{i, j}(\cdot) \quad \text { (a.e.), }
$$ where $x=\left(x_{1}, \ldots, x_{N}\right) \in \mathbf{R}^{N}$ and $Y_{i, j}: \Omega \rightarrow \mathbf{R}$ are random variables. Moreover, we give a proof of the stability of the quadratic stochastic processes.

The subject of the present paper is to exhibit some properties of quadratic stochastic processes. Theorems $1,5,6$ and 7 give some conditions for a quadratic process to be continuous. Similar theorems for convex functions were proved, among others, by Bernstein and Doetsch [1], Ostrowski [10] and Sierpiński [11] and for quadratic functionals by Kurepa [5]. In the case of additive stochastic processes such theorems were proved by Nagy [7]. Theorem 8 concerns the stability of quadratic stochastic processes and it yields an analogue of the theorem of Hyers [4] for additive functions.

Let (Ω, \mathscr{A}, P) be an arbitrary probability space. A function $X: \mathbf{R}^{N} \times \Omega \rightarrow \mathbf{R}$ (\mathbf{R} denotes here the set of all real numbers) is called a stochastic process iff for all $x \in \mathbf{R}^{N}$ the function $X(x, \cdot): \Omega \rightarrow \mathbf{R}$ is a random variable, i.e. it is an \mathscr{A}-measurable function. A stochastic process $X: \mathbf{R}^{N} \times \Omega \rightarrow \mathbf{R}$ is called

- quadratic iff for all $x, y \in \mathbf{R}^{N}$

$$
\begin{equation*}
X(x+y, \cdot)+X(x-y, \cdot)=2 X(x, \cdot)+2 X(y, \cdot) \quad \text { (a.e.) } \tag{1}
\end{equation*}
$$

- P-bounded on a non-empty set $A \subset \mathbf{R}^{N}$ iff

$$
\lim _{n \rightarrow \infty} \sup _{x \in A}\{P(\{\omega \in \Omega:|X(x, \omega)| \geqslant n\})\}=0 ;
$$

- continuous at a point $x_{0} \in \mathbf{R}^{\boldsymbol{N}}$ iff

$$
\underset{x \rightarrow x_{0}}{P-\lim _{x}} X(x, \cdot)=X\left(x_{0}, \cdot\right),
$$

where P-lim denotes the limit in probability.
In a similar way as in the case of quadratic functionals (cf. e.g. [5]) one can prove the following

LEMMA 1. If a stochastic process $X: \mathbf{R}^{N} \times \Omega \rightarrow \mathbf{R}$ is quadratic, then $X(q x, \cdot)=q^{2} X(x, \cdot)\left(\right.$ a.e.) for all rational q and $x \in \mathbf{R}^{N}$.

LEMMA 2. If a stochastic process $X: \mathbf{R}^{N} \times \Omega \rightarrow \mathbf{R}$ is quadratic, then for all $x, y, z \in \mathbf{R}^{N}$

$$
\begin{aligned}
X(x+y+z, \cdot)+X(x, \cdot)+ & X(y, \cdot)+X(z, \cdot)
\end{aligned} \quad \text { } \quad \begin{aligned}
& =X(x+y \cdot \cdot)+X(y+z, \cdot)+X(z+x, \cdot) \quad(\text { a.e. })
\end{aligned}
$$

Proof. Let $x, y, z \in \mathbf{R}^{N}$. Using equation (1) three times (for suitable variables) we obtain

$$
\begin{aligned}
& X(x+y, \cdot)+X(y+z, \cdot)+X(z+x, \cdot)= \\
&=\frac{1}{2}[X(x+2 y+z, \cdot)+X(x-z, \cdot)]+X(z+x, \cdot)= \\
&=\frac{1}{2}[2 X(x+y+z, \cdot)+2 X(y, \cdot)-X(x+z, \cdot)+X(x-z, \cdot)]+X(z+x, \cdot)= \\
&=X(x+y+z, \cdot)+X(y, \cdot)+\frac{1}{2} X(x+z, \cdot)+\frac{1}{2} X(x-z, \cdot)= \\
&=X(x+y+z, \cdot)+X(y, \cdot)+X(x, \cdot)+X(z, \cdot) \quad \text { (a.e.), }
\end{aligned}
$$

which was to be proved.
LEMMA 3. If a stochastic process $X: \mathbf{R}^{N} \times \Omega \rightarrow \mathbf{R}$ is quadratic and P-bounded on some set $A \subset \mathbf{R}^{N}$ with non-empty interior, then it is P-bounded on any bounded subset of \mathbf{R}^{N}.

Proof. Since $\operatorname{Int} A \neq \varnothing$, there exists a ball $K\left(x_{0}, r\right)$ (with $\left.r>0\right)$ contained in A. First we shall show that the process X is P-bounded on the ball $K(0, r)$. For, let us take a point $y \in K(0, r)$. By equation (1) we have

$$
\left.|X(y, \cdot)| \leqslant \frac{1}{2}\left|X\left(x_{0}+y, \cdot\right)\right|+\frac{1}{2}\left|X\left(x_{0}-y, \cdot\right)\right|+X\left(x_{0}, \cdot\right) \right\rvert\, \quad(\text { a.e. }),
$$

whence, for every $n \in \mathbf{N}$,

$$
\begin{aligned}
& P(\{\omega \in \Omega:|X(y, \omega)| \geqslant n\}) \leqslant P\left(\left\{\omega \in \Omega:\left|X\left(x_{0}+y, \omega\right)\right| \geqslant \frac{n}{3}\right\}\right)+ \\
& +P\left(\left\{\omega \in \Omega:\left|X\left(x_{0}-y, \omega\right)\right| \geqslant \frac{n}{3}\right\}\right)+P\left(\left\{\omega \in \Omega:\left|X\left(x_{0}, \omega\right)\right| \geqslant \frac{n}{3}\right\}\right) \leqslant \\
& \quad \leqslant 3 \sup \left\{P\left(\left\{\omega \in \Omega:|X(x, \omega)| \geqslant \frac{n}{3}\right\}\right): x \in A\right\} .
\end{aligned}
$$

The above inequality holds for all $y \in K(0, r)$; therefore also $\sup \{P(\{\omega \in \Omega:|X(y, \omega)| \geqslant n\}): y \in K(0, r)\} \leqslant$

$$
\leqslant 3 \sup \left\{P\left(\left\{\omega \in \Omega:|X(x, \omega)| \geqslant \frac{n}{3}\right\}\right): y \in A\right\}
$$

which implies that the process X is P-bounded on the ball $K(0, r)$. Now, assume that the set $B \subset \mathbf{R}^{N}$ is bounded and take a positive rational number q such that $B \subset K(0, q r)$. Then, for every $x \in B$ and $n \in \mathbf{N}$, we have

$$
\begin{aligned}
P(\{\omega \in \Omega:|X(x, \omega)| \geqslant n\}) & =P\left(\left\{\omega \in \Omega: q^{2}\left|X\left(\frac{x}{q}, \omega\right)\right| \geqslant n\right\}\right) \leqslant \\
& \leqslant \sup \left\{P\left(\left\{\omega \in \Omega:|X(z, \omega)| \geqslant \frac{n}{q^{2}}\right\}\right): z \in K(0, r)\right\} .
\end{aligned}
$$

Since the process X is P-bounded on the ball $K(0, r)$, this implies that X is P-bounded on the set B too. This ends our proof.

Now we shall prove a theorem giving a characterization of continuous quadratic processes.

THEOREM 1. If a stochastic process $X: \mathbf{R}^{N} \times \Omega \rightarrow \mathbf{R}$ is quadratic, then the following conditions are equivalent:

1) X is continuous at every point $x \in \mathbf{R}^{N}$,
2) X is continuous at some point $x_{0} \in \mathbf{R}^{N}$,
3) X is P-bounded on some set $A \subset \mathbf{R}^{N}$ with non-empty interior,
4) there exist random variables $Y_{i, j}: \Omega \rightarrow \mathbf{R}, i, j=1, \ldots, N$, such that

$$
X(x, \cdot)=\sum_{i, j=1}^{N} x_{i} x_{j} Y_{i, j}(\cdot) \quad \text { (a.e.) for every } x=\left(x_{1}, \ldots, x_{N}\right) \in \mathbf{R}^{N} .
$$

Proof. Implication 1) $\Rightarrow 2$) is trivial.
To prove the implication 2$) \Rightarrow 3$), assume that the process X is continuous at a point $x_{0} \in \mathbf{R}^{N}$. Since for any $x \in \mathbf{R}^{N}$

$$
\left.X(x, \cdot)=\frac{1}{2}\left[X\left(x_{0}+x, \cdot\right)+X\left(x_{0}-x, \cdot\right)-2 X\left(x_{0}, \cdot\right)\right] \quad \text { (a.e. }\right)
$$

then the process X is also continuous at the point $0 \in \mathbf{R}^{N}$. We shall show that X is P-bounded on the ball $K(0,1)$. Suppose the contrary. Then there exist an $\varepsilon>0$ and a sequence $\left(x_{n}\right)_{n \in \mathbf{N}}$ such that $x_{n} \in K(0,1)$ for $n \in \mathbf{N}$, and $P\left(\left\{\omega \in \Omega:\left|X\left(x_{n}, \omega\right)\right| \geqslant\right.\right.$ $\geqslant n\})>\varepsilon$. Now, for every $n \in \mathbf{N}$, take a rational q_{n} such that $n \cdot q_{n}^{2} \in(1,2)$. Then $q_{n} \rightarrow 0$, and so $z_{n}:=q_{n} x_{n} \rightarrow 0$. On the other hand, we have

$$
\begin{aligned}
P\left(\left\{\omega \in \Omega:\left|X\left(z_{n}, \omega\right)\right| \geqslant 1\right\}\right) & \geqslant P\left(\left\{\omega \in \Omega:\left|X\left(q_{n} x_{n}, \omega\right)\right| \geqslant n q_{n}^{2}\right\}\right)= \\
& =P\left(\left\{\omega \in \Omega:\left|X\left(x_{n}, \omega\right)\right| \geqslant n\right\}\right)>\varepsilon,
\end{aligned}
$$

which contradicts the continuity of X at 0 .
$3) \Rightarrow 4$). Assume that the process $X: \mathbf{R}^{N} \times \Omega \rightarrow \mathbf{R}$ is quadratic and P-bounded on a set with non-empty interior and consider the process $B: \mathbf{R}^{N} \times \mathbf{R}^{N} \times \Omega \rightarrow \mathbf{R}$ defined by

$$
B(x, y, \omega):=\frac{1}{2}[X(x+y, \omega)-X(x, \omega)-X(y, \omega)],(x, y, \omega) \in \mathbf{R}^{N} \times \mathbf{R}^{N} \times \Omega .
$$

This process is additive with respect to the first and second variable, that is for every $x, y, z \in \mathbf{R}^{N}$

$$
B(x+y, z, \cdot)=B(x, z, \cdot)+B(y, z, \cdot) \quad \text { (a.e.) }
$$

and

$$
B(x, y+z, \cdot)=B(x, y, \cdot)+B(x, z, \cdot) \quad \text { (a.e.). }
$$

Indeed, by the definition of the process B and Lemma 2 we have

$$
\begin{aligned}
& 2[B(x+y, z, \cdot)-B(x, z, \cdot)-B(y, z, \cdot)]= \\
& \qquad \begin{array}{l}
=X(x+y+z, \cdot)-X(x+y, \cdot)-X(z, \cdot)-X(x+z, \cdot)+ \\
\quad+X(x, \cdot)+X(z, \cdot)-X(y+z, \cdot)+X(y, \cdot)+X(z, \cdot)=0 \quad \text { (a.e.). }
\end{array}
\end{aligned}
$$

The other of the above two equalities follows from the first one, because the mapping B is symmetric with respect to the first two variables. Now, fix a point $y \in \mathbf{R}^{N}$ arbitrarily. It follows from the definition of B that

$$
|B(x, y, \cdot)| \leqslant \frac{1}{2}|X(x+y, \cdot)|+\frac{1}{2}|X(x, \cdot)|+\frac{1}{2}|X(y, \cdot)|,
$$

and hence, for every $x \in K(0,1)$ we have

$$
\begin{aligned}
& P(\{\omega \in \Omega:|B(x, y, \omega)| \geqslant n\}) \leqslant P\left(\left\{\omega \in \Omega:|X(x+y, \omega)| \geqslant \frac{n}{3}\right\}\right)+ \\
& \quad+P\left(\left\{\omega \in \Omega:|X(x, \omega)| \geqslant \frac{n}{3}\right\}\right)+P\left(\left\{\omega \in \Omega:|X(y, \omega)| \geqslant \frac{n}{3}\right\}\right) \leqslant \\
& \leqslant 3 \sup \left\{P\left(\left\{\omega \in \Omega:|X(z, \omega)| \geqslant \frac{n}{3}\right\}\right): z \in K(0,\|y\|+1)\right\} .
\end{aligned}
$$

Since the process X is P-bounded on the ball $K(0,\|y\|+1)$ (Lemma 3), this implies that the process B, as the function of the first variable, is P-bounded on the ball $K(0,1)$. Because additive stochastic processes P-bounded on a set with non-empty interior are continuous (see Theorem 4 in [8]), the process B is continuous with respect to the first variable. Now consider the processes $B_{i}: \mathbf{R} \times \Omega \rightarrow \mathbf{R}, \quad i=1, \ldots, N, \quad$ defined by $B_{i}(t, \omega):=B\left(t e_{i}, y, \omega\right)$, where $\left\{e_{i}, i=1, \ldots, N\right\}$ is the ortonormal base of the space \mathbf{R}^{N} over \mathbf{R}. These processes are additive and continuous; therefore, by the theorem of Nagy ([7]), $B_{i}(t, \cdot)=t B_{i}(1, \cdot) \quad$ (a.e.) for every $t \in \mathbf{R}$. Now, taking a point $x=x_{1} e_{1}+\ldots+x_{N} e_{N} \in \mathbf{R}^{N}$, we have

$$
\begin{align*}
B(x, y, \cdot) & =\sum_{i=1}^{N} B\left(x_{i} e_{i}, y, \cdot\right)=\sum_{i=1}^{N} B_{i}\left(x_{i}, \cdot\right)=\sum_{i=1}^{N} x_{i} B_{i}(1, \cdot)= \\
& =\sum_{i=1}^{N} x_{i} B\left(e_{i}, y, \cdot\right) \quad \text { (a.e.) } \tag{a.e.}
\end{align*}
$$

Since the process B is symmetric with respect to the first two variables, we have also

$$
B(x, y, \cdot)=\sum_{i=1}^{N} y_{i} B\left(x, e_{i} \cdot \cdot\right) \quad \text { (a.e.), }
$$

where $y=y_{1} e_{1}+\ldots+y_{N} e_{N}$. From the equalities obtained above we get, for every $x=\left(x_{1}, \ldots, x_{N}\right), y=\left(y_{1}, \ldots, y_{N}\right)$,

$$
B(x, y, \cdot)=\sum_{i, j=1}^{N} x_{i} y_{j} B\left(e_{i}, e_{j}, \cdot\right)=\sum_{i, j=1}^{N} x_{i} y_{j} Y_{i, j}(\cdot) . \text { (a.e.), }
$$

where $Y_{i, j}:=B\left(e_{i}, e_{j} \cdot \cdot\right)=\frac{1}{2}\left[X\left(e_{i}+e_{j}, \cdot\right)-X\left(e_{i} \cdot \cdot\right)-X\left(e_{j}, \cdot\right)\right], i, j=1, \ldots, N$.
Since $B(x, x, \cdot)=X(x, \cdot)$ (a.e.), we obtain

$$
\left.X(x, \cdot)=\sum_{i, j=1}^{N} x_{i} x_{j} Y_{i, j}(\cdot) \quad \text { (a.e. }\right),
$$

which was to be proved.
Now we shall prove the implication 4$) \Rightarrow 1$). Let us fix a point $x_{0} \in \mathbf{R}^{N}$ and take a sequence $\left(x_{n}\right)_{n \in \mathrm{~N}}$ converging to x_{0}. Let $x_{0}=\left(x_{0,1}, \ldots, x_{0, N}\right)$ and $x_{n}=$ $=\left(x_{n, 1}, \ldots, x_{n, N}\right), n \in \mathbf{N}$. Then

$$
\underset{n \rightarrow \infty}{P-\lim } \sum_{i, j=1}^{N} x_{n, i} x_{n, j} Y_{i, j}=\sum_{i, j=1}^{N} x_{0, i} x_{0, j} Y_{i, j},
$$

because the sequence of random variables $\left(\sum_{i, j=1}^{N} x_{n, i} x_{n, j} Y_{i, j}\right)_{n \in \mathrm{~N}}$ is convergent on Ω to the random variable $\sum_{i, j=1}^{N} x_{0 ; i} x_{0, j} Y_{i, j}$ and the measure P is finite. Since

$$
X\left(x_{n}, \cdot\right)=\sum_{i, j=1}^{N} x_{n, i} x_{n, j} Y_{i, j}
$$

and

$$
X\left(x_{0}, \cdot\right)=\sum_{i, j=1}^{N} x_{0, i} x_{0, j} Y_{i, j} \quad \text { (a.e.), }
$$

we have also

$$
\underset{n \rightarrow \infty}{P-\lim _{n}} X\left(x_{n}, \cdot\right)=X\left(x_{0}, \cdot\right) .
$$

This completes the proof of our theorem.
REMARK 1. An analogous theorem for $N=1$ we have proved in [9]. However, the methods used in that paper are not applicable in the present
situation because the basic Lemma 5 from that paper is not longer true in the case $N \geqslant 2$.

Now, we are going to introduce an operation with the aid of which we shall obtain another sufficient conditions for a quadratic stochastic processes to be continuous.

For a set $A \subset \mathbf{R}^{N}$ let us define

$$
H(A):=\left\{x \in \mathbf{R}^{N}: A \cap(A+x) \cap(A-x) \neq \varnothing\right\} .
$$

As an immediate consequence of this definition we obtain the following
THEOREM 2. For any sets $A, B \subset \mathbf{R}^{N}$:
a) if $A \neq \varnothing$, then $0 \in H(A)$;
b) the set $H(A)$ is symmetric with respect to 0 ;
c) if $0 \in A$ and A is symmetric with respect to 0 , then $A \subset H(A)$;
d) $H(A) \subset H(H(A))$;
e) if $A \subset B$, then $H(A) \subset H(B)$;
f) $H(A \cap B) \subset H(A) \cap H(B)$ and $H(A \cup B) \Rightarrow H(A) \cup H(B)$;
g) $H(A+a)=H(A)$ for every $a \in \mathbf{R}^{N}$;
h) $H(t A)=t H(A)$ for every $t \in \mathbf{R}$;
i) $H(A) \subset A-A$ and $H(A) \subset \frac{1}{2}(A-A)$.

THEOREM 3. If a set $A \subset \mathbf{R}^{N}$ has positive inner Lebesgue measure, then $\operatorname{Int} H(A) \neq \varnothing$.

Proof. Let us take a compact set $B \subset A$ with positive Lebesgue measure and denote by χ the characteristic function of B. Consider the function $f: \mathbf{R}^{N} \rightarrow \mathbf{R}$ defined by

$$
f(x):=m(B \cap(B-x) \cap(B+x)), x \in \mathbf{R}^{N},
$$

where m denotes the Lebesgue measure in \mathbf{R}^{N}. On account of elementary properties of the Lebesgue integral we have

$$
\begin{aligned}
|f(x)-f(0)|= & \left|\int_{\mathbf{R}^{N}} \chi(t) \chi(t+x) \chi(t-x) \mathrm{d} t-\int_{\mathbf{R}^{N}} \chi(t) \mathrm{d} t\right| \leqslant \\
\leqslant & \left|\int_{\mathbf{R}^{N}} \chi(t) \chi(t+x) \chi(t-x) \mathrm{d} t-\int_{\mathbf{R}^{N}} \chi(t) \chi(t+x) \mathrm{d} t\right|+ \\
& \quad+\left|\int_{\mathbf{R}^{N}} \chi(t) \chi(t+x) \mathrm{d} t-\int_{\mathbf{R}^{N}} \chi(t) \mathrm{d} t\right| \leqslant \\
\leqslant & \int_{\mathbf{R}^{N}}|\chi(t) \chi(t+x) \chi(t-x)-\chi(t) \chi(t+x)| \mathrm{d} t+\int_{\mathbf{R}^{N}}|\chi(t) \chi(t+x)-\chi(t)| \mathrm{d} t= \\
= & \int_{\mathbf{R}^{N}} \chi(t) \chi(t+x)|\chi(t-x)-\chi(t)| \mathrm{d} t+\int_{\mathbf{R}^{N}} \chi(t)|\chi(t+x)-\chi(t)| \mathrm{d} t \leqslant \\
\leqslant & \int_{\mathbf{R}^{N}}|\chi(t-x)-\chi(t)| \mathrm{d} t+\int_{\mathbf{R}^{N}}|\chi(t+x)-\chi(t)| \mathrm{d} t= \\
= & m((B+x)-B)+m((B-x)-B),
\end{aligned}
$$

where - denotes the symmetric difference. Fix an $\varepsilon>0$ and take an open set U such that $B \subset U$ and $m(U \backslash B)<\varepsilon$. Since B is compact, we have $d:=\operatorname{dist}\left(B, U^{\prime}\right)>0$. Therefore, for $x \in K(0, d)$, we have $B+x \subset U$ and $B-x \subset U$, whence

$$
\begin{aligned}
m((B+x) \dot{ }-B)+m((B-x) \dot{\subset}) & \leqslant \\
& \leqslant m(U \backslash B)+m(U \backslash(B+x))+m(U \backslash B)+m(U \backslash(B-x))<4 \varepsilon .
\end{aligned}
$$

Thus, for every $x \in K(0, d),|f(x)-f(0)|<4 \varepsilon$, which means that f is continuous at 0 . Since $f(0)=m(B)>0$, there exists a ball $K(0, r)$ such that $f(x)>0$ for $x \in K(0, r)$. This implies that

$$
B \cap(B-x) \cap(B+x) \neq \varnothing \quad \text { for } x \in K(0, r)
$$

and so

$$
A \cap(A-x) \cap(A+x) \neq \varnothing \quad \text { for } x \in K(0, r)
$$

because $B \subset A$. Thus $K(0, r) \subset H(A)$, which was to be proved.
REMARK 2. In case $N=1$, a similar theorem (but under somewhat stronger assumptions) was proved by Kurepa (see Lemma 1 in [6]).

THEOREM 4. If a set $A \subset \mathbf{R}^{N}$ is of the second category with the Baire property, then $\operatorname{Int} H(A) \neq \varnothing$.

Proof. According to our assumptions, there exists an open, non-empty set U and there exist sets S, T of the first category such that $A=(U \backslash S) \cup T$. Let us take an open ball $K=K\left(x_{0}, \varepsilon\right) \subset U$ and put $K_{0}:=K-x_{0}$. Fix arbitrary a point $x \in K_{0}$ and consider the set

$$
V:=K_{0} \cap\left(K_{0}+x\right) \cap\left(K_{0}-x\right) .
$$

This set is open and non-empty (in particular $0 \in V$); therefore, by a theorem of Baire, it is of the second category. On the other hand the sets

$$
V \backslash\left(A-x_{0}\right), \quad V \backslash\left(A-x_{0}+x\right), \quad V \backslash\left(A-x_{0}-x\right)
$$

are of the first category, because the set $K \backslash A$ is of the first category. Since

$$
\begin{aligned}
V= & {\left[V \backslash\left(A-x_{0}\right)\right] \cup\left[V \backslash\left(A-x_{0}+x\right)\right] \cup\left[V \backslash\left(A-x_{0}-x\right)\right] \cup } \\
& \cup\left[V \cap\left(A-x_{0}\right) \cap\left(A-x_{0}+x\right) \cap\left(A-x_{0}-x\right)\right],
\end{aligned}
$$

we must have

$$
\left(A-x_{0}\right) \cap\left(A-x_{0}+x\right) \cap\left(A-x_{0}-x\right) \neq \varnothing,
$$

and so

$$
A \cap(A+x) \cap(A-x) \neq \varnothing .
$$

Thus $K_{0} \subset H(A)$, which means that $\operatorname{Int} H(A) \neq \varnothing$.
Now, we shall introduce the following definitions:

$$
\begin{gathered}
H^{1}(A):=H(A), \\
H^{n+1}(A):=H\left(H^{n}(A)\right), n \in \mathbf{N},
\end{gathered}
$$

where A is a subset of \mathbf{R}^{N}.

We have the following
THEOREM 5. If a stochastic process $X: \mathbf{R}^{N} \times \Omega \rightarrow \mathbf{R}$ is quadratic and P-bounded on a set $A \subset \mathbf{R}^{N}$ such that $\operatorname{Int} H^{n}(A) \neq \varnothing$ for some $n \in \mathbf{N}$, then it is continuous.

Proof. First, we shall prove that the P-boundedness of X on the set A implies its P-boundedness on the set $H(A)$. Let $x \in H(A)$. Then there exists a point $y \in \mathbf{R}^{N}$ such that $y, y-x, y+x \in A$. Hence, because of the inequality

$$
|X(x, \cdot)| \leqslant \frac{1}{2}|X(y+x, \cdot)|+\frac{1}{2}|X(y-x, \cdot)|+|X(y, \cdot)| \quad \text { (a.e.) }
$$

we obtain

$$
\begin{aligned}
P(\{\omega \in \Omega:|X(x, \omega)| \geqslant n\}) \leqslant & P\left(\left\{\omega \in \Omega:|X(y+x, \omega)| \geqslant \frac{n}{3}\right\}\right)+ \\
& +P\left(\left\{\omega \in \Omega:|X(y-x, \omega)| \geqslant \frac{n}{3}\right\}\right)+ \\
& +P\left(\left\{\omega \in \Omega:|X(y, \omega)| \geqslant \frac{n}{3}\right\}\right) \leqslant \\
\leqslant & 3 \sup \left\{P\left(\left\{\omega \in \Omega:|X(z, \omega)| \geqslant \frac{n}{3}\right\}\right): z \in A\right\}
\end{aligned}
$$

The latter inequality holds for every $x \in H(A)$; therefore also

$$
\begin{aligned}
\sup \{P(\{\omega \in \Omega:|X(x, \omega)| & \geqslant n\}): x \in H(A)\} \leqslant \\
& \leqslant 3 \sup \left\{P\left(\left\{\omega \in \Omega:|X(z, \omega)| \geqslant \frac{n}{3}\right\}\right): z \in A\right\}
\end{aligned}
$$

which implies that X is P-bounded on the set $H(A)$. Now, using the induction principle, we obtain that the process X is also P-bounded on the set $H^{n}(A)$. Since Int $H^{n}(A) \neq \varnothing$, it follows from the implication 3) $\Rightarrow 1$) of Theorem 1 that the process X is continuous. This completes the proof.

As an immediate consequence of Theorems 3,4 and 5 we obtain
THEOREM 6. Let $A \subset \mathbf{R}^{N}$ be a set of positive inner Lebesgue measure or of the second category with the Baire property. If a stochastic process $X: \mathbf{R}^{N} \times \Omega \rightarrow \mathbf{R}$ is quadratic and P-bounded on A, then it is continuous.

REMARK 3. It is worth noting that Theorem 5 is essentialy stronger than Theorem 6. Indeed, there exist sets A of the Lebesgue measure zero and of the first category such that $\operatorname{Int} H(A) \neq \emptyset$. This is, for instance, the case for the set A given in the following

EXAMPLE. Let

$$
\begin{aligned}
& B:=\left\{x \in \mathbf{R}: x=\sum_{i=1}^{\infty} \frac{x_{i}}{3^{i}}, x_{i} \in\{0,1\}, i \in \mathbf{N}\right\}, \\
& C:=\left\{x \in \mathbf{R}: x=\sum_{i=1}^{\infty} \frac{x_{i}}{3^{i}}, x_{i} \in\{0,2\}, i \in \mathbf{N}\right\} \text {, } \\
& A:=B \cup C \cup(C-1) \text {. }
\end{aligned}
$$

The sets C and B have Lebesgue measure zero and are nowhere dense $(C$ is the Cantor set and $B=\frac{1}{2} C$), therefore also A has measure zero and is nowhere dense. We shall show that the interval $(0,1)$ is contained in $H(A)$. For, let us fix a number $x \in(0,1)$ and take its 3 -adic expansion $x=\sum_{i=1}^{\infty} x_{i} / 3^{i}$, where $x_{i} \in\{0,1,2\}$ for $i \in \mathbf{N}$. Note that then $-x=-1+\sum_{i=1}^{\infty} y_{i} / 3^{i}$, where $y_{i}:=2-x_{i}, i \in \mathbf{N}$. Now, define the point $a=\sum_{i=1}^{\infty} a_{i} / 3^{i}$ by putting

$$
a_{i}:=\left\{\begin{array}{l}
0, \text { if } x_{i}=0 \text { or } x_{i}=2, \\
1, \text { if } x_{i}=1,
\end{array} \quad i \in \mathbf{N} .\right.
$$

Then $a \in A$ (because $a \in B$), $a+x \in A$ (because $a+x \in C$) and $a-x \in A$ (because $a-x \in C-1)$. Therefore

$$
A \cap(A+x) \cap(A-x) \neq \varnothing,
$$

which means that $x \in H(A)$.
Now we shall introduce the following notations. Let \mathscr{L} denote the σ-algebra of the Lebesgue measurable subsets of $\mathbf{R}^{N}, \mathscr{L} \times{ }_{\sigma} \mathscr{A}$ - the product σ-algebra in $\mathbf{R}^{N} \times \Omega, \mu=m \times{ }_{\sigma} P$ - the product measure on $\mathscr{L} \times{ }_{\sigma} \mathscr{A}, \mathscr{B}$ - the completion of $\mathscr{L} \times{ }_{\sigma} \mathscr{A}$ with respect to μ, and $\bar{\mu}$ - the completion of μ.

A stochastic process $X: \mathbf{R}^{N} \times \Omega \rightarrow \mathbf{R}$ will be called measurable iff it is measurable mapping with respect to the σ-algebra \mathscr{B}.

The following theorem is an analogue of the famous theorem of Sierpiński [11] for convex functions.

THEOREM 7. If a stochastic process $X: \mathbf{R}^{N} \times \Omega \rightarrow \mathbf{R}$ is quadratic and if there exist a measurable process $Y: \mathbf{R}^{N} \times \Omega \rightarrow \mathbf{R}$ and a set $A \subset \mathbf{R}^{\mathbf{N}}$ of positive Lebesgue measure such that for any $x \in A|X(x, \cdot)| \leqslant Y(x, \cdot)$ (a.e.), then X is continuous.

Proof. Since the σ-algebra \mathscr{B} is completion of the σ-algebra $\mathscr{L} \times{ }_{\sigma} \mathscr{A}$, there exists an $\mathscr{L} \times{ }_{\sigma} \mathscr{A}$ - measurable process $Y^{\prime}: \mathbf{R}^{N} \times \Omega \rightarrow \mathbf{R}$ which coincides to the process Y except for a $\bar{\mu}$-nullset \bar{N}. Then, by Fubini's theorem, there exists a set $M \subset \mathbf{R}^{N}$ such that $m(M)=0$ and for all $x \in \mathbf{R}^{N} \backslash M$

$$
P\left(\bar{N}_{x}\right)=P(\{\omega \in \Omega:(x, \omega) \in \bar{N}\})=0 .
$$

Put $S^{n}:=\left((x, \omega) \in \mathbf{R}^{N} \times \Omega: Y^{\prime}(x, \omega) \geqslant n\right\}$ and $S_{x}^{n}:=\left\{\omega \in \Omega: Y^{\prime}(x, \omega) \geqslant n\right\}$. Then, for every $n \in \mathbf{N}, S^{n} \in \mathscr{L} \times{ }_{\sigma} \mathscr{A}$ and for all $n \in \mathbf{N}$ and $x \in \mathbf{R}^{N}, S_{x}^{n} \in \mathscr{A}$. Let us consider the functions $f_{n}: \mathbf{R}^{N} \rightarrow[0,1], n \in \mathbf{N}$, defined by

$$
f_{n}(x):=P\left(S_{x}^{n}\right), x \in \mathbf{R}^{N} .
$$

These functions are measurable and for all $x \in \mathbf{R}^{N}$

$$
\lim _{n \rightarrow \infty} f_{n}(x)=0
$$

The celebrated theorem of Egoroff guarantees the existence of a set $F \subset A \backslash M$ of positive measure, on which this convergence is uniform. Thus we have
$\forall_{\varepsilon>0} \exists_{n_{0} \in \mathbb{N}} \forall_{n>n_{0}}\left(\sup \left\{f_{n}(x): x \in F\right\}=\sup \left\{P\left(\left\{\omega \in \Omega: Y^{\prime}(x, \omega) \geqslant n\right\}\right): x \in F\right\}<\varepsilon\right)$, which means that the process Y^{\prime} is P-upper bounded on F. Since

$$
\left.\forall_{x \in F}\left(Y^{\prime}(x, \cdot)=Y(x, \cdot) \text { (a.e. }\right)\right)
$$

and

$$
\forall_{x \in A}(|X(x, \cdot)| \leqslant Y(x, \cdot)(\text { a.e. })),
$$

it follows that the process X is P-bounded on F. Because the measure of the set F is positive, the process X is continuous. This finishes the proof.

As an immediate consequence of this theorem we obtain
COROLLARY 1. If a stochastic process $X: \mathbf{R}^{N} \times \Omega \rightarrow \mathbf{R}$ is quadratic and measurable, then it is continuous.

Now we shall prove a theorem which concerns the stability (in the sense of Ulam) of quadratic stochastic processes. This theorem is an analogue of the theorem of Hyers [4] for additive functions. In the deterministic case such theorem has been independently proved by Cholewa [2].

THEOREM 8. If a stochastic process $X: \mathbf{R}^{N} \times \Omega \rightarrow \mathbf{R}$ fulfils the condition

$$
\begin{equation*}
\forall_{x, y \in \mathbf{R}^{v}}(|X(x+y, \cdot)+X(x-y, \cdot)-2 X(x, \cdot)-2 X(y, \cdot)| \leqslant \varepsilon(a . e .)), \tag{2}
\end{equation*}
$$

where ε is a positive constant, then there exists a quadratic stochastic process $Y: \mathbf{R}^{N} \times \Omega \rightarrow \mathbf{R}$ such that

$$
\begin{equation*}
\forall_{x \in \mathbf{R}^{v}}\left(|X(x, \cdot)-Y(x, \cdot)| \leqslant \frac{\varepsilon}{2}(\text { a.e. })\right) . \tag{3}
\end{equation*}
$$

Moreover, if $Y_{1}: \mathbf{R}^{N} \times \Omega \rightarrow \mathbf{R}$ is another quadratic stochastic process satisfying condition (3), then for every $x \in \mathbf{R}^{N} Y_{1}(x, \cdot)=Y(x, \cdot)$ (a.e.).

Proof. Using (2) for $x=y=0$, we have

$$
|X(0, \cdot)| \leqslant \frac{\varepsilon}{2} \quad \text { (a.e.). }
$$

From here and from (2) for $x=y$ we obtain

$$
|X(2 x, \cdot)-4 X(x, \cdot)| \leqslant|X(2 x, \cdot)+X(0, \cdot)-4 X(x, \cdot)|+|X(0, \cdot)| \leqslant \varepsilon+\frac{\varepsilon}{2} \text { (a.e.), }
$$

whence, for every $x \in \mathbf{R}^{N}$,

$$
\left|\frac{1}{4} X(2 x, \cdot)-X(x, \cdot)\right| \leqslant \frac{1}{4}\left(\varepsilon+\frac{\varepsilon}{2}\right) \text { (a.e.). }
$$

Applying the induction principle, we can show easily that for any $n \in \mathbf{N}$ and $x \in \mathbf{R}^{N}$

$$
\begin{equation*}
\left|\frac{1}{4^{n}} X\left(2^{n} x, \cdot\right)-X(x, \cdot)\right| \leqslant\left(\frac{1}{4}+\ldots+\frac{1}{4^{n}}\right)\left(\varepsilon+\frac{\varepsilon}{2}\right) \leqslant \frac{\varepsilon}{2} \text { (a.e.). } \tag{4}
\end{equation*}
$$

Now, fix a point $x \in \mathbf{R}^{N}$ and take the sequence of random variables $\left(\frac{1}{4^{n}} X\left(2^{n} x, \cdot\right)\right)_{n \in \mathbb{N}}$. In view of (4) we have

$$
\left|\frac{1}{4^{n+m}} X\left(2^{n+m} x, \cdot\right)-\frac{1}{4^{n}} X\left(2^{n} x, \cdot\right)\right|=\frac{1}{4^{n}}\left|\frac{1}{4^{m}} X\left(2^{m} 2^{n} x, \cdot\right)-X\left(2^{n} x, \cdot\right)\right| \leqslant \frac{\varepsilon}{2 \cdot 4^{n}} \text { (a.e.), }
$$

which implies that this sequence is a Cauchy sequence with respect to the measure P. Therefore, by the theorem of Riesz (see [3], Theorem E, § 22), it have to be convergent with respect to the measure P. Let us consider the stochastic process $Y: \mathbf{R}^{\boldsymbol{N}} \times \Omega \rightarrow \mathbf{R}$ defined by

$$
Y(x, \cdot):=P-\lim _{n \rightarrow \infty} \frac{1}{4^{n}} X\left(2^{n} x, \cdot\right), x \in \mathbf{R}^{N} .
$$

This process is quadratic because, for every $x, y \in \mathbf{R}^{N}$, we have

$$
\begin{aligned}
\mid Y(x+ & y, \cdot)+Y(x-y, \cdot)-2 Y(x, \cdot)-2 Y(y, \cdot) \mid= \\
& =\left|P-\lim _{n \rightarrow \infty} \frac{1}{4^{n}}\left[X\left(2^{n}(x+y), \cdot\right)+X\left(2^{n}(x-y), \cdot\right)-2 X\left(2^{n} x, \cdot\right)-2 X\left(2^{n} y, \cdot\right)\right]\right|= \\
& =\underset{n \rightarrow \infty}{P-\lim _{n}} \frac{1}{4^{n}}\left|X\left(2^{n} x+2^{n} y, \cdot\right)+X\left(2^{n} x-2^{n} y, \cdot\right)-2 X\left(2^{n} x, \cdot\right)-2 X\left(2^{n} y, \cdot\right)\right| \leqslant \\
& \leqslant P_{n \rightarrow \infty}-\lim _{\frac{1}{4}} \frac{\varepsilon}{4^{n}}=0(\text { a.e. }) .
\end{aligned}
$$

Moreover, using (4), we get for any $x \in \mathbf{R}^{N}$

$$
|X(x, \cdot)-Y(x, \cdot)|=\underset{n \rightarrow \infty}{P-\lim }\left|X(x, \cdot)-\frac{1}{4^{n}} X\left(2^{n} x, \cdot\right)\right| \leqslant \frac{\varepsilon}{2} \text { (a.e.). }
$$

Now assume that $Y_{1}: \mathbf{R}^{N} \times \Omega \rightarrow \mathbf{R}$ is another quadratic stochastic process satisfying the condition (3). Then, for any $x \in \mathbf{R}^{N}$ and $n \in \mathbf{N}$, we obtain

$$
\begin{aligned}
& \left|Y(x, \cdot)-Y_{1}(x, \cdot)\right|=\frac{1}{n^{2}}\left|Y(n x, \cdot)-Y_{1}(n x, \cdot)\right| \leqslant \\
& \quad \leqslant \frac{1}{n^{2}}\left[|Y(n x, \cdot)-X(n x, \cdot)|+\left|X(n x, \cdot)-Y_{1}(n x, \cdot)\right|\right] \leqslant \frac{\varepsilon}{n^{2}} \text { (a.e.). }
\end{aligned}
$$

This implies that $Y_{1}(x, \cdot)=Y(x, \cdot)$ (a.e.) for any $x \in \mathbf{R}^{N}$ and the theorem follows.

REFERENCES

[1] F. BERNSTEIN und G. DOETSCH, Zur Theorie der konvexen Funktionen, Math. Ann. 76 (1915), 514-526.
[2] P. W. CHOLEWA, Remarks on the stability of functional equations. Aequationes Math. 27 (1984), $76-86$.
[3] P. R. HALMOS, Measure theory, Van Nostrand, New York, 1950.
[4] D. H. HYERS, On the stability of the linear functional equation, Proc. Nat. Acad. Sci. U.S.A. 27 (1941), 222-224.
[5] S. KUREPA, On the quadratic functional, Publ. Inst. Math. (Beograd) 13 (1959), 57-72.
[6] S. KUREPA, A cosine functional equation in Hilbert space, Canad. J. Math 12 (1960), 45-50.
[7] B. NAGY, On a generalization of the Cauchy equation, Aequationes Math. 10 (1974), 165-171.
[8] K. NIKODEM. On convex stochastic processes, Aequationes Math. 20 (1980), 184-197.
[9] K. NIKODEM. On quadratic stochastic processes, Aequationes Math. 21 (1980), 192-199.
[10] A. OSTROWSKI, Über die Funktionalgleichung der Exponentialfunktion und verwandte Funktionalgleichungen, Jahresber. Deutsch. Math.-Verein. 38 (1929), 54-62.
[11] W. SIERPIŃSKI, Sur les fonctions convexes measurables, Fund. Math. 1 (1920), 125-128.

