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KAZIMIERZ NIKODEM *

ON SOME PROPERTIES OF QUADRATIC 
STOCHASTIC PROCESSES

Abstract. In this paper we prove that every measurable quadratic stochastic process 
X : R N x  Q ->■ R is continuous and has the form

N

x ( x , - ) =  E  x ix j Yu ( •) (a-e-),
‘j= i

where x  =  (x 1, . . . ,  x N) e Rv and YitJ:Q -> R are random variables. Moreover, we give a proof of the 
stability of the quadratic stochastic processes.

The subject of the present paper is to exhibit some properties of quadratic 
stochastic processes. Theorems 1 ,5 ,6  and 7 give some conditions for a quadratic 
process to be continuous. Similar .theorems for convex functions were proved, 
among others, by Bernstein and Doetsch [1], Ostrowski [10] and Sierpiński [11] 
and for quadratic functionals by Kurepa [5], In the case of additive stochastic 
processes such theorems were proved by Nagy [7], Theorem 8 concerns the 
stability of quadratic stochastic processes and it yields an analogue of the 
theorem of Hyers [4] for additive functions.

Let ( Q , s 4 , P) be an arbitrary probability space. A function X :R N x Q -> R 
(R denotes here the set of all real numbers) is called a stochastic process iff for all 
x e RN the function X  (x, •): (2 -> R is a random variable, i.e. it is an ^-m easurable 
function. A stochastic process x Q R is called

— quadratic iff for all. x , y  e R N

(1) X ( x + y , - )  +  X ( x - y , - )  =  2 X ( x , - )  +  2 X ( y , - )  (a.e.);

— P-bounded on a non-empty set A c  R^ iff

lim sup {P({ro 6 Q: \X(x,  co)\ ^  n})} =  0;
n -► oo x e A

— continuous at a point x 0 e R v iff

P-limX(x, •) =  X(x0, •),
X->Xo

where P-lim denotes the limit in probability.
In a similar way as in the case of quadratic functionals (cf. e.g. [5]) one can 

prove the following
LEMMA 1. I f  a stochastic process X : R Nx Q ^ > R  is quadratic, then 

X (q x , - )  =  q2X ( x , - )  (a.e.) for  all rational q and x e R N.
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LEMMA 2. I f  a stochastic process X : R N x f i-> R  is quadratic, then for  all 
x , y , z e R N

X ( x  +  y +  z , - )  +  X ( x , - )  +  X ( y , - )  +  X ( z , - )  =

.= X ( x  +  y , -) - \LX ( y  +  z , - )  +  X ( z  +  x , - )  (a.e.).

P ro o f. Let x , y , z e  R N. Using equation (1) three times (for suitable variables) 
we obtain

X(x + y,-) + X(y + z,-) + X(z + x,-)  =

=  ^ [ X ( x  +  2 y  +  z , - )  +  X ( x  — z , - ) \  +  X ( z  +  x , - )  =

= ^ [ 2 X ( x  + y  + z, - )  + 2 X ( y , - ) ~  X ( x  + z , - )  + X ( x  — z, •)]+  X(z +  x, •) =  

= X{ x  + y + z , - )  + X ( y , - ) + ^ X ( x  + z,-) + ] ^ X { x - z , - )  =

= X(x + y + z,-) + *(>v) + *(x, •) + *(*,•) (a-e.),
which was to be proved.

LEMMA 3. I f  a stochastic process X : R N x Q  -* R is quadratic and P-bounded 
on some set A cz R N with non-empty interior, then it is P-bounded on any bounded 
subset o f R N.

P ro o f. Since IntA ^  0 ,  there exists a ball K ( x 0, r) (with r >  0) contained in 
A. First we shall show that the process X  is P-bounded on the ball K ( 0, r). For, let 
us take a point yeK (0 ,r). By equation (1) we have

l*0v)l < ^l*(x0+>v)l+^l*(xo-)v)l+x (xo>')l (a-e-)> 

whence, for every n e  N,

P({a>eQ: |X(j>,co)| n}) < P ^ jw efl:  |X (x0 +  y,co)| Ss !jj) +

+  P \ \ a > e Q \ \ X { x 0 - y , ( o ) \  ^  ) +  P( jcoeQ : |X(x0,gj)| 2* ^

^ 3 sup ja) eQ :  |X(x,co)| ^  ^ j j :x e v 4

The above inequality holds for all y e  K(0,r)-, therefore also 

sup{P({coef2: |X(y,a>)| ^  n } ) : y e K ( 0 ,  r)} ^

^  3 sup jp N c o e f f :  |*(x,eo)| Ss ):ye,4}>,
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which implies that the process X  is P-bounded on the ball K ( 0, r). Now, assume 
that the set Bcz R* is bounded and-take a positive rational number q such that 
B c  K ( 0 ,qr). Then, for every x e B  and n e N, we have

P({a>eQ:  |X(x,a»)| ^  n}) = P ^ c o e Q ' . q 2

^  sup jp ^ jc o  e Q: |X (z ,  &))| ^  z e ^ ( 0 > r) |-

Since the process X  is P-bounded on the ball K(0,r) ,  this implies that X  is 
P-bounded on the set B too. This ends our proof.

Now we shall prove a theorem giving a characterization of continuous 
quadratic processes.

THEOREM 1. I f  a stochastic process X : R N x Q -* R is quadratic, then the 
following conditions are equivalent:

1) X  is continuous at every point x e RN,
2) X  is continuous at some point x 0 e R N,
3) X  is P-bounded on some set ^ c R *  with non-empty interior,
4) there exist random variables YUJ:Q -> R, i , j  = 1, ..., N, such that

iv
X ( x ,  •) =  Yj x ixj Yi j ( ') (a-e•) f°r every  * =  (xj, . . . ,  x N) e R N. 

ij= i
P ro o f. Implication 1) => 2) is trivial.
To prove the implication 2) => 3), assume that the process X  is continuous at 

a point x0 e R N. Since for any xeR "

A (x,-) =  ^ [X (x 0 +  x, • ) +  X(x0 —x, -) — 2 X ( x 0, •)] (a.e.),

then the process X  is also continuous at the point 0 e RN. We shall show that X  is 
P-bounded on the ball K ( 0 , 1). Suppose the contrary. Then there exist an e > 0 
and a sequence (x„)„eN such that x„ e K ( 0,1) for n e  N, and P({a> e Q:\X(xn,co)\ >  
^  n}) > e. Now, for every n e  N, take a rational qn such that n ■ q2 e (1,2). Then 
q„ -+ 0, and soz„: =  qnxn -> 0. On the other hand, we have

P ( { o ) e Q : \ X ( z n,co)\ >  1}) ^  P({ (o eQ :  \X{qnx n,oj)\ ^  nq2}) =

= P({a> e Q: \X(xn, eo)| ^  n}) >  s,

which contradicts the continuity of X  at 0.
3) => 4). Assume that the process XiR* x Q -► R is quadratic and P-bounded 

on a set with non-empty interior and consider the process ^ R ^ x R ^ x f l - ^ R  
defined by

B (x , y ,  a>): =  ̂ [ X ( x  +  y,  co) — X ( x ,  a>) — X (y ,  to)], (x, y,  co) e RN x R* x Q.
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This process is additive with respect to the first and second variable, that is for 
every x ,y ,z e R JV

B(x +  y , z,  ■) =  B(x,  z,  ■) +  B(y, z,  ■) (a.e.)

and

B ( x , y  +  z,  •) =  B ( x , y , )  +  B ( x , z , )  (a.e.).

Indeed, by the definition of the process B and Lemma 2 we have

2 [B(x +  y , z , - ) - B ( x , z , ) ~ B ( y , z , - ) ]  =

=  X ( x  +  y  +  z , - )  — X ( x  +  y , - )  — X ( z , - )  — X ( x  +  z , j  +

+  X ( x , - )  +  X ( z , - ) - X ( y  +  z , - )  +  X ( y , - )  +  X ( z , - )  = 0 (a.e.).

The other of the above two equalities follows from the first one, because the 
mapping B is symmetric with respect to the first two variables. Now, fix a point 
yeR*' arbitrarily. It follows from the definition of B  that

|B(x, y,  ■ ) K  \  IX ( x  +  y ,  • )| Ą  \X(x,  -)| Ą  \X(y,  • )|,

and hence, for every x e K ( 0 , 1) we have

P({co e Q: \B(x, y,  a»)| ^  n}) ^  j "  e Q : \ X ( x  +  y,co)\ ^  ^  +

+ p(ja)Gfl:|X(x,a>)| > 0  + P |̂o)eO:|A'(y,<B)| ^ 0

^  3 sup j p (  jco g  £2: \X(z,  co)| K (°> M  +!)}•

Since the process X  is P-bounded on the ball K ( 0, ||y|| + l) (Lemma 3), this 
implies that the process B, as the function of the first variable, is P-bounded on the 
ball K (0,1). Because additive stochastic processes P-bounded on a set with 
non-empty interior are continuous (see Theorem 4 in [8]), the process B is 
continuous with respect to the first variable. Now consider the processes 
Bt: R x Q -> R, i — 1, . . . ,  N,  defined by Bt(t, co): — B(tet, y, co), where 
{e;, i — 1, . . . ,  N}  is the ortonormal base of the space R* over R. These processes 
are additive and continuous; therefore, by the theorem of Nagy ([7]), 
Bi( t , )  =  tBi( 1 , )  (a.e.) for every (gR . Now, taking a point 
x = x 1e 1 +  . . .  +  x NeNe  RN, we have

B {x ,y ,  ) =  Z  B(xiei, y , - )  =  Z  Bt(xt, - )  =  Z  x iBi( l ,  ) =  
i =  1 i =  1 i =  1

N

= Z x iB ^ i , y , - )  (a.e.) 
i= 1



Since the process B is symmetric with respect to the first two variables, we 
have also

N

B ( x , y , - )  =  Y  y iB (x >ei>') (a.e.), 
i =  1

where y  =  y 1e 1 +  . . . +  y NeN. From the equalities obtained above we get, for every 
X  = (x„ . . . ,  x N) , y  =  (ylt  . . . ,  y N),

N  N

B ( x , y , - ) =  Y  W j B i e t . e j , - )  =  Y  x , y j Yi j ( ' )  ■ (a e -)> 
i , j  =  1 i , j =  1

where YUj: =  B ^ e j ,  ) =  ^ [ X ( e i +  ej , - ) - X ( e i, - ) - X { e j , - ) ] ,  i , j  =  1, . . . ,  N.

Since B ( x , x , - )  — X ( x , - )  (a.e.), we obtain

X ( x , - ) =  Y  x ixj Yi j ( ' )  (a-e )> 
i , j =  1

which was to be proved.
Now we shall prove the implication 4) => 1). Let us fix a point x0 e R N and take 

a sequence (x„)„eN converging to x0. Let x0 =  (x0,i, . . . ,  x 0 N) and x„ = 
=  (x„!, . . . ,  x„iJV), n e N. Then

N  . N

F-lim Z  x„i xn jY; j  x o,ix o, jYi,j>
n ^ ° °  i , j ~  1 i , j =  1

N

because the sequence of random variables ( Y  xn,iX„jYij)„eN is convergent on
i j =  1

N

Q to the random variable Y  x onx o , j \ j  and the measure P  is finite. Since
i , j =  1

N

X ( x „ , - ) =  Y  X n , i X n , j  Y i , j  ( a . e . )  
i j =  1

and

we have also

N

X { x 0, - ) =  Y  x o,ix o j Y i j  (a.e.), 
«'.j=i

P - \ i m X ( x n,-) =  X ( x 0, ) .
n~* oo

This completes the proof of our theorem.
REMARK 1. An analogous theorem for N  =  1 we have proved in [9]. 

However, the methods used in that paper are not applicable in the present
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situation because the basic Lemma 5 from that paper is not longer true in the 
case N  ^  2.

Now, we are going to introduce an operation with the aid of which we shall 
obtain another sufficient conditions for a quadratic stochastic processes to be 
continuous.

For a set A cz R* let us define

H(A) :=  {x e RN: A n ( A  +  x) n ( A  — x) ^  0 } .

As an immediate consequence of this definition we obtain the following 
THEOREM 2. For any sets A, B cz R^:
a) if A =£ 0 ,  then 0 e H(A)-,
b) the set H(A) is symmetric with respect to 0;
c) if Oe A and A is symmetric with respect to 0, then A a  H(A );
d) H(A) cz H(H(A));
e) if A a  B, then H(A) cz H(B)\
f) H(A  n  B) cz H (A ) n  H(B) and H(A  u  B) =>. H{A)  u  H(B);
g) H(A +  a) =  FI (A) for every a e  RN;
h) H(tA ) = tH(A) for  every t e  R;

i) H(A) a  A — A and H(A ) c  j ( A  — A).

THEOREM 3. I f  a set A cz R N has positive inner Lebesgue measure, then 
IntH(A)  *  0 .

P r 9 o f. Let us take a compact set B cz A with positive Lebesgue measure and 
denote by x the characteristic function of B. Consider the function f : R N - * R  
defined by

/ ( x ) : = m(B n  (B — x) n  (B +  x)), x e R^,

where m denotes the Lebesgue measure in RN. On account of elementary 
properties of the Lebesgue integral we have

| / ( x ) - / ( 0)| = |J  x(t)x(t +  x ) x ( t - x ) d t - J  x(t)dt\ ^
R" R"

< II x(t)x(t +  x ) x ( t ~ x ) d t -  $ x(t)x(t +  x)dt\ +
R" R '

+ |J  x(t)x(t +  x ) d t -  $ x(t)dt\ =$
If  R"

< J \x(t)x(t +  x ) x ( t - x ) - x ( t ) x ( t  +  x ) \d t+  J \x(t)x(t +  x ) - x ( t ) \ d t  =
R" R"

=  J  x(t)x(t +  x ) \ x ( t ~ x ) - x ( t ) \ d t +  J- x(t)\x(t +  x ) - x { t ) \ d t  <
R ' R"

<  I  | z ( t - * ) -z W | d * +  J  \x(t +  x ) - x ( t ) \ d t  =
R" R"

= m((B +  x) — B) +  m((B — x) — B),
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where — denotes the symmetric difference. Fix an e > 0 and take an open 
set U  such that B c  U  and m(U\B)  <  e. Since B is compact, we have 
d :=  dist(B, U') >  0. Therefore, for x e K ( 0 , d ) ,  we have B +  x c U  and 
B — x <=. U, whence

m((B +  x) — B) +  m((B — x) — B) ^

m{U\B)  +  m(U\(B  +  xj) +  m (U \B )  +  m ( U \ ( B - x ) )  <  4e.

Thus, for every x e K(0, d), |/(x ) —/  (0)| <  4e, which means th a t/is  continuous at
0. Since /(0 ) =  m(B) >  0, there exists a ball K(0,r) such that f ( x )  > 0 for 
x e  K{0,r).  This implies that

B n  (B — x) n  (B +  x) #  0  for x eK (0 , r),

and so
A n ( A  — x) n ( A  +  x) ^  0  for x e K(0, r),

because B e l  Thus K(0,  r) c  H(A), which was to be proved.
REMARK 2. In case N  =  1, a similar theorem (but under somewhat stronger 

assumptions) was proved by Kurepa (see Lemma 1 in [6]).
THEOREM 4. I f  a set A <=. R N is of  the second category with the Baire 

property, then IntH(/4) /  0 .
P ro o f. According to our assumptions, there exists an open, non-empty set 

U  and there exist sets S, T  of the first category such that A =  (U \ S ) u  T. Let us 
take an open ball K  =  K(x0, e) c  U  and put K 0 : =  K  — x 0. Fix arbitrary a point 
x e K 0 and consider the set

V : = K 0 n ( K 0 +  x ) n ( K 0 - x ) .

This set is open and non-empty (in particular O eF); therefore, by a theorem of 
Baire, it is of the second category. On the other hand the sets

F\C4 —x0), F\(/4 —x0 + x), V \ ( A - x 0 - x )

are of the first category, because the set K \ A  is of the first category. Since

V =  [ F \ ( ,4 - x 0)] u  [ F \ 0 4 - x o + x)] u  [ F \ ( ^ - x 0- x ) ]  u

u  [F  n  (A xQ) n  (̂ 4 —x0 +  x) n  (A — x0 — x)],

we must have

(A — x0) n  (A — x0 +  x) n  (A — x0 — x) ^  0 ,

and so
A n  ( A +  x) n  (A —x) #  0 .

Thus K 0 c  H(A), which means that IntH(/l) ^  0- 
Now, we shall introduce the following definitions:

H 1( A ) : = H ( A ) ,

H n + 1{A) :=  H(H n(A)), n e  N,

where A  is a subset of RN.
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We have the following
THEOREM 5. I f  a stochastic process X : R NxC2—>R is quadratic and 

P-bounded on a set A c: RN such that lntH"(A) #  0  for some n e N, then it is 
continuous.

P ro o f. First, we shall prove that the P-boundedness of X  on the set A implies 
its P-boundedness on the set H(A). Let x eH(A) .  Then there exists a point y e RN 
such that y, y  — x,  y  +  x e  A. Hence, because of the inequality

\X(x,-)\  < i |X (y  + x,-)l +  ̂ |A '(y -x ,-)l + |A'(y,-)l (a.e.),

we obtain

P({a>e£?: |X(x,co)| ^  n}) ^  P ^jcoeO : |A"(y + x,co)| ^  3^  +

+ P^jcu eO : \ X { y - x , ( o ) \  ^  +

+ P^jcoefi:|A:(>>,(y)| ^  ^

^  3 sup jp ^ jw  e Q: \X(z,  co)| ^  z e

The latter inequality holds for every x e H ( A ) ;  therefore also 
sup{P({a) e U: \X(x,  u>)\ ^  n}): x e  H(A)} ^

< 3 sup jp ^ jc o e  Q: |X (z ,  a>)| ^  z e A

which implies that X  is P-bounded on the set H(A). Now, using the induction 
principle, we obtain that the process X  is also P-bounded on the set H n(A). Since 
lntH"(A) #  0 , it follows from the implication 3) => 1) of Theorem 1 that the 
process X  is continuous. This completes the proof.

As an immediate consequence of Theorems 3,4 and 5 we obtain 
THEOREM 6. Let A c  R N be a set of  positive inner Lebesgue measure or of  the 

second category with the Baire property. I f  a stochastic process X : R N x Q -+ R is 
quadratic and P-bounded on A, then it is continuous.

REMARK 3. It is worth noting that Theorem 5 is essentialy stronger than 
Theorem 6. Indeed, there exist sets A of the Lebesgue measure zero and of the first 
category such that \n tH(A)  #  0 .  This is, for instance, the case for the set A given 
in the following 

EXAMPLE. Let

B :=  jx  e R: x = £  j t ,  X;e{0, 1}, i e  n | ,

C :=  jx e R :x  =  £  x ,e{ 0 , 2}, i e N j ,

A : =  B u C u ( C - l ) .
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The sets C and B have Lebesgue measure zero and are nowhere dense I C is the 
1 \

Cantor set and 6  =  -  C l, therefore also A has measure zero and is nowhere

dense. We shall show that the interval (0,1) is contained in H(A). For, let us fix 
a number x e ( 0 ,1) and take its 3-adic expansion x = E,® i X ;/ 3 ‘, where 
x; e {0,1,2} for ie N . Note that then — x = — 1 + E,® x yJ3 l, where 
y; :=  2 —x,-, ie N . Now, define the point a — 'L?=1ai/ y  by putting

f 0 , if X, = 0 or x, =  2 ,
a ,:=  -< ie N .

1, if x, =  1,

Then a e A (because a e B), a +  x e A (because a + x e C) and a — x e  A (because 
a — x e C — 1). Therefore

m
A n  (A +  x) n  (A — x) #  0 ,

which means that x e H(A).
Now we shall introduce the following notations. Let ^  denote the a-algebra 

of the Lebesgue measurable subsets of RN, i f  x a si — the product c-algebra in 
RN x Q , f i  =  m x  a P  — the product measure on x a si , &  — the completion of 
i f  x a si with respect to n, and fi — the completion of ju.

A stochastic process X :RNx ff -> R  will be called measurable iff it is 
measurable mapping with respect to the <r-algebra

The following theorem is an analogue of the famous theorem of Sierpiński
[ 11] for convex functions.

THEOREM 7. I f  a stochastic process XiR^ x Q —> R is quadratic and if there 
exist a measurable process Y: R N x Q  —> R and a set A c  R v of  positive Lebesgue 
measure such that for any x e A  |X(x,-)| ^  ^(x ,-) (a.e.), then X  is continuous.

P ro o f. Since the c-algebra &  is completion of the a-algebra i f  x a si, there 
exists an ^  x a si -  measurable process Y'iR*' x Q  -> R which coincides to the 
process Y except for a /I-nullset N. Then, by Fubini’s theorem, there exists a set 
M e  RN such that m(M) =  0 and for all x eR  N\ M

P ( N X) = P({co e Q: (x, co) e Ń}) =  0.

Put S" : =  ((x, a>) e RN x Q: Y'(x, co) ^  n] and S ": = { w e Q :  Y'(x, co) ^  n}. Then, 
for every n eN , Sne x asi and for all n e N and x e RN, S" e si. Let us consider 
the functions /„: RN -* [0 , 1], n e N , defined by

f„(x): =  P(Snx), x e R N.

These functions are measurable and for all x e RN

lim/„(x) = 0 .
oo
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The celebrated theorem of Egoroff guarantees the existence of a set F <= A \ M  of 
positive measure, on which this convergence is uniform. Thus we have

V£>03„o€NV„>„o(sup{/n(x):xeF } = sup{P({coe£2: Y'(x,a>) ^  n } ) : x e F }  < e),

which means that the process Y’ is P-upper bounded on F. Since

it follows that the process X  is P-bounded on F. Because the measure of the set 
F is positive, the process X  is continuous. This finishes the proof.

As an immediate consequence of this theorem we obtain 
COROLLARY 1. I f  a stochastic process X : R Nx Q - + R  is quadratic and 

measurable, then it is continuous.
Now we shall prove a theorem which concerns the stability (in the sense of 

Ulam) of quadratic stochastic processes. This theorem is an analogue of the 
theorem of Hyers [4] for additive functions. In the deterministic case such 
theorem has been independently proved by Cholewa [2].

THEOREM 8. I f  a stochastic process X :RNx i2 -> R  fulfils the condition

(2) V x,yeR»(\X(x +  y , - )  +  X ( x - y , - ) - 2 X ( x , - ) - 2 X ( y , - ) \  ^  e (a.e.)),

where e is a positive constant, then there exists a quadratic stochastic process 
YiR^ x Q —> R such that

Moreover, if Yl :R v x f i->  R is another quadratic stochastic process satisfying 
condition (3), then for every x e R N Y1(x,-) = Y(x , - )  (a.e.).

P roo f. Using (2) for x = y  =  0, we have

\ X (2x, •) —4Ar(x, • )| <  |X(2x,-) +  * (0 ,- ) -4 X (x ,- ) | +  |X (0 ,- )K e  + |  (a.e.),

V*eF( r ( x , - ) =  7 (x ,•) (a.e.))

and

\X(x,-)\  ^  Y(X,-)  (a.e.)),

(3) VxeR"(|A (x,-)- Y(x,-)| ^ (a.e.)).

(a.e.).

From here and from (2) for x = y  we obtain

whence, for every x e RN,
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Applying the induction principle, we can show easily that for any n e  N and 
x e R "

(4) <
1 1

Now, fix a point x e R "  and take the sequence of random variables I — X  (2"x, ■)
\4  /neN -

In view of (4) we. have

1 X 1 1 1 £
4„+m* (2 n + mx,-) / ( 2 " x , - ) = 4"

— X(2m2"x, •) —X(2"x, •) <
2-4"

which implies that this sequence is a Cauchy sequence with respect to the measure 
P. Therefore, by the theorem of Riesz (see [3], Theorem E, § 22), it have to be 
convergent with respect to the measure P. Let us consider the stochastic process 
Y:RN x Q -* R defined by

Y(x, ■): = P-lim ~  X (2 nx,  ■), x e  R N.
n-+ g o  4

This process is quadratic because, for every x ,y e R N, we have 

|y(x + y,-)+y(x-y,-)-2y(x,-)-2y(y,-)| =

= \ P - \ i m U x ( 2 " ( x  +  y) ,- )  +  X{2 n( x - y ) , - ) - 2 X ( 2 nx , - ) - 2 X ( 2 ny, -)] \  =
n~* oo 4

= P - l i m \X(2"x +  2"y,-) +  X(2"x — 2ny,  ■) — 2X(2nx,  -) — 2X(2ny, ■ )| ^
n~* oo 4

^  P-lim — = 0 (a.e.).
n -* oo 4

Moreover, using (4), we get for any x e R "

|Z (x ,- ) -y (x ,- ) | =  P-lim X { x , - ) - - X { 2 nx , - )

Now assume that y ^ R ^ x f i - ^ R  is another quadratic stochastic process 
satisfying the condition (3). Then, for any xeR '* and n e  N, we obtain

|y(x,-)—>i(x,-)l = ^ \Y (n x , - ) - Y 1(nx,-)\ < 

< -^[|y(nx,-)-A(nx,-)l + l-X'(nx,-)-yi(nx,-)l] ^ Ą  (a.e.). n n

This implies that (x, •) = y(x, ■) (a.e.) for any x e  RN and the theorem follows.
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