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JAN LIGEZA*

THE DISTRIBUTIONAL SOLUTIONS OF SOME
SYSTEMS OF LINEAR DIFFERENTIAL EQUATIONS

Abstract. In this paper we prove a theorem on the existence and uniqueness of the solution of the
Cauchy problem for linear differential equations with distributional coefficients.

1. Introduction. One of the possibilities of generalization of the classical
solution of a differential equation is the solution in the distributional sense.
Distributional solutions of ordinary differential equations have not been studied
sufficiently, due to certain difficulties in defining operations on distributions:
some operations (e.g. multiplication, substitution, definite integral) cannot be
defined for all distributions in a natural way. A particular large numbers of papers
have been devoted to linear differential equations (see [6]—[11], [16]—[21],
[24], [25], [27]—][31]. Another possibilities are considered in [12]—[15], [23]
and [26],

In this note we consider the system of equations

(1.0) y'(t) = A'(t)y(t) + B'(Y),

where all elements Ai} of the matrix A are functions of locally bounded variation
on the interval (a, b) £ R1(ij = 15. n), the components Btofthe vector B are
continuous functions on (a, b), the derivative is understood in the distributional
sense and the product of two distributions is understood as generalized operation
(see [3], [4]). The vectory = (yl, ..., ynis an unknown distribution. We prove
atheorem on the existence and uniqueness of the solution of the Cauchy problem
for system (1.0) applying the sequential theory of distributions.

In papers [6]—[11], [16]—[21], [27]—[31] it has been examined linear
differential equations with distributional coefficients but under another assump-
tions than in our note.

2. Notation. We shall denote by T"oc(a, b) the space of real functions which
are of bounded variation on every compact interval [c, d] cz (a, b).

We say that a distribution p is a measure on {a, b) ifp is the first distributional
derivative of a function of the class ” "ioc(a, b). The symbol Jt (a, b) denotes the set
of all measures defined on (a, b).

By ~(a, b) we denote the space ofall continuous real functions on (a, b) and by
AN(a,”) we denote the set of all functions z such that z —vc, where
ve ™ Ia, b) and ce”~(a, h).

A matrix A(t) = (ALj(t)) belongs to i/ "&"(a, b) if and only if A ,je r loc(a,b)
fori,j=1,..., n
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We put
b =y ioc(fl, X .., xy [c@b);

n times

b) =?@@,b)x...x"o, ft} *"(a, 6)=/"(a, 6)x... xIT~(a, ft),
mtimes n times

ME) = (Aj(1),  At+) = (Ati(t+)),  A(t—) = (Aij(t—),
AA(L) = M(t+)-X(r-), YO = (Y% .oy o),
i4*(t) = y*(t) = (y*(), ..., y*(f),
where

Ne ft), yfe RLy,em?(a, ft), ()= "{t+)+~(t~)>te (f>6>" +)

(y,(*—)) denotes the right (resp. left) hand side limit of the function ytat the point
tfori—1,..., n
A sequence of smooth, non-negative functions {5k} satisfying:

2.1 (3)8 k(r)ydt=1,
(2.2) ok(t) = Sk(—t) for all (eR 1,
(2.3) Sk(t) = 0 for [fl N ak,

where {aj is a sequence of positive numbers with ak->0 as k -> oo, is called
a 5-sequence.

The product of two distributions, the modulus of a distribution and
inequalities between two distributions will be understood in this note as
generalized operations (see [1], [2], [4], [5]).

Let P eV " (a, b). Then we define

d

(24 $P'(t)dt = P*(d)-P*{c),

where c,de (a, b).
d

It is easy to observe that if P e "V)oc(a, ft) or P e ~ (a, ft), then J P*(t)dt exists for

every c,d e (a, ff) (because P ei/'«S(a, ft)).
In the case when P ,Q et~ ioc(a, ff) and ue %(a ft), then it has been proved in
[1], [3], [4] that

(2.5) P-Q'eJt(a,b), u-Q' e J/(a,b),

(2.6) P'(Qu) = (P'Q)u = (P'u)Q,

.7) IPMQ (dty < [JIP[(D)ie'l(Y)dt| A sup |[F[*W/[}ieiwdt|
c c te[c,d] c
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and
&k
(2.8) lim J P(t—s)5k{s)ds = P*(t)
kKN X -ak

for every te (a, h).
It is easy to check that if P* ~ 0 on (a,b) and a < ¢ < d < b, then

(2.9) jIP ®)dt = P*(d)~P*(0) ~ 0

(see [2], Theorem 6). Hence
Ip'(t)ydt~ J(2'(t)df

where P',Q' e J/(a,b), P' < Q and a~<c< d< b

3. Cauchy problem for system (1.0). Let Ae b), Be (a, b) and
y € V ¢ n(a,b). Moreover, lety satisfy system (1.0) in the distributional sense. Then
we call y the solution of equation (1.0).

THEOREM 3.1. Assume that

(3.1) Aeri*n(ab),
for every te (a, b)
(3.2 det(21-AA(t)) # 0 and det(2/+ AX(0)-# 0,
where | denotes the identity matrix,
(3.3) Be<#n(a,b).
Then the problem
fy'(t) = A'(t)y(t) + B'(t)
1 y*(t0) = yoO

(34)

has exactly one solution in the class t'©n{a, b).
REMARK 3.1. Assumption (3.2) is essential. This can be observed from the
following examples:

() = 2S
35) y'(t) Oy(®
y*(-1) = 0

and

jz'(t) = - 25{t)y(t)

(3.6) (= 0
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where 5 denotes the Dirac’s delta distribution. It is not difficult to show that the
distributions

y = cH and z = ¢(H—1))

are solutions of problem (3.5) and (3.6) respectively (H denotes the Heaviside’s
function).
We shall prove some lemmas before giving the proof of Theorem 3.1
LEMMA 3.1. If Fe%>(a,b) and get" loc(a, b), then the product F'my exists.
ProofofLemma3.1. LetFt = F*5kandgk = g*Sk, where {(5J is an arbitrary
(5-sequence (the asterisk denotes the convolution). Then

(3-7) (Fkgk' = Fkgk+ Fkgk.
Hence, by (2.5), we have
(3.8) F'g = (Fg)'-Fg",

which completes the proof of Lemma 3.1.
LEMMA 32 1f GeM(a,b), G~ 0 (on (a,b)) and Fe%>(a,b), then there
exists a number , such that

d d
(3.9) JFE()G'{t)dt = li1J G'(t)dt = [/iL(G*(A-G*(c)),

where a < ¢ < d < b, file [m,M], m= inf F(t) and M = sup F(t).
te[c,d] te[c,d]

Proof of Lemma 3.2. If G*(d)—G*(c) = 0, then by (2.9), Lemma is obvious.
Let G*{d)—G*{c) > 0 and let Fk = F*dk, Gk= G'*5k, where {&} denotes the
(5-sequence. For a fixed e > 0 there exists a number k0 such that

d d d
(3.10) (m-e)$G K{t)dt ~ JFk(t)GKk{t)dt < (M + €)J Gk(t)dt
if k » k0. We shall prove that
d d

lim $Fk(t)Gk(t)dt = f F(t)G\t)dt.
k”~cc ¢ c

In this purpose we consider the sequence {gk} defined as follows
(3.12) gk = uk+ vk,
where

uk = \(Fk(t)-F(1))G'k(t)dt and vk = ] F(t)(G'k(t)-G"(t))dt.

d
Since |[F*—F| =>0 on {a, b) (almost uniformly) and {J|Gfc(t)|dt} is a bounded

sequence (see [1]), we see by (2.7) that.

(3.12) lim uk = 0.

k-> co
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We claim that
(3.13) lim vk = 0.
k~* oo
In fact, for e > 0 there is a positive number y such that
|F(f)—F(f)] ¢ for \t—f| <y and t, fe[c, d].

Now, we divide the interval [c, ] into a finite numbers of intervals [tr_j, fr] such
that c = t0< tt... < tp—d, |[tr_t—tr\<y and r = 1,... , p. Thus

vk= t ] [(F(O—F(tn) (Gk(t) —G'{t)) + F{tn) (Gk{t) —G’(H)] dt.
r=11Ir-1

This implies (3.13) (by (2.7—(2.8)). By relations (2.8), (3.10)—(3.13), we obtain

d d d
mj G'{t)dt s; FF(t)G'(t)dt ~ M JG'(t)df.

Putting in the last inequalities

I\F(t)G'(t)dt

M Gxd) —6*(0)

we have (3.9) which completes the proof of Lemma 3.2,
LEMMA 3.3. Let Fe~(a, b)and let g e “joc(a, b). Then thefunction T defined
as follows

(3.14) T(t) = }F(s)g(s)ds = F(t)g*(t)~F(c)g*(c)~i F(s)g'(s)ds

is continuous on the interval (a, b).
Proof of Lemma 3.3. Let g = g\—g2<where g\ 0 anc g2 0 on (a,b).
Then, by (3.14), we have

T(1)-T(t) = \F'(s)g(s)ds =(F(t)-F(t))g*(t) + F(t)(g*(t)-g*(t))-

t

F(s)g'i(s)ds + j F(s)g'2{s)ds.

t t

Hence, by (3.9), we infer that
TN - T() = (FO—F@)g* O+ FO) (9f(t)-gf (1)- MI(g*(t)-g* (1) +
+ F(F)(gf(t)-g$(1)) + u2(gU1)-g$(FI) = (F(t)~ F()g*(t) +
+(F(t)-Vi)(g* (0- g*(t)+ (FC)-v.}){gW)-g2(0),
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where

Hi,H2e [ inf F(s), sup F(s)].

se[f,f] se[r,f]
The last equality finishes the proof of Lemma 3.3.
LEMMA 34. If yl,y2ei/Xo(a,b) and ce”~(a,b), then
(3-15) (yly2)cl = y1(y2c).

Proof of Lemma 3.4. The existence of the products (yly2c' and y 1{y2c)
follows from Lemmas 31 and 3.3. We get, by (3.8) and (2.6)

(316)  [yiy2¢ = (y,y2c)'~(yly2'c = (yly2cy-(y'ly2)c-y,(y'20)

and

317)  yYy2c) =" [(y2c)'-/2c] = yry2c)'- yrc) =
(yiy2c)'-y'i(y2c)-yi(y'2c) = (yly2c)'-(y'ly~c-y~c),
which completes the proof of Lemma 3.4.

LEMMA 35. Let A = (Aitj) satisfies assumptions (3.1)—(3.2) and let Z = (ztj)
be a matrix such that Z e i/M&n(a, b), Z*(t) = (zfj(t)) and

fZ'(t) = A'(1)Z(1)

(3.18)

1 Z*(t0) = I.
Moreover, let
(3.19) u(t) = det(zfj(t)).
Then
(3.20) u et\oc(a,h),

for every compact interval [c,dd a (a, b)

(3.21) inf @ > 0

te[c,d]

(3.22) Ije A oc(a,b).

ProofofLemma 3.5. The existence and uniqueness of matrix Z follow from
[21]. Since Z ei~*cn{a,b), we obtain that « e fjoc(a,6). It is enough to prove
(3.21). Let [c,d] be an arbitrary compact interval such that [c,d] c: (a,b ),
rOe [c, d] and t i[m:] lu(t)] = 0. Then there exists a point at e [c, d] possessing the

following properties:
(i) «(at) =0
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(i) there exists a sequence {tk} convergent to al and

lim u(tk = u(al—) = 0 or lira u(tk = u(al+) = 0.
k~* oo

fc-+ 0o

Hence, we have

(323) £ CjzfiaJ =0 or £ Cjzj{at-) =0 or "~ Cjzj{al+) =0,

= }:l 1=1
where ¢cj+..+¢2>0, z.= (zu, ..., znJ), 0= (o, ...,0) and j=1,..., n.
We put
(3.24) v(t) = £ Cjzf(t) for fe(a,6).

i=i
Then v is a solution of the problem
ru'(t) = A'(t)v(t)
L(y) = 0,

where L(v) = v*(al) or L(v) = v(al—) or L(i>) = I{0'+). Taking into account
[21] we infer that

(3.25)

Z cjzeqry = 0 for te(a,b),
=1
which is impossible (because u((0) = 1). Thus our assertion follows.
LEMMA 36. Let A = (A satisfies assumptions (3.1)—(3.2). Then the
problem

y'(t) = A'(t)y(t)

(3.26)
y*{t0) = 0, t0e(a,b)

fias only t/ie zero solution in the class y £n(a,b).
Proof of Lemma 36. If yei/'én(a,b) and if y satisfies (3.26), then

yi(t) = _ZlAijitivji’\Cjitj),
J:

where A'ije Ji(a, ft), Vje inoe(a, b), c-e *(a, fHyand i,j = 1, ..., n. By (25)—(2.6)
we obtain that j/;e Ji(a, b)(i = 1, ..., n). Hence y e y¥'c(a, ff). An application of
[21] (Theorem 2.1) completes the proof of Lemma 3.6.

The matrix Z = (zfj) defined in Lemma 3.5 will be called the fundamental
matrix of solutions.

Proof of Theorem 3.1. Let z(t) = (z*j{t)) be the fundamental matrix of
solutions. Then there exists the inverse matrix Z 1(?) for t e (a, ft) (by Lemma 3.5)
and Z 1gi\l*n(a, f) We claim that

(3.27) y = Zg,
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where

(3.28) g'(t) = Z~HOB'(Y),  g*(t0) = yO

is a solution of problem (3.4). In fact, by the equality

(2“1B) = (z~1B)'—{Z~1)'B,

Lemmas 3.1, 3.3, and 3.5 and relation (2.5) we obtain that g~ &"(a,b). Using
Lemma 3.4 we infer that zg satisfies (1.0). Moreover, by (3.27)—(3.28), we get
9*(to) = y0- Uniqueness assertion follows from Lemma 3.6.

REMARK 3.2. Let all assumptions of Theorem 3.1 be satisfied. Then it is not

difficult to show (by Lemmas 3.1,3.3—3.6) that the system (1.0) with the condition
y(E0+) = y0 or y(fo— = y0 has exactly one solution in the class i r($ n(a, b).
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