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IRENA RYGUŁA*

ON THE ESTIMATIONS OF SOLUTION OF DELATED 
STOCHASTIC DIFFERENTIAL EQUATIONS

Abstract. The paper refers to the subject of the estimation of the difference between the solutions 
of two delated stochastic equations, which as a consequence gives also some criterions of the 
uniqueness for these equations. The results are obtained by using some integral inequalities and 
applying them to the more general class of equations with local integrable martingales.

Introduction. In this paper we shall discuss the problem of estimate of the 
difference between the solutions of two delated stochastic differential equations 
what as a consequence gives us some criterions of uniqueness for these equations. 
These results generalize some known uniqueness criterions for the Ito’s 
differential equations (see [ 1], [2]) and give us in particular an estimate of the 
2-nd order moment of solution. In the present paper for the proofs we use 
non-linear integral inequalities (see [4]) and many suggestions from [1],

Definitions and notations. Let (Q, S' ,  P) be a complete probability space, and 
let (S',, t ^  0) be an increasing family of sub-cr-fields of S ' . We assume, as usual, 
that ,F 0 contains all the null sets of S' and that the family (S' t, t ^  0) is 
continuous from the right.

We shall say that the function /  belongs to the set £)([0, T ] , R)  where 
O ^ T  <  +oo, if f / is  finite, right continuous and has finite left limits for all 
ie [0 ,  T]. By D we denote the set £)((—oo,0],i?).

Process (xt, t  ^  0) is cadlag if for almost all a>, the function t -*■ x,(a>) belongs 
to Z)([0, oo), R). Let J t 2 denotes the set of all martingales nt with respect to the 
family (S' t, t ^  0), such that n, is cadlag and

sup E/if < oo 
o

holds true. We shall say that the process nt is continuous if, for almost all a> the 
function t -> x,(a>) is continuous. Let J t \  be the subset of J i  2 containing all 
continuous martingales. For each nt e J t 2, nt is a submartingale and from 
Meyer’s theorem there exists only one integrable process (j i ,  /i), and a martingale 
v, such that1 *

M<2 = vt + <ju,^>,

holds. By J t r2 we denote the class of all martingales nt such that is
continuous.

We define an operator 0t mapping D((— oo, T], R) -» D such that 

Ot<p(s) — <p(s +  t), s ^ 0 .
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D is a metric space with pseudometric q generated by seminorm || • || such that

M l*  =  { f M s)|2K(ds)}
— 00

where K( - )  is some measure on the <r-field of Borel sets of (— oo,0] such that 
K ( ( -o o ,0) )=  1.

Estimate of the difference between the solution of two stochastic differential 
equations. Let n, e . We consider the equation

(1) dxf =  a{t,  9tx)dt  +  b(t,  9tx)dnt, te (0 , T]
xt =  (pt, t <  0

where cpt is cadlag and the functions a and b satisfy the following conditions: 
1° a(s,q>) =  a(s,(p,a>) and b(s,cp) =  b(s,(p,a>) are two operators mapping 

[0, T] x D x £2 -*■ R such that for each t ^  T  the functions d : [0 , t ] x D x Q -* R  
and fe:[0, t] x D x Q -* R are 2£t x 36D x !Ft -  measurable where 2£t is a-field of 
Borel sets on [0 ,t] , is ir-field in D generated by cylindric sets in D,

2° for each a> the classes t e  [0 , T]} and {b{t , - ) , t  e  [0 , T]} w herea t, •)
and b( t , •) are meant as the functions of the argument ę  are uniformly continuous 
in D with respect to q :

3° for each a> the functions a { - , ę )  and b ( - , ę )  belong to D([0, 7 ] , R). 
The operator 9 defined by q>, = 0(i/̂  where \J/ e  £>(( — oo, T ] , R), t e [0, T] is 

a Borel function and for each 38D x 2 £ t -  measurable function g((p,t) the mapping 
g(Otę , t )  is a Borel function of argument t (see [2]).

Under the above assumptions about a(t,(p) and b(t,(p) both integrals 
t  t

J a(s, 0sx)ds and J b(s, 9sx)djus, /x( e J t r2 
0 0

exist.
DEFINITION. By a solution of the equation (1) we mean a probability space 

(£2, OF, P) with an increasing family of sub-c-fields (J^,) and a family of stochastic 
processes (x t,fit) defined on it such that

(i) with probability one x t and fi, belong to D and fi0 =  0,
(ii) they are adapted to !Ft for each t,

(iii) /it is an integrable martingale,
(iv) (xt ,n t) satisfies

t t 

x t — x 0 =  |  a{s, 9sx)ds +  \ b ( s ,  9sx)dfis, t e [0, T]  a.e., 
o o

x, =  (pt, t < 0 .

Let us consider two stochastic differential equations: equation (1) and 

dx(t) =  a ( t ,9 ,x )d t  +  B(t, 9t x)d/it, t e [ 0 ,T ] ,

^  x(t) = (p(t), t <  0 ,

where cp(t)eD.
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THEOREM 1. Let us assume that
1) the functions a, a, b, E: [0, T]  x D x Q -> R are Borelfunctions satisfying the 

conditions 1°—3°;
2) there exists a continuous function T] x R + -> R + non-decreasing with 

respect to £ e [0 , T] such that for every ( t ,x ) , ( t ,y ) ,

( a { t , x ) - a ( t , y ) ) 2 +  (b( t ,x ) - f>( t ,y ) )2 ^  <P{t, | |x - y | |2);

3) for every random variable r\: Q -> R + such that Erj <  oo the inequality

E<P(t, rj) <  V $ ( t ,  Erj)

holds with a constant V;

4) su p Eq>2 <  oo and sup E(p2 <  oo;
0 tsSO

5) the right-hand maximum solution M(f;0, rj) of  the non-random differential 
equation

/  = *<*>(£,>>)

where K  — 3( T + U ) V  through (0, ff) exists in the interval [0, T];
6) there exist solutions (xt, jit) and (x„ fit) o f  the equations (1) and (2) respectively

sup E x 2 <  oo, sup Exf  <
te[0,T] relO.T]

7) fit e J f c2 such that d </i, fi^Jdt is bounded in [0, T].

Then sup E\xt — x,\2 ^  M(t;  0, f f )  — H, t e  [0, T], H  =  sup E\(pu — (pu\2, f f  =  
o « i « r  u < o

= 3 E((p0 - ( p 0)2 +  H.
P ro o f. Let us consider the difference x t — x t . From the inequality (a +  b +  

+  c)2 ^  3a2 +  3b2 +  3c2 we have for t ^  0
t

£ |x , - x ,|2 ^  3E\(p0 — <p0|2 +  3£(J [a(s, 0sx) — a(s,0sx)] ds)2 +
o

+ 3£(f [b (s,9sx) — F(s, 6Sx)] d/is)2.
0

From the assumptions 2), 3), 5), 7) we have

12 =  $[b( s ,Qsx)-f>(s ,  0sx)] d//s e .Jt\
0

and

E( \ [ b ( s , 6 sx) ~ H s , 0 sx )] dns)2 =  £ (J [b (s ,0sx ) -F ( s ,0sx)]2d</x,/z>s).
0 0
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By Cauchy’s inequality we have
t

E\xt — x t\2 ^  3E(cp0 — cp0)2 +  3TE  J [a(s, 6sx) — a(s, 0sx)]2ds +
o

+  3£ j  [b (s, 9sx ) - F ( s ,  9sx)]2d </i, /i>s,
0
t

E\xt — x t\2 < 3C(T + £/) J E<P(s, ||0sx - 0 sx ||2)ds { C , T , U  =  const),
0 *

t

(3) £ |x t —x(|2 ^  3C + X J <P(s,£||0sx —0sx ||2)ds, te [0 ,  T].
0 *

Let z(t): =  sup £ |x s —xs|2. Then
O^s^t

0
£  ||0sx —0sx ||2 =  E J [(x —x)(s + u)]2X(du) ^  {sup £[(x  —x)(u)]2 +

* -00 u < 0

+ sup £[(x —x)(u)]2}K( — co ,0] < H  +  z(s),
0 < u ^ s

where H  =  sup E\cpu — <pj2. Therefore we get from (3)
u < 0

t
E\xt — x(|2 =% 3C +  K  J <P(s,z(s) +  H)ds,  (e  [0, T], 

o

and
t

z(t) +  H  < 3C + tf  <  K j(s ,z (s) + tf)ds, t e [ 0 ,T ] .
o

From Opial’s theorem we have

z(t) +  H  ^  M{t ;0 ,  3C +  H), t e [0, T],

sup K |xs — xs|2 < M{t;0 ,  3C +  H) — H,  te [0 ,  T].
O^s^t

REMARK. When in particular a =  a and b =  5  then Theorem 1 gives us the 
estimation of the difference between two solutions of the same equation with the 
different initial functions ę  and </>,.

COROLLARY. Under the assumptions of  Theorem l f o r a  =  a ,b  =  E,(pt =  ę ,  
assume that M( t ;  0,0) = 0 for t e  [0, T]. Then the equation (1) has a unique 
solution.
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When in particular <P(t, y) =  a(t)q(y), where a(t) is a non-negative continuous 
function in R + , and q(y) is a continuous, non-decreasing in R, q(y) =£ 0 and 

“ 1
lim f ---- ds =  +  oo, u >  e, we have the uniqueness criterion for (1).

£ o+ JEq(s)
In a similar way as in Theorem 1 we have

hence

and

where

z(t) ^  K  j- a(s)q(z(s))ds 
o

z(() ^  £ +  K |d (s )q (z (s ))d s  
0

z(t) ^  G 1 [G(e) +  X j  a(s)ds],

G(«) =  1 -7 - ;d s;
-  oo «(«)

for e -» 0 the right term of the last inequality tends to 0. When <P(t, y) =  Ly, L >  0 
then in the assumption 2) of Theorem 1 we have well known Lipschitz condition.

Estimation of the error of an approximate solution. Let x, and x( be two unique 
solutions of the equations (1) and (2) respectively and let a , d , b ,  Fbe the functions 
satisfying the conditions 1°— 3°. Then we have

TH EOREM  2. Assume that there exist functions <P, l : [ 0 ,  T ] x R + -> R + 
such that

1) ( a ( t , x ) - d ( t , x ) ) 2 +  ( b { t , x ) - F ( t , x ) ) 2 <P(t, ||x ||2), (t, x) e [0, T] x D;
2) \ a ( t , x ) - d ( t , y ) ) 2 +  (F ( t ,x ) -F ( t ,y ) )2 ^  <P(t, | |x - y | |2);
3) (a(t, x))2 +  (b(£, x))2 <  <P(t, ||x ||2);
4) functions 4>,<P,<P are continuous, non-decreasing with respect to t and for  

every random variable £: Q -> R + such that EĘ <  oo the inequalities

E<P(t, 0  <  V4>(t, 0 ,

£ * ( U ) <  V $ ( t , Q ,

E $ ( t ,Z )^ V < P ( t ,Z ) ,

where V =  const., are true',
5) let M(t \  0, rj) be the right-hand maximum solution of  non-random differential 

equation

y' =  M ( t ,  y)

through (0, >7) and M J t ;  0,0) — the right-hand maximum solution of  equation

y  =  K $ ( t , y  +  m )



through (0,0) for  some constans K ,  X.
t

fi(t) =  C +  K  J <P(s, M(t;  0, ri))ds (where C , K  =  const); 
o

6) nt e J i c2 such that d</i, n ) t/d t  is bounded in [0, T ],
Then

sup E\xt — x,\2 =  M 1(t ;0,0)+f i( t)—H, t e [0, T ], H =  sup £<p2.
O^s^I u < 0

P ro o f . In a similar way as in Theorem 1 we have for £e£0, T] 

£ |x t|2 ^  3(po +  3 £ (fa (s ,0 sx)ds)2 +  3 £ (Jb (s ,0 sx)d^s)2 ^

but

hence

^ f j + l T  $ Ea2(s ,0sx)ds +  3 § E(b(s ,0sx))2d ( n ,  n } s

^  f j + 3 ( T  +  B) V  J <P(s, £  ||0sx ||2)ds
o

£ ||0 sx ||2 <  sup £ x 2 +  s u p E(pz =  z(s) +  H,
O^m^s u < 0

<

t

sup £ x 2 +  H  <  H  +  rj +  3(T  +  B)V j  <P(s, z(s) +  H)ds,
0 o

and from Opial’s theorem

(4) H +  z(t) s% M(t;0,ri ) ,  t e [ 0 ,T ] ,

where f/ =  fj +  H,  and from assumption 4)

<P(t,z(t)) ^  <P(t,M(t;0,ri)), t e [ 0 ,T ] ,

Let us consider the difference x, — x, for t e  [0, T]. In a similar way as in Theorem
1 we have

t

E\x, — x,\2 5% 3£|(/)0 —(p0|2 +  3T j £ [ a ( s ,  0sx) —a(s ,0 sx)]^ds +
o

+  3B § E [ b ( s , 6 s x) — B(s, 9S x)]2ds C 
o

t

^  C +  6(T +  B) j£ { [ a ( s ,0 sx) —a('s, 0sx)]2 +  
o

+  [b (s , 6sx ) - f ) ( s ,  0sx)]2 +  [a (s, 9sx) -  a(s, 0sx)]2 +

+  [F{s, 6sx)- t>(s,  0sx)]2] ds,
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£ |x , - x ,|2 <  C +  6 {T  +  B)$ E<P(s,\\9sx\\2)ds +  6 (T  +  B)$ E&(s,\\9sx - 9 sx\\2)ds.
0 * 0  *

Hence, from the assumptions 4) and 3)
t  t 

E\xt - x , \ 2 <  C +  K  J <P(s, M(s;0,ri ))ds + K  J $ ( s ,£ ||0 sx —05x ||2)ds, f e [ 0 , r ]  
0 0 *

and
t

H  +  z(t) <  /I(0 +  K j# ( s ,z ( s )  +  H)ds 
o

where H =  sup E\(pt — <pt\2. The above inequality implies (see [4]) the following:
1 < o

H +  sup £ |x ( — x (|2 <  M ^ t;  0,0)+ /!(£), t e [ 0 ,T ]
0

which completes the proof.
Theorem 2 gives us the estimation of error if, instead of the solution of a given 

system which may be “difficult to solve”, we take the solution of an approximate 
one, which is “easier to solve”.

REMARK. Let a =  F =  0 for (t , x )e  [0, T] x D and <p =  0. Then we can 
assume that <£ =  0 and <P(t,y) =  4>{t,y). Hence and from the fact that 
M t (t; 0,0) =  0 for t e  [0, T] we have the estimation

sup £ |x t|2 ^  £ e [ 0,T ] .
OśtśT

If, in particular 4>(t, y) =  /C(l +  y), we get the well known growth condition. We 
have in this case

sup £ |x t|2 ^  A +  BeCT
OsasS T

where A , B , C  are constants dependent on H , K , V
We can generalize above theorems by applying some more general stochastic 

integrals. Let us consider the equation
t t t 

x, =  x 0+  J a(s, 0sx )d s+  j  b(s ,9sx ) d w +  j  j  c (s,9sx ,y ) / i (d t ,d y ) ,  t e [0 , T ],
0 0 OR

x, =  (P„ t <  0,

where (pt e D ,  w, is a Wiener process and i i( t ,A)  is a measur such that
a) for each A e  36, n ( t ,A ) is a Poisson process and ( n , n } t(A) =  v(t,A),  

Ev(t, A) =  tq(A), where q(A) is a measure on 36, and J 1 is a er-field of Borel 
sets in R.
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b) if B 1 n  B2 =  0  then v(t,  B t u  B2) =  v(t, v(t, B2),
c) the classes of random  variables {v(s,^4), „ s e  [0, t ] , A  e@)} and 

{v(s', C ) - v ( t , C ) ,  s’ >  t, C e  J }  are independent for each t >  0. The process 
v ( t , A ) : =  v( t ,A)  — tq(A) is called Poisson measure (see [3]). In this case, if the 
assumptions 1), 3)— 6) of Theorem 1 are satisfied and

(a(t, x) — a(t,  y))2 -\-(b(t,x) — F(t, y))2 +  (J- [ c ( t , x , u ) - c ( t ,  y , u ) ] 2 q(du) sS
R

< ^ ( t , | | x - y | | 2)

then

s u p £ |x t — x ,|2 ^  M(f,0 ,r i ) ,  t e [ 0 ,T ] .
15= T
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