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IRENA RYGUŁA*

COMPARISON THEOREMS FOR SOLUTIONS OF 
STOCHASTIC DIFFERENTIAL EQUATIONS

Abstract. The paper contains a generalization of some uniqueness criterions for the Ito’s 
differential equations established by Skorokhod, Yamada and Watanabe. The results were 
generalized by applying more general non-linear integral inequalities and hence the stochastic 
versions of uniqueness criterions for non-random differential equations were obtained.

Introduction. In the present paper we shall discuss a problem of the pathwise 
uniqueness for solutions of stochastic differential equations. A comparison 
theorem for solutions of the Ito ’s stochastic differential equation was established 
by Skorokhod (see [2]), Yamada and W atanabe (see [4]). We can generalize 
those results by applying some more general non-linear integral inequalities (see 
[1], [3]) and hence we get stochastic versions of uniqueness criterions for 
non-random  differential equations. We also consider more general class of 
equations

t t 

x, =  x 0 +  j f  d s+  J g d p s,
0 0

t

where J g d p s is meant as a stochastic integral and p, is a local integrable
o

martingale. In this paper for the proofs we use some ideas from [4],
Definitions and notations. Let (Q,?F ,P)  be a complete probability space and 

( & „  t ^  0) be an increasing family of sub-a-fields of We shall assume that 
contains all null sets of 3F and that the family (# j, f ^  0) is continuous from the 
right. We shall say that function /  belongs to D [0, T] iff / i s  finite, right conti
nuous and has finite left limits for all t e [0 , T].

Process (x t, t ^  0) is cadlag, if, for almost all oj, the function t -* x,(co) is finite, 
right continuous and has finite left limits for all t e R + . Let J i 2 be the set of all 
martingales p, with respect to the family (J5-,, t ^  0), such that p., is cadlag and

s u p £^,2 <  oo 
t z  o

holds true. We shall say that process nt is continuous, if, for almost all co the 
function t -*■ x t(<x>) is continuous. Let J t \  be a subset of J l 2, containing all 
continuous martingales. For each p t e M 2 yuf is a submartingale, and from 
Meyer’s theorem there exists only one integrable process </i, p ) t and a martingale 
v, such that
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holds. Let J t \  be a class of all martingales n, such that <ji, ju>( is continuous. Let 
/ :[ 0 ,o o )x £ 2 - » R  be a random  function. We assume that

(i) /  is 36 x ^ -m easu rab le  and for every ■) is J^-m easurable.
oo

(ii) P{coeC2: J\ f 2( t , a ) ) d < n , n \  <  00} =  1.
0

Let us denote by I% the class of all random  functions satisfying (i) and (ii), and 
by M 2 we cenote the class of all / e Ą ,  satisfying the condition

00

(iii) E  $ f 2d ( n , n ) ,  <  00 .
0

.00

Let J  f . dn t denote stochastic integral, where fxt e M \ . It is known that 
0

stochastic integral exists for all / e / £ .  If / e M 2, then for each ( e R  +

l , =  f / dMs
0
t t

is an integrable martingale and £ [ J / d ^ J 2 =  £ [ J / 2d</i,/i>s] holds true.
0 0

Process fit, t ^  0 is a local integrable martingale, if there exists an increasing 

sequence of stopping times (r„) such that lim t „  =  +  00 a.e. and each x„ reduces
n

the local martingale nt. We recall that t„ reduces nt, iff fi, A t„ is an uniformly
integrable martingale S',  ATn-adapted. The class of all local integrable martin-

t

gales we denote by l J / 2. I f /  e 1%, nt e  J t r2, then I t =  \ f  dns e \ M r2 and if fit e l J t r2
o

t t 
then I, =  J / dns : =  lim j f ( s  a  T„)d/iSAtne l J i r2. 

o " o
Uniqueness of solutions of stochastic differential equations. Let/  and g be two

functions m apping R + x R -> R . We shall assume that /  and g are Borel 
measurable and bounded on every finite interval. Hence, if x t e D ,  then the 
functions

OJ -> /(£ ,* ,), 0) - > g ( t , x , )

arfe & t measurable. Processes f ( t , x t) and g ( t , x t) are Borel measurable and 
locally bounded a.e. so the integrals

t t 

\ f ( s , x s)ds and \  g ( s , x s) d ( n ,  n>s 
0 0

exist. Let us consider the equation: 
t  t

(1) x t(qj) =  x0+ J  f ( s , x s) d s +  $ g ( s , x s)dns, t ^  0, n, e IJ(T2.
0 0
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D E FIN IT IO N  1. By a solution of  the equation (I) we mean a probability space 
with an increasing family of sub-<r-fields (Q, S ' , P ,  S',) and a family of stochastic 
processes {x,,p,) defined on it such that

(i) with probability one x, and p., belong to D and /z0 =  0,
(ii) they are adapted to S',  for each t,
(iii) p., is an integrable or local integrable martingale,
(iv) (x , ,p t) satisfies

t t 

x t ~ x 0 =  f f ( s , x s) d s +  J g(s ,x s)dps a.e.
0 0

D E FIN IT IO N  2. We shall say that the pathwise uniqueness holds for (1) if, for 
any two solutions (x,, p.,) and (xj, p't) defined on the same probability space 
{Q, S^, P,  S'-,), x 0 =  x ’0 and p., =  p ’t imply x, =  x ’t .

Let p . , e J ł  2 and f , g  are Borel measurable and bounded on every finite 
interval. We can prove the following.

TH EOREM  1. Let
t t 

x(t) =  X0 +  J f ( s ,  xs)ds +  j  g(s, xs)dps, t ^  0 
0 0

and assume that
1° there exists a positive increasing function r(u), u e ( 0 ,o o )  such that 

|gf(s,x)-gf(s,y)| sS r ( |x -y |) ,  x ,y e R

|  r _ 2(w)d« =  +  o o ,
o +

2° there exists a function # :R + x R + -> R  + , continuous and non-decreasing in 
x e R  + , such that for every (£,x), (t ,y), t ^  0, x ,y e R

\ f ( t , x ) - f ( t , y ) \  ^  <P(t, \x-y\) ,

3° for every random variable !; :Q -> R + such that EĆ, <  oo  the inequality

E * ( t , Q  V * ( t , E Q

for some constant V is true,
4° the right -  hand maximum solution M ( t ; 0,0) of  the non-random differential 

equation

/ = V * ( t , y )

through (0,0) exists in every interval [0, f], t >  0. Then for  every two solutions x„  
x't of  (1) we have

E\x. — x'.l ^  M(t;  0,0), t ^ 0 .
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P ro o f . Let a0 =  1 >  a t >  a2 >  ■ ■. >  ak -*• 0 be defined by
ao a i flk-i
J r - 2(u)du =  1, J r _ 2(u)du =  2, ... J r ~ 2(u)du =  k,

Then there exists twice continuously differentiable function \J/k(u) on [0, o o )  such 
that i//k(0) =  0,

0, 0 <  u ^  ak, 

between 0 and 1, ak <  u <  ak- ly

1, ak- i  <  u,

0,
z .  _  -

between 0 and - r  2(u), ak <  u <  a* -! , 
/c

0 ^  u ^  ak, 

c

ak- t s? m.

We extend t/^u) on ( — 00 , 00) such that

<h(«) =  ^*(N)-

1l/k{u) is a twice continuously differentiable function on ( — 00 , 00) and i//k{u) |  |u|.
Let (x„ n,) and (x'„ n;) be two solutions of (1) on the same probability space 

satisfying the following

x 0 =  x '0 and nt =  n't.

Then
I i

x ( t ) - x ’(t) =  J [ f ( s , x s) - f ( s , x ' s) ] d s +  $ [ g ( s , x s) - g ( s , x ' s) ] d n s.
0 0

By Ito ’s formula we have

ilfn(x( t ) -x ' (t ))  =  j  il/'n( x ( s ) - x ' ( s ) ) [ f ( s , x s) - f ( s , x ' s) ] ds  +
0

t
+  j 1l/'n( x ( s ) - x ' (s)) [g ( s , x s) - g ( s ,  x )̂] d/is -I-

0
1 1

+  ~ $ K { x ( s ) - x ' { s ) ) [ g { s , x s) - g { s , x ' s) ]2d ( n , n > s =  
^ 0

=  h  +^2 +  ^3-

I 2 e  I M \ ,  hence E(I2) =  0 for t ^  t „ ,  where z„ is stopping time reducing I2. 

E \h\  <  £ {| |/ (* .* J - /( s » * i) |d s } ,
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E\I3\ <  <Ań'(x(s)-x'(s))r2(|xs-x;|)d<)U ,)u)s} ^
Z 0

^ max {il/';(u)r2(\u\)}E((n,n>t - ( t i , ^ ) 0) ^
^  a„ Ś  |u|  ^  an -  i

a . c ^ o .
2  M n-> oo

Also we have by assumption

<A„(x(s)-x'(s)) t  |x (s)-x '(s) |.

Hence, and by Fatou’s lemma we have

E |x ( t) -x '(0 | «c E J | / ( s ,x s) - / ( s ,x ; ) |d s
0

and
t

E\x(t) — x ’(t)\ ^  E J <£(s, |x(s) —x'(s)|)ds,
o

E|x(f) — x'(OI <  V { <P(s, £ |x(s) — x'(s)|)ds, 
o

therefore by Opial’s theorem

(2) E\x{t) — x'(t)| ^  M (t;0,0), t ^  r„.

As t „  was reducing sequence of stopping times such that lim t „  =  +  o o  a.e. we
n

have for sufficiently N t „  a  t =  t  • a.e. and that completes the proof.
COROLLARY. If (M{t;  0,0) =  0), then, under the assumptions of  Theorem 1, 

the pathwise uniqueness holds for solutions o f  (1).
TH EOREM  2 (Stochastic version of Osgood’s criterion). I f  the assumptions of  

Theorem 1 are satisfied, and $ ( t , x )  =  a(t)q(x), where a(t) is non-negative, 
continuous function on [0, o o )  and q(x) is continuous concave, non-decreasing in R, 
q(x) ^ 0  and

f —7— dx =  +  00 
0+

then pathwise uniqueness holds for  (1).
P ro o f . In a similar way as in Theorem 1 we get

E\x(t) — x'(t)\ ^  E J a(s)q(|x(s) — x'(s)|)ds <

^  I a(s)q(E\x(s) — x'(s)|)ds,
0
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and
t

(3) £ |x (t) —x'(t)| ^  e +  J a(s)<7(E|x(s) —x'(s)|)ds, e >  0.
o

Inequaluty (3) is Bihari’s type, hence we have

£ |x (t) — x'(t)| ^ G_1[G(e)+ Ja (s)d s], t ^  0,
o

II J  t

where G(t) =  J ds, and, for e tends to 0, we have G“ 1 [G (e) +  { a(s)ds] -*• 0. 
-00 *?(S) 0 

REMARK. Under the assumptions of Theorem 2, if a(t) =  1, we have often 
used inequality:

t

E\x(t) — x'(t)\ < J q(£|x(s) — x'(s)|)ds, t ^  0, 
o

hence path wise uniqueness holds for (1).
Uniqueness of solutions of stochastic differential equations in multi-di- 

mensional case. Let a ( t ,x )  =  [a  tj ( t , x)~], b { t ,x )  =  [ft,(t,x)], i =  1, j  =  
=  be defined on [0, oo) x R", Borel measurable and bounded. We
consider the equation:

(4) dxt =  a ( t , x t)dnt +  b ( t ,x ,)d t ,  t ^  0 , n t e J t c2, 

or, in component wise
r

dx,(f) =  £  <ruj(t>xt)dHj(t) +  b i( t ,x t)d t ,  i =  1 
j =  i

Let p., =  (/ij(t), . . . ,  nr(tj) e .Jf\ and nk} t be absolutely continuous with 
respect to Lebesgue measure for k , i  =  1, . . . ,  r. Let the densities (Pi,k{t) be bounded 
for k, i =  1, . . . ,  r and the following assumptions be satisfied:

1 ° there exists a positive, increasing function q  ( x ) ,  x e (0, oo), q  (0) = 0 such that

||<r(t, x) —er(t, y)t| ^ e ( \ x ~ y \ ) ,  (t, x) e [0, oo) x R",

2 °  there exists positive, non-decreasing function ę ( x), x e [0 , g o ) ,  such that

\b ( t ,x ) -b ( t ,y ) \  ^  </>(|x —y|), x j e R " ,

3° the function

q2(x)x ~ 1 +  (p(x)

is concave,

4° J [e2(x)x_1 +  <p(x)]_1dx =  + o o .
o +

Then the pathwise uniqueness holds for  (4).



P ro o f . In a similar way as in Theorem 1 we define functions il/m(x) on [0, oo) 
such that

0, 0 ^  u ^  am,

iA m (« )  =  ^ between 0 and q 2 (u)u,  am <  u <  am- 1,

am- i  ^  w,

fm(x ) ■ =  <MM) for *eR "-
Let x(J) and x'(t) be the solutions of equation (4). By Ito’s formula we have

/ M(x (t)-x '( t))  =  a martingale +  £  } ^ ( x 5- x ; ) |> i(s ,x s)-i> i(s,x ;)]ds +
1=10 0Xi

' +  \  Ż  J (Xs- < ) [  L  Xs) -  Ouk(s, X̂ ))*
L i,j= 1 0 OXiOXj k=1

*(<Tj,k(s, X,) -  <Tj'k(s, Xi))] d </!;, Hj)s =  / ! + / 2 +  / 3 
but as i//’m is bounded,
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df„
dxt ^ m (|x |)^  

|x|
=$ K 0, K 0 =  const.,

dxjdxj

1

1
 ̂ 1̂ |̂ | "I" *Am(|x|) ‘ ̂ 2’ ^ 1>^2 — COnSt.,

£ ( / 1) =  0 ,

£ ( / 3) ^ 2 £
1

I x i rY _  Xix,*x,]{ Z Z  K*(s,xs)-ffi)L(s,x;))*
.0 l-*s xsl i , j = l k  = l

*Kk(s, x J-ffM(s, x;))d</ij, /x;>s}], 
and from the assumption we have

E(I3) sc ^ £ [ F  j X ! |xs—x 'I_ 1 X[*s* x^g2(|xs — x'I)ds] +  
Z 0

+ \ e [ v  } k 2 «/c(|xs -  x;i)g2 (|xs -  x;i)ds 
L 0

and

- E [ V  j  & 2i/C(|xs — x '|)g2(|xs — x'|)ds

1  1

^  ^ K-2 V  J E \x s śx,-x-s $om_ i]ds ^  C ' t ’ Om-  i —► 0 . 
Z 0

By Fatou’s lemma

£|x(-x;i < c f  £{<p(|x5-x;i)+|xs- x ;r  V (ix s-x;i)}ds,
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By Jensen’s inequality

E\xt — x't\ = 0 ,  t ^  0,

which completes the proof.
Uniqueness criterion for some integral equations. We consider the equation

t t

(5) x, =  x 0 +  J g{s, xs)dfis +  f f ( s ,  xs)das, t ^  0;
0 0

x 0 is S ' q -  measurable random  variable; /  and g are Borel measurable and
bounded on every finite interval, fit e  l J i \ ,  a, e V + — V + where V + is the set of all

t

increasing, adapted, cadlag processes A, such that A 0 =  0. Integral j f  (s, xs)das is
o

meant in a Stjeltjes-Lebesgue sense. Under the above assumptions both integrals 
exist and we always can write the right term of equality (5).

Let  < a,a> ( be absolute continuous with respect to Lebesgue measure and its 
density (pt be bounded in R and let the assumptions of  Theorem 1 be satisfied. Then 
pathwise uniqueness for  (5) holds.

We can prove it in a similar way as in Theorem 1.
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