JAN FRYDA*

ORTHOGONALITY ON THE GIVEN HYPERBOLIC PLANES

Abstract

It has been proved, by K. Menger in [3], that all concepts of the Bolyai-Lobachevsky geometry can be defined in terms of the operations "joining" and "intersecting". In the present paper a similar definition of the orthogonality on hyperbolic plane (being a substitute for the Bolyai -Lobachevsky plane) over a finite field with characteristic different from 2 or over a finite extension of the rational field to a subfield of the real field is given and investigated.

1. Introduction. Let F be a finite field with characteristic different from 2 or a rational field, or a finite extension of the rational field to a subfield of the real field (in the two last cases we write shortly "Q-field"). We denote a set of all non-zero squares of F by $F^{+} . F^{*}$ denotes a set of all non-zero elements of F, and $F^{-}:=F^{*} \backslash F^{+} . F^{-}$is nonempty in our class of fields.

Let Π be a projective plane over F, and C be a nondegenerate and nonempty (as a set of projective points) conic on Π. A projective lines containing exactly one (resp. zero, two) point lying on C will be called here a tangent lines (an exterior and secant lines respectively). A projective point lying on two (resp. zero) tangent lines will be called an exterior (resp. interior) point [5].

In this paper we consider an incidence structure $\left(\mathscr{I}, \mathscr{L}_{2}, \mathscr{L}_{0}\right)$, where \mathscr{I} is the interior of C, \mathscr{L}_{2} (resp. \mathscr{L}_{0}) is a set of non-empty intersections of a secant (resp. exterior) lines with \mathscr{I}. This structure may be called a hyperbolic (Bolyai--Lobachevsky) plane over F [4]. The concept of orthogonality is based on the polarity corelation with respect to C which is defined as follows [2]. If C is described on Π by the equation

$$
\sum_{i, j=1}^{3} c_{i, j} x_{i} x_{j}=0
$$

where $c_{i, j}=c_{j, i}, c_{i, j}, x_{i} \in F$ for $i, j=1,2,3$, then a polar $\Pi_{c}(p)$ of a point $p \in \Pi$ has the equation

$$
\sum_{i, j=1}^{3} c_{i, j} p_{i} x_{j}=0
$$

where $\left[p_{1}, p_{2}, p_{3}\right]_{\sim}$ are the homogeneous coordinates of p. We denote similarly a pole of a line L by $\Pi_{c}(L)$. Two lines L_{1}, L_{2} are orthogonal iff $\Pi_{C}\left(L_{1}\right) \in L_{2}$ (it is known that $\Pi_{c}\left(L_{1}\right) \in L_{2}$ iff $\left.\Pi_{c}\left(L_{2}\right) \in L_{1}\right)$.

The main result is an "incidence interior characterization" of the orthogonality. This characterization is based on a relations (a) and (b) defined as follows.

Let L be a secant or exterior projective line and p be an interior or exterior point not on L. We say that a pair (L, p) satisfies a condition (a) (resp. (b)) if and

[^0]only if each secant (resp. exterior) line passing through p meets L in an interior point and every lines passing through p and interior points on L are secant (resp. exterior).
2. Basic theorem. Let $\left[x_{1}, x_{2}, x_{3}\right] \sim$, be a homogeneous coordinates of a projective points such that the conic C has a canonical equation
$$
\sum_{i=1}^{3} \lambda_{i} x_{i}^{2}=0
$$
where $\lambda_{1} \cdot \lambda_{2} \cdot \lambda_{3} \neq 0$ and if F is a Q-field then $\lambda_{1}>0, \lambda_{2}>0$ and $\lambda_{3}<0$. Hence the dual conic has equation
$$
\sum_{i=1}^{3} \lambda_{i}^{-1} A_{i}^{2}=0
$$
where $\left[A_{1}, A_{2}, A_{3}\right]_{\sim}$ are the homogeneous coordinates of a projective lines. We write shortly $p\left(x_{1}, x_{2}, x_{3}\right)$ and $L\left(A_{1}, A_{2}, A_{3}\right)$ instead of writing a projective point p with coordinates $\left[p_{1}, p_{2}, p_{3}\right]_{\sim}$ and projective line L with coordinates $\left[A_{1}, A_{2}, A_{3}\right]_{\sim}$.

By a simple calculating we have an equivalences
$p\left(p_{1}, p_{2}, p_{3}\right)$ is an interior (resp. exterior) point iff

$$
-\lambda_{1} \lambda_{2} \lambda_{3} \sum_{i=1}^{3} \lambda_{i} x_{i}^{2} \in F^{-}\left(\text {resp. } F^{+}\right),
$$

and

$$
\begin{aligned}
& L\left(A_{1}, A_{2}, A_{3}\right) \text { is a secant (resp. exterior) line iff } \\
& \quad-\lambda_{1} \lambda_{2} \lambda_{3} \sum_{i=1}^{3} \lambda_{i}^{-1} A_{i}^{2} \in F^{+} \text {(resp. } F^{-} \text {). }
\end{aligned}
$$

Since $p\left(p_{1}, p_{2}, p_{3}\right)$ is a pole of $L\left(A_{1}, A_{2}, A_{3}\right)$ iff $\mu A_{i}=\lambda_{i} x_{i}$ for $\mu \in F^{*}$ and $i=1,2,3$ then

$$
L\left(A_{1}, A_{2}, A_{3}\right) \text { and } L\left(B_{1}, B_{2}, B_{3}\right) \text { are orthogonal iff } \sum_{i=1}^{3} \lambda_{i}^{-1} A_{i} B_{i}=0 .
$$

The common point of a different projective lines L and M we denote by $L \cdot M$, and the projective line passing through different points p and q we denote by $p \cdot q$.

Given two different lines $L\left(A_{1}, A_{2}, A_{3}\right)$ and $M\left(B_{1}, B_{2}, B_{3}\right)$ and $L \cdot M$ has coordinates $\left[x_{1}, x_{2}, x_{3}\right.$] . By a simple calculating we obtain

$$
-\lambda_{1} \lambda_{2} \lambda_{3} \sum_{i=1}^{3} \lambda_{i} x_{i}^{2} \in F^{+} \text {iff }-\left(\sum_{i=1}^{3} \lambda_{i}^{-1} A_{i}^{2}\right)\left(\sum_{i=1}^{3} \lambda_{i}^{-1} B_{i}^{2}\right)+\left(\sum_{i=1}^{3} \lambda_{i}^{-1} A_{i} B_{i}\right)^{2} \in F^{+} .
$$

Analogically for two different points $p\left(p_{1}, p_{2}, p_{3}\right)$ and $q\left(q_{1}, q_{2}, q_{3}\right)$, if $p \cdot q$ has coordinates $\left[Y_{1}, Y_{2}, Y_{3}\right] \sim$ then

$$
-\lambda_{1} \lambda_{2} \lambda_{3} \sum_{i=1}^{3} \lambda_{i}^{-1} Y_{i}^{2} \in F^{+} \text {iff }-\left(\sum_{i=1}^{3} \lambda_{i} p_{i}^{2}\right)\left(\sum_{i=1}^{3} \lambda_{i} q_{i}^{2}\right)+\left(\sum_{i=1}^{3} \lambda_{i} p_{i} q_{i}\right)^{2} \in F^{+} .
$$

For an arbitrary functions $f=f\left(x_{1}, \ldots, x_{n}\right)$ and $g=g\left(x_{1}, \ldots, x_{n}\right)$ we define a relation \simeq as follows

$$
f \simeq g \text { if and only if } f\left(x_{1}, \ldots, x_{n}\right) \in F^{+} \text {iff } g\left(x_{1}, \ldots, x_{n}\right) \in F^{+}
$$

for every $x_{1}, \ldots, x_{n} \in F$.
Let $L\left(A_{1}, A_{2}, A_{3}\right)$ be a projective line, and $p\left(p_{1}, p_{2}, p_{3}\right)$ be a projective point neither on L nor on C. Moreover, let $q\left(q_{1}, q_{2}, q_{3}\right) \in L$ be an arbitrary projective point, and $p \cdot q=M\left(Y_{1}, Y_{2}, Y_{3}\right)$. One can easily verify that the pair (L, p) satisfies condition (a) (resp. (b)) iff

$$
(*)\left\{\begin{array}{l}
-\lambda_{1} \lambda_{2} \lambda_{3} \sum_{i=1}^{3} \lambda_{i}^{-1} Y_{i}^{2} \simeq-\left(\sum_{i=1}^{3} \lambda_{i} p_{i}^{2}\right)\left(\sum_{i=1}^{3} \lambda_{i} q_{i}^{2}\right), \\
-\lambda_{1} \lambda_{2} \lambda_{3} \sum_{i=1}^{3} \lambda_{i} q_{i}^{2} \simeq-\left(\sum_{i=1}^{3} \lambda_{i}^{-1} A_{i}^{2}\right)\left(\sum_{i=1}^{3} \lambda_{i}^{-1} Y_{i}^{2}\right)
\end{array}\right.
$$

for every $q \in L$, when $-1 \in F^{-}$and L is a secant line or p is an exterior point or $-1 \in F^{+}$and L is an exterior line or p is an interior point (resp. $-1 \in F^{+}$and L is a secant line or p is an exterior point or $-1 \in F^{-}$and L is an exterior line or p is an interior point).

If $p=\Pi_{c}(L)$ then (*) holds. We shall show that (*) implies $p=\Pi_{c}(L)$. We assume that (*) holds. Since

$$
\left\{\begin{array}{l}
-\lambda_{1} \lambda_{2} \lambda_{3} \sum_{i=1}^{3} \lambda_{i}^{-1} Y_{i}^{2} \simeq-\left(\sum_{i=1}^{3} \lambda_{i} p_{i}^{2}\right)\left(\sum_{i=1}^{3} \lambda_{i} q_{i}^{2}\right)+\left(\sum_{i=1}^{3} \lambda_{i} p_{i} q_{i}\right)^{2}, \\
-\lambda_{1} \lambda_{2} \lambda_{3} \sum_{i=1}^{3} \lambda_{i} q_{i}^{2} \simeq-\left(\sum_{i=1}^{3} \lambda_{i}^{-1} A_{i}^{2}\right)\left(\sum_{i=1}^{3} \lambda_{i}^{-1} Y_{i}^{2}\right)+\left(\sum_{i=1}^{3} \lambda_{i}^{-1} A_{i} Y_{i}\right)^{2}
\end{array}\right.
$$

for every $q \in L$, then
(**)

$$
\left\{\begin{array}{l}
-\left(\sum_{i=1}^{3} \lambda_{i} p_{i}^{2}\right)\left(\sum_{i=1}^{3} \lambda_{i} q_{i}^{2}\right) \simeq-\left(\sum_{i=1}^{3} \lambda_{i} p_{i}^{2}\right)\left(\sum_{i=1}^{3} \lambda_{i} q_{i}^{2}\right)+\left(\sum_{i=1}^{3} \lambda_{i} p_{i} q_{i}\right)^{2}, \\
-\left(\sum_{i=1}^{3} \lambda_{i}^{-1} A_{i}^{2}\right)\left(\sum_{i=1}^{3} \lambda_{i}^{-1} Y_{i}^{2}\right) \simeq-\left(\sum_{i=1}^{3} \lambda_{i}^{-1} A_{i}^{2}\right)\left(\sum_{i=1}^{3} \lambda_{i}^{-1} Y_{i}^{2}\right)+\left(\sum_{i=1}^{3} \lambda_{i}^{-1} A_{i} Y_{i}\right)^{2}
\end{array}\right.
$$

for every $q \in L$ (i.e. $\sum_{i=1}^{3} q_{i} A_{i}=0$ and $\sum_{i=1}^{3} p_{i} Y_{i}=0$).
Now, we shall prove
LEMMA 1. If F is a finite field (char $F \neq 2$) and

$$
H\left(x_{1}, x_{2}\right)=\alpha x_{1}^{2}+\beta x_{1} x_{2}+\gamma x_{2}^{2}, \quad h\left(x_{1}, x_{2}\right)=a x_{1}^{2}+b x_{1} x_{2}+c x_{2}^{2},
$$

where $\beta, \gamma, b, c, x_{1}, x_{2} \in F, \alpha, a \in F^{*}$, and $H \simeq h$, then there exists $\lambda \in F^{*}$ such that $H=\lambda^{2} h$.

Proof. Let F contains n elements. F^{+}contains $\frac{n-1}{2}$ elements, but each of the sets $H(F, 1)$ and $h(F, 1)$ has at least $\frac{n+1}{2}$ elements. Consequently H and h are proportional.

LEMMA 2. Let F be a Q-field, H and h be as above, $H \simeq h$, and $H(F, F) \cap$ $\cap F^{+} \neq \varnothing, F^{-} \cap h(F, F) \neq \varnothing$. Then there exists $\lambda \in F^{*}$ such that $H=\lambda^{2} h$.

Proof. The above problem may be reduced to the following functions

$$
\tilde{H}(x)=x^{2}+\beta x+\gamma \text { and } \tilde{h}(x)=x^{2}+c .
$$

Now, we have

$$
\tilde{H}(x) \in F^{+} \text {iff }\left(x=0 \text { or } x=\frac{\gamma-z^{2}}{2 z-\beta}, \text { where } z \in F \backslash\left\{\frac{\beta}{2}\right\}\right) \text {, }
$$

and

$$
\hbar(x) \in F^{+} \text {iff }\left(x=0 \text { or } x=\frac{c-u^{2}}{2 u}, \text { where } u \in F^{*}\right) .
$$

The condition $\tilde{H} \simeq \overline{\boldsymbol{K}}$ implies that the equation

$$
\frac{c-u^{2}}{2 u}=\frac{\gamma-z^{2}}{2 z-\beta}
$$

has the solution for every $u \in F^{*}$, but it is possible iff $\beta=0$ and $c=\gamma$, and we have $\tilde{H}=\tilde{\hbar}$. Consequently Lemma 2 holds.

From (**) by using of Lemmas 1 and 2 we obtain
THEOREM. If L is a secant line or p is an exterior point, then (L, p) satisfies (a) (resp. (b)) iff $p=\Pi_{c}(L)$, when $-1 \in F^{-}$(resp. $-1 \in F^{+}$).

If L is an exterior line or p is an interior point,then (L, p) satisfies (b) (resp. (a)) iff $p=\Pi_{c}(L)$, when $-1 \in F^{-}$(resp. $-1 \in F^{+}$).

We say that projective lines L_{1}, L_{2}, L_{3} form an asymtotic triangle iff $L_{i} \cdot L_{j} \in C$, and $L_{i} \cdot L_{j} \neq L_{i} \cdot L_{k}$ for $i \neq j \neq k \neq i$, and $i, j, k=1,2,3$.

One can easily verify that L_{1}, L_{2}, L_{3} form an asymptotic triangle iff there exist lines M_{1}, M_{2}, M_{3} such that L_{i}, M_{i} are orthogonal for $i=1,2,3$ and there is no line orthogonal to any two lines from the set $\left\{L_{1}, L_{2}, L_{3}\right\}$ (Fig. 1).
3. The incidence orthogonal structure $\left(\mathscr{I}, \mathscr{L}_{2}, \mathscr{L}_{0}\right)$. In contradiction to the projective points and lines the elements of the sets $\mathscr{I}, \mathscr{L}_{2}, \mathscr{L}_{0}$ will be called H-points (hyperbolic points), H-secant lines and H-exterior lines respectively.

The H-line L meets H-line M iff $L \neq M$ and there exists H-point p lying on L and M.

Let us fix that H-secant lines contain the odd or infinite (resp. even) number of H-points.

The H-point p is an H-pole of the H-exterior line L iff each H-secant line (resp. H-exterior line) passing through p meets L.

The H-exterior line L is an H-polar of H-point p iff each H-line passing through p and meeting L is H-secant (resp. H-exterior) line.

The H-line M is orthogonal to the H-exterior line L iff M passes through the H-pole of L.

The H-exterior line M is orthogonal to the H-secant line L iff M is the H-polar of some H-point on L.

The H-secant line M is orthogonal to the H-secant line L iff M is disjoint with each H-exterior life orthogonal to L and M meets L (resp. M is disjoint with L).

Two H-lines are parallel iff there is no H-line orthogonal to each of them. If two H-lines are parallel then they are different H-secant lines.

Three H-lines L_{1}, L_{2}, L_{3} form an H-asymptotic triangle iff L_{i} and L_{j} are parallel for $i \neq j, i, j=1,2,3$ and there exist H-lines M_{1}, M_{2}, M_{3} such that L_{i} and M_{i} are orthogonal for $i=1,2,3$, and M_{i}, L_{j} are parallel for $i \neq j$, $i, j=1,2,3$.

The pencil of I-type is the set of all H-lines passing through the same H-point.
The pencil of II-type is the set of all H -lines such that every two H -lines are parallel and no three H-lines form an H-asymptotic triangle.

The pencil of III-type is the set of all H-lines orthogonal to the same H-secant line.

Three H-points are collinear iff there exists H-line passing through each of these points.

The bijection of \mathscr{I} preserving collinearity of H-points is called the H-collineation. One can easily verify that each H-collineation transforms the

H -secant lines onto H -secant lines, H -exterior lines onto H -exterior lines and preserves orthogonality of H-lines. Hence H-collineation transforms the pencil of i-type onto pencil of i-type for $i=\mathrm{I}, \mathrm{II}, \mathrm{III}$.

COROLLARY. Each H-collineation may be extend to the collineation of Π, i.e. the group of the H -collineations is the set of all restrictions of the collineations of Π preserving C [1].

Since on real hyperbolic plane $\mathscr{L}_{0}=\varnothing$ then the above characterization of orthogonality is impossible there (the other but similar inner characterization is given in [3]).

PROBLEM. Find all fields satisfying Lemma 1 or Lemma 2, and all the incidence structures ($\left.\mathscr{I}, \mathscr{L}_{2}, \mathscr{L}_{0}\right)$ where the above characterization of orthogonality is possible.

REFERENCES

[1] L. DUBIKAJTIS, J. FRYDA, Some generalization of the Klein's model, Zesz. Nauk. Pol. Pozn., Geometria 12 (1981), 19-28.
[2] F. KARTESZI, Introduction to Finite Geometries, Budapest, 1976.
[3] K. MENGER, Non-euclidean geometry of joining and intersecting, Bull. Amer. Math. Soc. 44 (1938), 821-824.
[4] T. G. OSTROM, Ovals and finite Bolyai-Lobachevsky planes, Amer. Math. Monthly 69 (1962), 899-901.
[5] L. WLODARSKI, On differential notions of the interior of a conic, Bull. Acad. Polon. Sci. Sér. Sci. Math. Astronom. Phys. 25 (1977), 965-967.

[^0]: Received June 20, 1985.
 AMS (MOS) Subject classification (1980). Primary 51N15. Secondary 51N10.
 *Instytut Matematyki Uniwersytetu Ślaskiego, Katowice, ul. Bankowa 14, Poland.

