JOSEPH L. YUCAS*

A CLASSIFICATION THEOREM FOR QUADRATIC FORMS OVER SEMI-LOCAL RINGS

Abstract

Let R be a semi-local ring with $2 \in U(R)$ and such that all residue class fields of R contain more than 3 elements. It is proved here that bilinear spaces over R are classified by dimension, determinant, Hasse invariant and total signature if and only if the third power of the fundamental ideal of Witt ring $W(R)$ is torsion free. This is a generalization of the same result when R is a field due to Elman and Lam.

1. Introduction. In notations and terminology we primarily follow [10]. Unless otherwise stated we will assume R is a connected semi-local ring with $2 \in U(R)$ and such that all residue class fields of R contain more than 3 elements. As a consequence all bilinear spaces over R are free and can be diagonalized (see [9]). The Witt ring of R will be denoted by $W(R)$ and the ideal of $W(R)$ generated by the bilinear spaces of even dimension will be denoted by $I(R)$.

The purpose of this paper is to prove that bilinear spaces (forms) over R are classified by dimension, determinant, Hasse invariant and total signature if and only if $I^{3}(R)$ is torsion free. This is a generalization of the same result when R is a field due to Elman and Lam [7, Theorem 3]. Finally we show that this result remains valid if we remove the condition that R is connected.

The author has learned that R. Baeza has independently given another proof of this result (see [2]). It would be interesting to know if such a result could be generalized to an arbitrary abstract Witt ring. The main difficulty in generalizing either proof is that they both depend on the usage of quadratic extentions.

We start by recording some preliminary results due to Elman and Lam whose proofs generalize either verbatim of with a slight modification using [3, Satz 2.7].

For a form φ over R we will denote the set of units represented by φ by $D_{R}(\varphi)=$ $=D(\varphi)$.

PROPOSITION 1.1 ([5, Corollary 2.3]). Suppose φ is a $2 n$-dimensional form over R such that $2 \varphi=0$ in $W(R)$. Then $\left.\varphi \simeq \sum_{i=1}^{n}\left\langle a_{i}\right\rangle 《<w_{i}\right\rangle$ for suitable $a_{i} \in U(R)$
and $w_{i} \in D(\langle 1,1\rangle)$. and $w_{i} \in D(\langle 1,1\rangle)$.

[^0]COROLLARY 1．2．Let $\left.\varphi=《 b_{1}, \ldots, b_{n}\right\rangle$ be an n－fold Pfister form over R ． $2 \varphi=0$ in $W(R)$ if and only if $\varphi \simeq 《-w, \ldots\rangle$ where $w \in D(\langle 1,1\rangle)$ ．

PROPOSITION 1.3 （［7，Lemma 1］）．Let $n \geqslant 1$ ．Suppose there is no anisotropic n－fold Pfister form φ such that $2 \varphi=0$ in $W(R)$ ．Then there are no anisotropic m－fold torsion Pfister forms for any $m \geqslant n$ ．

PROPOSITION 1.4 （［4，Theorem 2．8］）．Let $\left.\varphi \simeq \sum_{i=1}^{r}\left\langle a_{i}\right\rangle 《-w_{i}\right\rangle$ with $a_{i} \in U(R)$ and $w_{i} \in D(\infty)$ ．If $\varphi \in I^{2}(R)$ then $\left.\varphi=\sum 《 b_{j},-c_{j}\right\rangle$ in $W(R)$ where $b_{j} \in U(R)$ and $c_{j} \in D(\infty)$ ．

PROPOSITION 1.5 （［6，Lemma 2．5］）．Suppose φ is a 2 n－dimensional form in $I^{2}(R)$ ．There exist 2－fold Pfister forms $\varphi_{1}, \ldots, \varphi_{n-1}$ and $a_{1}, \ldots, a_{n-1} \in U(R)$ such that $\varphi=\sum_{i=1}^{n-1}\left\langle a_{i}\right\rangle \varphi_{i}$ in $W(R)$ ．

2．The classification theorem．Let $d \in U(R)$ and suppose $S=R(\sqrt{ } d)$ ．The residue fields of S are field extensions of residue fields of R ，thus S is a connetced semi－local ring with $2 \in U(R)$ and each residue field of S contains more than 3 elements．

LEMMA 2．1．Let $d \in U(R)-[U(R)]^{2}, S=R(\sqrt{d})$ and suppose φ is a 2－fold Pfister form in $W(S)$ ．There exist $a_{1}, a_{2} \in U(S)$ and $r \in U(R)$ such that $\varphi \simeq 《 a_{1}, a_{2} 》$ and $\left.\left.《 a_{1} r^{-1}, a_{2}\right\rangle \simeq 《 s_{1}, s_{2}\right\rangle$ for some $s_{1} \in U(R)$ and $s_{2} \in U(S)$ ．

Proof．Write $\varphi=\left\langle\left\langle b_{1}, b_{2}\right\rangle\right.$ for some $b_{1}, b_{2} \in U(R)$ ．By［11，Lemma 2．2］ $\left\langle b_{1}, b_{2}\right\rangle \simeq\left\langle a_{1}, a_{2}\right\rangle$ where $a_{1}=u_{1}+v_{1} \sqrt{d}, a_{2}=u_{2}+v_{2} \sqrt{d}$ with v_{1}, v_{2} and $u_{1} v_{2}-$ $-u_{2} v_{1} \in U(R)$ ．Let $r=-v_{1} v_{2}^{-1}$ ．Then $a_{1} r^{-1}+a_{2}=u_{2}-u_{1} v_{2} v_{1}^{-1} \in U(R)$ ．Take $s_{1}=a_{1} r^{-1}+a_{2}$ ，then there exists $s_{2} \in U(S)$ such that $\left\langle a_{1} r^{-1}, a_{2}\right\rangle \simeq\left\langle s_{1}, s_{2}\right\rangle$ ．Con－ sequently，$\varphi \simeq\left\langle a_{1}, a_{2}\right\rangle$ and $\left\langle a_{1} r^{-1}, a_{2}\right\rangle \simeq\left\langle\left\langle s_{1}, s_{2}\right\rangle\right.$ ．

Let d be a unit of R which is not a square and suppose $s: R(\sqrt{d}) \rightarrow R$ is the R－linear map defined by $s(1)=0$ and $s(\sqrt{d})=1 . s$ is non－degenerate so that the transfer map $s_{*}: W(R \sqrt{d}) \rightarrow W(R)$ is $W(R)$－linear［8，section 4］．We will denote the inclusion map $R \rightarrow R(\sqrt{d})$ by i and the induced map $W(R) \rightarrow W(R(\sqrt{d}))$ by i^{*} ．

PROPOSITION 2．2．Let $d \in U(R), S=R(\sqrt{d})$ and suppose $\varphi=《(x, y,-z 》$ with $z \in D_{S}(\langle 1,1\rangle)$ and $x, y \in U(S)$ ．If there are no torsion 3 －fold Pfister forms over R then $s_{*}(\varphi)=0$ in $W(R)$ ．

Proof．By Lemma 2.1 there exist $a_{1}, a_{2} \in U(S)$ and $r \in U(R)$ such that $\langle x, y\rangle \simeq$ $\simeq\left\langle a_{1}, a_{2}\right\rangle$ and $\left\langle a_{1} r^{-1}, a_{2}\right\rangle \simeq\left\langle s_{1}, s_{2}\right\rangle$ with $s_{1} \in U(R)$ and $s_{2} \in U(S)$ ．In $W(R)$, $s_{*}\left(\langle\langle x, y,-z\rangle)=s_{*}\left(\left\langle a_{1}, a_{2},-z\right\rangle\right)=s_{*}\left(《-r, a_{2},-z\right\rangle\right)+\langle r\rangle s_{*}\left(\left\langle\left\langle a_{1} r^{-1}, a_{2},-z 》\right)\right.\right.$
since s_{*} is $W(R)$－linear．Now，$\left\langle a_{1} r^{-1}, a_{2},-z\right\rangle \simeq\left\langle\left\langle s_{1}, s_{2},-z\right\rangle\right.$ ，thus $s_{*}(\varphi)=$ $\left.\left.\left.=s_{*}\left(《-r_{1}, a_{2},-z\right\rangle\right)+\langle r\rangle s_{*}\left(《 s_{1}, s_{2},-z\right\rangle\right\rangle\right)$ in $W(R)$ ．Since r and $s_{1} \in U(R)$ ，to show $s_{r}(\varphi)=0$ in $W(R)$ we may assume $x \in U(R)$ ．Again by Lemma 2.1 there exist $a_{1}^{\prime}, a_{2}^{\prime} \in U(S)$ and $r_{0} \in U(R)$ such that $\langle y,-z\rangle \simeq\left\langle a_{1}^{\prime}, a_{2}^{\prime}\right\rangle$ and $\left\langle\left\langle a_{1} r_{0}^{-1}, a_{2}^{\prime}\right\rangle \simeq\right.$ $\left.\simeq 《 s_{1}^{\prime}, s_{2}^{\prime}\right\rangle$ for some $s_{1}^{\prime} \in U(R)$ and $s_{2}^{\prime} \in U(S)$ ．Since

$$
\left\langle\left\langle a_{1}^{\prime}, a_{2}^{\prime}\right\rangle=\left\langle\left\langle-r_{0}\right\rangle\right\rangle\left\langle a_{2}^{\prime}\right\rangle+\left\langle r_{0}\right\rangle\left\langle a_{1} r_{0}^{-1}\right\rangle\left\langle\left\langle a_{2}^{\prime}\right\rangle\right.\right.
$$

in $W(S)$ we have in $W(R)$ ，

$$
\begin{gathered}
\left.\left.s_{*}(《 y,-z\rangle\right\rangle\right)=s_{*}\left(\left\langle\left\langle a_{1}^{\prime}, a_{2}^{\prime}\right\rangle\right)=\left\langle 《-r_{0}\right\rangle s_{*}\left(\left\langle\left\langle a_{2}^{\prime}\right\rangle\right)+\left\langle r_{0}\right\rangle s_{*}\left(\left\langle a_{1} r_{0}^{-1}\right\rangle\left\langle\left\langle a_{2}^{\prime}\right\rangle\right)\right.\right.\right. \\
\\
\left.\left.\left.=《<-r_{0}\right\rangle\right\rangle s_{*}\left(\left\langle a_{2}^{\prime}\right\rangle\right\rangle\right)+\left\langle r_{0}\right\rangle\left\langle\left\langle s_{1}^{\prime}\right\rangle\right\rangle s_{*}\left(\left\langle\left\langle s_{2}^{\prime}\right\rangle\right) .\right.
\end{gathered}
$$

Consequently $\left.s_{*}(《 y,-z\rangle\right) \in I^{2}(R)$ ．Now $s_{*}(\varphi)=\left\langle\langle x\rangle s_{*}(《 y,-z\rangle\right)$ and $2 s_{*}(《 y$ ， $\left.-z\rangle)=s_{*}(《 1, y,-z\rangle\right)=0$ in $W(R)$ since $z \in D_{s}(\langle 1,1\rangle)$ ．By Proposition 1.1 and Proposition 1.4 we can write $\left.\left.s_{*}(《 y,-z\rangle\right)=\Sigma 《 b_{j},-c_{j}\right\rangle$ where $b_{j} \in U(R)$ and $c_{j} \in D_{R}(\infty)$ ．It follows that $\left.s_{*}(\varphi)=\Sigma 《<x, b_{j},-c_{j}\right\rangle$ in $W(R)$ ．By the hypothesis we see that $s_{*}(\varphi)=0$ in $W(R)$ ．

For $a, b \in U(R)$ let $\mu(a, b)=\left(\frac{a, b}{R}\right)$ and define $\gamma: I^{2}(R) \rightarrow \operatorname{Br}(R)$ by

$$
\gamma(\varphi)=\operatorname{Hasse}(\varphi)(\mu(-1,-1))^{n(n-2) / 8}
$$

where $n=\operatorname{dim} \varphi$ ．In［11，p．464］Mandleberg observed that γ is a well defined group homomorphism and that $\gamma\left(I^{3}(R)\right)=1$ ．

LEMMA 2．3．If φ is a 2－fold Pfister form in $l^{3}(R)$ then $\varphi=0$ in $W(R)$ ．
Proof．Write $\varphi=《-a,-b\rangle$ ．Since $\varphi \in I^{3}(R), \gamma(\varphi)=1$ in $\operatorname{Br}(R)$ i．e．$\mu(-1$ ， $-1) \mu(a, b) \mu(-1,-1)^{4(2) / 8}=1$ ．Consequently $\mu(a, b)=1$ and $\varphi=0$ in $W(R)$ ．

PROPOSITION 2．4．Let $w \in D_{R}(\infty)$ and $S=R(\sqrt{w})$ ．If there are no 3－fold torsion Pfister forms over R then $i^{*}: I^{3}(R) \rightarrow I^{3}(S)$ is injective．

Proof．Let φ be a form in $I^{3}(R)$ with $i^{*}(\varphi)=0$ in $W(S)$ ．By［1，Korollar 2．9］， $\varphi \simeq\langle\langle-w\rangle \psi$ for some form ψ over R ．If $\operatorname{dim} \psi$ is odd then $\operatorname{det} \varphi=-w$ contradicting $\varphi \in I^{2}(R)$ ．Consequently $\operatorname{dim} \psi=2 m$ for some $m \in Z^{+}$．Write $\left.\psi=《(-1)^{m} d\right\rangle+\psi^{\prime}$ where $\psi^{\prime} \in I^{2}(R)$ and $d=\operatorname{det} \psi$ ，then $\left.\varphi=《-w,(-1)^{m} d\right\rangle+\left\langle\langle-w\rangle \psi^{\prime}\right.$ ．It follows that $\left.《-w,(-1)^{m} d\right\rangle \in I^{3}(R)$ thus $\left.《-w,(-1)^{m} d\right\rangle=0$ in $W(R)$ by Lemma 2．3． As a result，φ is a Z－linear combination of torsion 3－fold Pfister form．By the hypo－ thesis，$\varphi=0$ in $W(R)$ ．

To prove the following lemma we employ the technique of［11，Theorem 2．1］．
LEMMA 2．5．Let $d \in U(R), S=R(\sqrt{d})$ and suppose φ is an anisotropic 3－fold Pfister form over S with $s_{\psi}(\varphi)=0$ in $W(R)$ ．There exists a form ψ in $I^{3}(R)$ such that $i^{*}(\psi)=\varphi$ in $W(S)$ ．

Proof．By［11，Proposition 2．1］，there is an anisotropic form ψ^{\prime} in $W(R)$ with $i^{*}\left(\psi^{\prime}\right)=\varphi$ ．If $\operatorname{dim} \psi^{\prime}>8$ then $i^{*}\left(\dot{\psi}^{\prime}\right)$ is isotropic．By［1，Satz 2．3］we can write $\psi^{\prime}=\varrho_{1}+\left\langle\langle-d\rangle \varrho_{2}\right.$ with $\operatorname{dim} \varrho_{1}=8$ and $\operatorname{dim} \varrho_{2} \geqslant 1$ ．But then $i^{*}\left(\psi^{\prime}\right)=i^{*}\left(\varrho_{1}\right)$ in $W(S)$ hence we may assume $\operatorname{dim} \psi^{\prime}=8$ ．Write $\psi^{\prime}=\left\langle u_{1}, \ldots, u_{8}\right\rangle$ in $W(R)$ with $u_{1}, \ldots, u_{8} \in U(R)$ ．Since $\varphi \in I^{3}(S)$ ， $\operatorname{det} \psi^{\prime} \in[U(S)]^{2}$ thus $i^{*}\left(\left\langle u_{1} \operatorname{det} \psi^{\prime}, u_{2}, \ldots, u_{8}\right\rangle\right)=\varphi$ as well．Consequently we may assume $\operatorname{det}\left(\left\langle u_{1}, \ldots, u_{8}\right\rangle\right)=1$ and thus $\psi^{\prime} \in I^{2}(R)$ ． By Proposition $1.5, \psi^{\prime}=\sum_{i=1}^{3}\left\langle c_{i}\right\rangle\left\langle a_{i}, b_{i}\right\rangle$ in $W(R)$ for some $c_{i}, a_{i}, b_{i} \in U(R)$ ． Now，$\gamma\left(i^{*}\left(\psi^{\prime}\right)\right)=\prod_{i=1}^{3} \mu\left(-a_{i},-b_{i}\right)=1$ in $\operatorname{Br}(S)$ since $\varphi \in I^{3}(S)$ ．Let $\psi_{0}=\left\langle 《 a_{1}, b_{1}\right\rangle+$ $+\langle-d\rangle\left\langle a_{2}, b_{2}\right\rangle+\langle e\rangle\left\langle a_{3}, b_{3}\right\rangle$ where $e \in U(R)$ is yet to be determined．Clearly $\psi^{\prime} \equiv \psi_{0}\left(\bmod I^{3}(R)\right)$ ．By［6，Theorem $\left.1.1(1)\right],\left\langle a_{1}, b_{1}, a_{1} b_{1}\right\rangle+\langle-d\rangle\left\langle a_{2}, b_{2}, a_{2} b_{2}\right\rangle$
is isotropic over S and by［6，Lemma 2．1］there exist $f, g, h, k \in U(R)$ such that $\left.\left\langle a_{1}, b_{1}\right\rangle+\langle-d\rangle\left\langle a_{2}, b_{2}\right\rangle \simeq 《-d, f\right\rangle+\langle g\rangle\langle h, k\rangle$ over R ．Consequently，

$$
\left.\psi_{0} \simeq 《-d, f\right\rangle+\langle g\rangle\langle h, k\rangle+\langle e\rangle\left\langle\left\langle a_{3}, b_{3}\right\rangle\right\rangle .
$$

Let $e=-d g$ ．Since $i^{*}\left(\psi^{\prime}\right)-i^{*}\left(\psi_{0}\right) \in I^{3}(S), \gamma\left(i^{*}\left(\psi^{\prime}\right)\right)=\gamma\left(i^{*}\left(\psi_{0}\right)\right)=1$ in $\operatorname{Br}(S)$ ．As a result，$\mu(d,-f) \mu(-h,-k) \mu\left(-a_{3},-b_{3}\right)=1$ in $\operatorname{Br}(S)$ ．As above there exist $l, m, n, p \in U(R)$ such that $《 h, k\rangle+\langle-d\rangle\left\langle\left\langle a_{3}, b_{3}\right\rangle \simeq 《-d, l\right\rangle+\langle m\rangle\langle n, p\rangle$ ．But then

$$
\left.\psi_{0} \simeq 《-d, f\right\rangle+\langle g\rangle\langle<-d, l\rangle+\langle g m\rangle\langle<n, p 》
$$

and $i^{*}\left(\psi_{0}\right)=\langle g m\rangle\langle n, p\rangle=0$ in $W(S)$ by Lemma 2．3．If we take $\psi=\psi^{\prime}-\psi_{0}$ then $\psi \in I^{3}(R)$ and $i^{*}(\psi)=i^{*}\left(\psi^{\prime}\right)=\varphi$.

PROPOSITION 2．6．Let $w \in D_{R}(\infty)$ and $S=R(\sqrt{w})$ ．If there are no aniso－ tropic 3－fold torsion Pfister forms over R then there are no anisotropic 3－fold torsion Pfister forms over S ．

Proof．Let φ be an anisotropic 3－fold torsion Pfister form over S ．By Pro－ position 1.3 we may assume $2 \cdot \varphi=0$ in $W(S)$ ．By Proposition 1.2 we can write $\varphi=\left\langle\langle x, y,-z\rangle\right.$ where $x, y \in U(S)$ and $z \in D_{S}(\langle 1,1\rangle)$ ．Now by Proposition 2．2， $s_{*}(\varphi)=0$ and by Lemma 2.5 there exists a form ψ in $I^{3}(R)$ such that $i^{*}(\psi)=\varphi$ ． It suffices to show $\psi=0$ in $W(R)$ ．Assume not．As in［7，Lemma 3，step 2］we may assume $\psi_{A}=\left\langle b_{1}\right\rangle\left\langle\left\langle b_{2}, b_{3}, b_{4}\right\rangle\right.$ for some $b_{i} \in U(R)$ ．But by Proposition 2．4， i^{*} is injective hence $\psi_{A} \in W_{t}(R)$ ．By the hypothesis，$\psi_{A}=0$ in $W(R)$ ，a contradiction．

PROPOSITION 2．7．Suppose there are no anisotropic torsion 3－fold Pfister forms over R ．Then $I^{3}(R)$ is torsion free．

Proof．The proof given in［7，（A）$\Rightarrow 2$, p．337］will work here．Replace their Proposition 2，Lemma 3 and Proposition 1 （3）by our Proposition 1．1，Proposi－ tion 2.6 and Proposition 2．4，respectively．

COROLLARY 2．8．Let $w \in D_{R}(\infty)$ and $S=R(\sqrt{w})$ ．If $I^{3}(R)$ is torsion free then $I^{3}(S)$ is torsion free．

Proof．This follows from Proposition 2.6 and Proposition 2．7．
LEMMA 2．9．Suppose $I^{3}(R)$ is torsion free，$\varphi \in I^{2}(R), 2 \varphi=0$ in $W(R)$ and $\gamma(\varphi)=1$ in $\operatorname{Br}(R)$ ．Then $\varphi=0$ in $W(R)$ ．

Proof．Assume $\varphi \neq 0$ in $W(R)$ ．By Proposition 1.1 and Proposition 1.4 $\left.\varphi=\Sigma 《 b_{j},-c_{j}\right\rangle$ in $W(R)$ for some $b_{j} \in U(R)$ and $c_{j} \in D_{R}(\infty)$ ．We may assume R and φ are chosen so that n is minimal．Let $S=R\left(\sqrt{c_{1}}\right)$ and let $\psi=\sum_{j=2}^{\pi}\left\langle\left\langle b_{j},-c_{j}\right\rangle\right.$ ． Now $2 \psi=0$ in $W(S), \psi \in I^{2}(S), \gamma(\psi)=1$ in $\operatorname{Br}(S)$ and $I^{3}(S)$ is torsion free by Corollary 2．8．Consequently $\psi=0$ in $W(S)$ by the choice of n ．By［2，Korollar 2．9］， $\left.\varphi=《-c_{1}\right\rangle\left\langle d_{1}, \ldots, d_{2 r}\right\rangle$ in $W(R)$ for some $d_{1}, \ldots, d_{2 r} \in U(R)$ ．In $W(R)$,

$$
\begin{aligned}
p & \left.=\left\langle d_{1}\right\rangle\left\langle<-c_{1}, d_{1} d_{r+1}\right\rangle+\ldots+\left\langle d_{r}\right\rangle\left\langle<-c_{1}, d_{r} d_{2 r}\right\rangle\right\rangle \\
& \left.\left.\equiv 《-c_{1}, d_{1} d_{r+1}\right\rangle+\ldots+《-c_{1}, d_{r} d_{2 r}\right\rangle \\
& \equiv\left\langle\left\langle-c_{1},(-1)^{r+1} d_{1} \ldots d_{2 r}\right\rangle\left(\bmod I^{3}(R)\right) .\right.
\end{aligned}
$$

It follows that $\left.\varphi-《<-c_{1},(-1)^{r+1} d_{1} \ldots d_{2 r}\right\rangle \in I^{3}(R) \cap W_{t}(R)=0$ ．Consequently
$\varphi=\left\langle\left\langle-c_{1},(-1)^{r+1} d_{1} \ldots d_{2 r}\right\rangle\right.$ in $W(R)$. Since $1=\gamma(\varphi)=\gamma\left(《-c_{1},(-1)^{r+1} d_{1} \ldots\right.$ $\left.\left.\ldots d_{2 r}\right\rangle\right)=\mu\left(c_{1},(-1)^{r} d_{1} \ldots d_{2 r}\right)$ we must have $\varphi=0$ in $W(R)$, a contradiction.

THEOREM 2.10. Forms over R are classified by dimension, determinant, Hasse invariant and total signature if and only if $I^{3}(R)$ is torsion free.

Proof. (\Rightarrow) By Proposition 2.7 and Proposition 1.3 it suffices to show that there is no anisotropic 3-fold Pfister form φ with $2 \cdot \varphi=0$ in $W(R)$. Suppose there is such a form φ. By Corollary 1.2 we may write $\varphi \simeq\langle\langle x, y,-w\rangle$ with $x, y \in U(R)$ and $w \in D_{R}(\langle 1,1\rangle)$. The two forms $\left.《 x, y,-w\right\rangle$ and $\langle 1,1,-1\rangle$ both have dimension 8 , determinant 1 , Hasse invariant 1 and total signature 0 . Consequently $\varphi=0$ in $W(R)$, a contradiction.
(\Leftarrow) Suppose $I^{3}(R)$ is torsion free and suppose φ_{1} and φ_{2} are forms over R with the same dimension, determinant, Hasse invariant, and total signature. $\varphi_{1}-\varphi_{2}$ has total signature 0 , thus $\varphi_{1}-\varphi_{2} \in W_{1}(R)$. Since $\operatorname{det} \varphi_{1}=\operatorname{det} \varphi_{2}$ and $\operatorname{dim} \varphi_{1}=$ $=\operatorname{dim} \varphi_{2}, \quad \varphi_{1}-\varphi_{2} \in I^{2}(R)$. Consequently, $2\left(\varphi_{1}-\varphi_{2}\right) \in I^{3}(R) \cap W_{t}(R)=0$. Since $\gamma\left(\varphi_{1}-\varphi_{2}\right)=1, \varphi_{1}-\varphi_{2}=0$ in $W(R)$ by Lemma 2.9. By Witt's cancellation theorem $\varphi_{1} \simeq \varphi_{2}$ as desired.

Finally, we show that Theorem 2.10 remains valid if we remove the restriction that R is connected. Suppose R is a semi-local ring with $2 \epsilon U(R)$ and whose residue class fields contain more than three elements. We can write $R \cong R_{1} \times \ldots \times R_{t}$ with $U(R) \simeq U\left(R_{1}\right) \times \ldots \times U\left(R_{t}\right)$ where each R_{i} is connected and where $R_{i}=$ $=R e_{i}, e_{i}^{2}=e_{i}, e_{i} e_{j}=0$ for $i \neq j$ and $e_{1}+\ldots+e_{t}=1$. Moreover $W(R) \cong W\left(R_{1}\right) \times$ $\times \ldots \times W\left(R_{t}\right)$ with $I^{n}(R) \cong I^{n}\left(R_{1}\right) \times \ldots \times I^{n}\left(R_{t}\right)$ (see [8] and [9]). Consequently two forms φ and ψ are equivalent over R if and only if $e_{i} \varphi \simeq e_{i} \psi$ for $i=1,2, \ldots, t$ and $I^{n}(R)$ is torsion free if and only if $I^{n}\left(R_{i}\right)$ is torsion free for $i=1,2, \ldots, t$.

LEMMA 2.11. Forms are classified by dimension, determinant, Hasse invariant ond total signature over R if and only if forms are classified by the same invariants over each R_{i}.

Proof. (\leftarrow) is clear. (\Rightarrow) Let φ and ψ be forms over R_{i} with the same invariants. Write $\varphi=\left\langle a_{1}, \ldots, a_{n}\right\rangle$ and $\psi=\left\langle b_{1}, \ldots, b_{n}\right\rangle$. Let $u_{i}=e_{1}+e_{2}+\ldots+a_{i}+\ldots+e_{t}$ and $v_{i}=e_{1}+e_{2}+\ldots+b_{i}+\ldots+e_{t}$. Write $\varphi_{1}=\left\langle u_{1}, \ldots, u_{n}\right\rangle$ and $\psi_{1}=\left\langle v_{1}, \ldots, v_{n}\right\rangle$. $e_{j} \varphi_{1}=e_{j} \psi_{1}=\left\langle e_{j}, \ldots, e_{j}\right\rangle$ if $i \neq j$ and $e_{i} \varphi_{1}=\varphi, e_{i} \psi_{1}=\psi$. Clearly $\operatorname{dim} \varphi_{1}=\operatorname{dim} \psi_{1}$ and $\operatorname{det} \varphi_{1}=\operatorname{det} \psi_{1}$. A signature on R gives rise to a signature σ_{j} on some R_{j} [8, Corollary 2.8] hence φ_{1} and ψ_{1} have the same total signature. Since $\mu\left(u_{k}, u_{j}\right)=$ $=\mu\left(e_{i} u_{k}, e_{i} u_{j}\right)$ we see also that Hasse $\left(\varphi_{1}\right)=\operatorname{Hasse}\left(\psi_{1}\right)$. Consequently $\varphi_{1} \simeq \psi_{1}$ over R and thus $\varphi \simeq \psi$ over \boldsymbol{R}_{i}.

In view of the above remarks it is now easy to see that Theorem 2.10 remains valid if we remove the connected condition.

We conclude this paper with the example which motivated this work.
Let R be a valuation ring whose field of fractions K is a finite extension of Q (e. g. $Z_{(p)}$ for all primes $p \neq 2,3$). And suppose φ is a totally indefinite form of dimension 5 over R. A signature on K restricts to a signature on R thus φ is totally indefinite over K. By the Hasse-Minkowski Theorem, φ is isotropic over K hence φ must be isotropic over R. Consequently $I^{3}(R)$ is torsion free and forms over R are classified by dimension, determinant, Hasse invariant and total signature.

REFERENCES

[1] R. BAEZA, Uber die Torsion der Witt-Gruppe W(A) eines semi-localen Ringes, Math. Ann. 207 (1974), 121-131.
[2] R. BAEZA, Quadratic forms over semilocal rings, Lecture notes in Math., 655, Springer-Verlag, 1978.
[3] R. BAEZA, M. KNEBUSCH, Annulatoren von Pfister formen über semilokalen Ringen, Math. Z. 140 (1974), 41-62.
[4] R. ELMAN, T. Y. LAM, Quadratic forms over formally real and pythagorean fields, Amer. J. Math. 94 (1972), 1155-1194.
[5] R. ELMAN, T. Y. LAM, Quadratic forms and the u-invariant 1, Math. Z. 131 (1973), 283-304.
[6] R. ELMAN T. Y. LAM, On the quaternion symbol homomorphism $g_{F}: k_{2} F \rightarrow B(F)$, Proc. of Seattle Algebraic K-Theory Conference, Springer Lecture Notes in Math. 342 (1973), 447 --463.
[7] R. ELMAN, T. Y. LAM, Classification Theorems for Quadratic Forms over Fields, Comment. Math. Helv. 49 (1974), 373-381.
[8] M. KNEBUSCH, A. ROSENBERG, R. WARE, Signatures on semi-local rings, J. Algebra 26 (1973), 208-250.
[9] M. KNEBUSCH, A. ROSENBERG, R. WARE, Structure of Witt Rings and Quotients of Abelian Group Rings, Amer. J. Math. 274 (1975), 61-89.
[10] T. Y. LAM, The algebraic theory of quadratic forms, W. A. Benjamin, Reading, Massachusetts, 1973.
[11] K. MANDELBERG, On the classification of quadratic forms over semilocal rings, J. Algebra 33 (1975), 463-471.

[^0]: Received October 27, 1981.
 AMS (MOS) Subject classification (1980). Primary 10 C 03 Secondary 15 A 63.

 * Department of Mathematics, Southern Illinois University at Carbondale, Carbondale Illinois 62901, USA.

