ZBIGNIEW GAIJDA*

A CHARACTERIZATION OF FUNCTIONS WITH DENSE
GRAPH IN THE PLANE OR HALF-PLANE

Abstract. Let R be the set of all real numbers. In the present paper we shall characterize
functions f: R -* R which are either linear or have graph contained and dense in the plane or
half-plane determined by a linear function. For this purpose we consider functions satisfying certain
limitary conditions which are related to the additivity equation but considerably weaker than that.

Let us introduce the following

DEFINITION. A function /: R -» R is called limit-additive iff the following
conditions are fulfilled:
@) A Vv 0. VA —| /() +/A0)°

Xx,yeR (zn)neN
zneR,neN

c) A V {Xn— A" x ,yn— Ay j\x A+ f(yn— *f{x+y)-],
X,yeR (Xxn)ysN,R(ty,n,)enﬁ‘N

3) AV re— Ax>20(x,)— ->1(2x)]
xeR (xn)neN
xneR,ne N

Conditions (1) and (2) are, in a sense, mutually symmetric. Condition (3) can
not be obtained from (2) by setting x =y, since even then sequences (x,,)neN and
(Y.,)eVv occuring in (2) may not coincide. Adding condition (3) we obtain the possi-
bility of the choice of a common sequence in the case where x —y.

Clearly, every additive function is limit-additive (it suffices to take constant
sequences). There exist, however, limit-additive functions which are not additive.
Indeed, one can easily check that an arbitrary function/: R R with the graph
being dense on the plane R2is limit-additive. Letus note that ifa function J-.R-+R
is limit-additive and continuous then it is additive and consequently has the form

/ (x) = ax, xeR,

where a is a constant.
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Now, we are going to give some necessary and sufficient conditions for a limit-
-additive function to be continuous.

LEMMA 1 Letf:R->R be a limit-additive function. Then, for any k e N,
k ~ 2, and each points , ..., xke R, there exists a sequence (zn)neN of real numbers
such that

N A+ +xk and /(zj __ _¢/(A-J+ ... +f(xK).

Proof. For k =2 the assertion of the lemma coincides with condition (1).
Suppose that our lemma holds true for some k e N, /£ S2 and for any system of

k points x1} ..., xkeR. Fix k+ 1points , ..., xk+l eR. On account of our assump-
tion, there exists a sequence (u,)neN such that

h-"T&> 1+ mm+Xk>f(U) J(*1) + ome +/(**)
In view of (1), for each ne N one can find a sequence (w,imnBV such that

Whm «,+*/c+1 and /(w,>m —" /(u,) +/(xt+1).

Hence

AV A W;munxl«ﬂ<_

neN mneN m mn

A V AJ/K,,)-/K)-/(X, -EI)|<-

neN m"eN m>mn

We put m,!I=max(m', m"), neN and z,:=w,, mi, neN. Then we have

lzn® X1 ~ eee ~ AA+ 11N
< - + eoo ~ XK\ 0’

((Z - 1(*1) — mm —f ( Xk 1)| »

MW, mil) -/ ()= (N D+ (e )=/ (0 ) - S H(XR] <

<A A [In)-I(F 1) o =l(o* %) —
whence
X+ oo +fc+1 and /(-,,)— ->/U 1) + ... +/(**+])

which, by induction, completes the proof.

THEOREM I. If a limit-additive function f: R ->R is continuous at a point
then it is continuous everywhere.

Proof. Assume that/ is continuous at the point xOeR.

@) Let (xnneN be an arbitrary sequence of real numbers convergent to zero.
Since

= (x0-x N+x,,, neN
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from (J) it follows that, for each neN, there exists a sequence (z,,,mMmeN such that

~n,m *0 > f(~n,m) i (@'q Xn)+f(xn)A
Hence
A V A |z,m*o|
neN mneN m"m'n
AV A |[(z® -f(x0-xj-f{x\<i .
neN m"eN m*m*" tl
Put mn max(m;,, m"), —z,m, neN. Then

\Iz,,-xoI < i n<=N
and " t
[1(2,)-/(a'o~*,)—(X,,)| < - neN,

whence
4) z,— *o and /(z,)-/(*, - X,)-/(X,,) 0.

By the continuity of/ at x0 we have
/OJ — [/(*o) and f(x0-x,,) f(x0)
which, together with (4), gives
(5) /(*,) —~ 0, for any sequence (x,,), 6y such that x, —~ 0.
(b) Fix an xeR and write 0= x+ (—x). Using condition (1) again we find

a sequence (z,,).,6/v, z,— *0, for which

I(-)n - IW +/(-X).
Hence and from (5) it follows that

/(-x)= -f(x), xeR.

(c) Now, choose an arbitrary xeR and a sequence (X,,),N, xn-*-~x. On
account of Lemma 1, for each neN one can find a sequence (z,,mme7V such that

(6) em— " x,, -x+ x0

) L(xn+ /(- x)+/(x0) = f(xn)-f(x) + f{x0).

In view of (6) and (7) we have

AV A, Km- (5,-* +x0) < —,
ft

neN nMneN m m’

AV A \f(z,,,d-(f(x,,)-f(x)+ f(x0)\< —.

neNm*eNm>m*
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We put mn~max(m',,, m,,), zn~z,, m, neN. With the aid of this notion we get

}(_XOIi<I = <W+ |Xn'X|1>e ® 0,
[/("n) - (F(x.,)-F(x) +/(x Q)] < — 0.
Consequently,
z» M * xo and f(zn)-f(x,,) +f(x)-f(x0) 0.

Hence and from the continuity of/ at the point x0 it follows that

which implies that / is continuous at x.

LEMMA 2. Ifafunction/: R R is limit-additive and bounded in a neighbourhood
of a point xOe R then it is bounded in a neighbourhood of zero.

Proof. Suppose that there exist M> 0 and ¢>>0 such that

(/GO| <M, for ye(x0-5, x0+d).

Take an xe (—<5,5). Then x+x0e (x0—&5 x0+ & and there exists a sequence
(z)nsN, Z,,~r* x +x0 such that /(z,) — "»/(x) +/(x0).
For almost every neN we have

z,,e(x0-<5, x0+<5) and |/(z,)] M
whence
[/(x)+/(x0)] < M.
Thus
[/(x)] s M +|/(x0)], for xe(-d,5).

THEOREM 2. Iff: R ->R is a limit-additive function bounded [in absolute
value) on a set Ac.R such that int A# o then f is continuous.

Proof. Taking Lemma 2 into account, we may suppose that there exist M >0
and $>0 such that

(8) l/(x)] <M for xe(~3,S).

Assume that there exists a sequence of real numbers (xinsN, x,,— such that
the sequence (f(x,,)),,eN is not convergent to zero. Then there exist an s>0 and
a subsequence (*nf)fc6iV of the sequence (x,,),.eA with the property |/(x,,K| > e, ke N.

From the sequence (X"k)lk . one can still choose either a subsequence (x,,k } . such
s A plpe

that f\x,,k j5=e, pe N or a subsequence |x,t j such that f[x,,kj < —BE>seN.

Suppose, for instance, that we have a sequence (y,,)neN, y,,-—* 0 such that /(}3,) > s,
n £ N. Let us choose numbers N e N and nOe N so that Ne>M and Ny,,0e (—&§ <5,
According to Lemma 1, there exists a sequence (zmmeN such that zm— ~ N ey,0
and f(zm— -ENf(yJ » Ne>M.
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Hence

9) V A zme(-5,d),

mieN m>m1

(10) V. A /@zm>M.

mie/Vm>m2
For m > max(w!, m2) conditions (9) and (10) are incompatible with (8). If we have
a sequence (v,,)neN, ~ 0 such thatf(y,,) < -s,neN, we obtain the contradiction
in a similar manner, using the boundedness of/ from below. So we have

(11) /(*,)— ->0, for any sequence (x,,),,eN such that x,,

Putting x =j = 0in(l), we obtain the existence of a sequence (z,).sA, z,— "0,
for which /(z,,)”v 2/(0). This, jointly with (11), implies /(0) = 0. Consequently
we obtain the continuity of/ at zero. In virtue of Theorem 1,/is continuous every-
where on R.

Now, we are going to investigate some properties of discontinuous limit-
-additive functions. It follows from Theorem 2 that such functions can not be bounded
in absolute value on any non-degenerate interval. In the sequel, the word “interval”
will always mean a bounded non-degenerate interval. The example of an arbitrary
function/: R -> R which has the graph contained and dense in one of the half-planes
{(x,y) e R2:y ™ 0} or {(x,y) e R2:y ™ 0} shows that a discontinuous limit-additive
function may be bounded from one side. In the same way as in the proof of Lemma 2
one can show that any limit-additive function bounded below (above) on some
interval is bounded below (above) on every interval.

For any function f:R-+R bounded below on every interval, the function
@©f ‘R =R

(12) <Pf(x)~supinf{/(z):ze(x—S, x+£)}, xeR
(>0

is well defined.
Analogously, for any function f .R-*R bounded above on every interval we
define the function \f :R-+R by the formula

(13) \iff (x)-—infsup {/(z) : ze(x-<5, x+d)}, xeR.
S0

LEMMA 3. IfJ: R R is bounded below {above) on every interval, then the
function <f (function ijff) is lower (upper) semi-continuous.

For the proof see e.g. [2] or [3]

Up to now, we have only made use of property (1) from the definition of limit-
-additive functions. From now on, we shall be applying properties (2) and (3), too.

LEMMA 4. IfJ:R >R is a limit-additive function bounded below (above)
on every interval, then the function <f (function ij/f) is additive.

Proof. We proceed only with the proof for the function gf . Fix numbers
X,yeR, e>0, 6> 0, t]>0, arbitrarily. Wc have
(14) \% [ (wo) < inf{/(«): we(x —6, x +<B)} + —

Moe (* —d, * +5)
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and

(15) \Y f(wo)<M {f(w):we(y-ti,y+ti)}+nr-.
Koe(.y-n,y+7) 3

Observe that u0+wOe (x+y-d-tj, x+y +d+t]). It follows from (1) that there
exists a sequence (z,,)neN, z,,— " «0+ wo such that

[(*«) — 7~ f(u0)+/(wo0).

Hence

(16) V. A z.e(x+.F-<5-27, x+y+6+ri), f(z,,) < /(u0)+/(wO0)+y
«weN M

(14), (15) and (16) yield
inf{/(z):ze(x+" —&5—/,x+j;+<5 +>)} » [(uUO)+/(WO)+y <

inf{/(u) :ue(x- G x+@}r+inf{/(tv):we(y-q, y+rj)} +£.
Since e> 0 has been chosen arbitrarily, we have
17) inf{/(z) :ze(x+j-<5-?27, x+j;+(5+>?)} inf{/(w):ue(x —3, x+c))} +
+inf{/(w) :u-e(}'-4,}-+t)j < F X) + F (y).
As inequality (17) holds for all 8 >0, fj>0, we obtain the subadditivity of qf :
(18) H (x+y) < F )+ BY), x,yeR.

Fix again numbers x,yeR, t> 0. S> 0 arbitrarily. We have

19 Vv / <inf{/(z):ze(x+y-d, Xx+y+<5)}+-~ .
= 20e (X+y-5, x+7+Q (z0) {/(z):ze(x+y y+<5)} 5

i s 0\ i s ,n
One can choose *0e Ix— , X+—Jand Wyelj - —,j’+ -- 1so that zO= nD+ hD0.

In view of (2) there exist sequences (W,),eAand «), &V, unirr*u0, w,, --*w0 such
that /(m,,)+/(w,,) —" /(z 0). Hence

f n
(m) v A <<,,e(x——83x+—6},w,,ef S +'6},/(((11)+/(W11)</(Z0)+y

n0eN n”no

From (19) and (20) we obtain

infl[/(u):uerx-y,x+-0j+infj/(w) :we(y-"~, J+ ~j <

n /(zo)+)e/ <inf{/(z) :ze(x+y-d,x+y+(5)}+£.
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Letting e tend to zero we get

Ninf{/(z):ze(x+y —d, Jcty+<5)} < 4 (x+y).
Since inequality (21) holds true for all <5>0, the function of is superadditive:
(22) <pf(x) + HF (y) < H (x+y), x, yeR

Conjunction of conditions (18) and (22) gives the additivity of ef. In the same
manner one may prove that condition (1) leads to superadditivity of rjf and condi-
tion (2) to its subadditivity.

As is well known any lower (upper) semi-continuous function is bounded
below (above) on every compact interval. Hence and from Lemmas 3 and 4 as
well as from the properties of the additive functions we obtain immediately the
following

THEOREM 3. Iff :R >R is a limit-additive function bounded below {above)
on every interval, then the function ef (function il/f) is additive and continuous.

LEMMA 5. Letf:R->Rbea limit-additive function. For any xe R and each
k e N there exists a sequence of real numbers (x,,)neN such that

x and 2K(xn) —"f (2 kx).

Proof. For k = 1 the assertion of our lemma coincides with condition (3).

Suppose that this assertion holds true for any xe R and some ke N. Therefore,
for arbitrarily fixed xeR there exists a sequence (yn),teN such that

From (3) it follows that to each ne N there corresponds a sequence (xrmmmey such
that

Hence
n'?‘N m¥N méq.'ﬁ 4 i
A Vqé \2f(xnd - f(y )\ < -
Put mn~max(m',,, m"), x,,!= for neN. Then we get
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and

\2k+if (X,,) —F (2 k+1x)\ < \2k+if (x nnd - 2 K(y~ "\ +\26(y n) - f(2 k+Ix)\ <

< 2k~ +\2K(yn)-f(2k+ix)\- . 0,
Consequently

Xy ™ X a0 2HE() T 212k x),
By induction, the assertion of our lemma holds true for any ke TV

LEMMA 6. Let/: R R be a limit-additive function. For any x eR, I, ke TV

I
r= — ex/sta a sequence of real numbers (x,),eN such that x,, —

[(*,,) ;re™? (%),

rx wiil

Proof. Fixxe/?,/, Ae TV.r-=

/
= —k. On account of Lemma 5 there exists a sequen-
ce (y,)reN with the property

X 1
y ., » jkand J(y,)— r>jkf(x).
Hence
0’,— rx and If(y,,)— " rf(x).
In view of (1), for each ne TVone can find a sequence (x,,)inmeN such that

xam—~ bn and /(x,,d — /()
which implies that

AV A, wumlyn< —,

neN mleN m"~mm H

AV A Y- M) <—
ite N m"elN m~Am" ft
Setting mne=max(m', m"), x,, =x, .1, neN we obtain

[X,-rX| < [X,m,-/j;n+ |[/j¥-rv]| » -+ |/[rBrx| — 0,
[[(X,)-t1(x)] < \f(X,,,,I-1F(yn\+\If(y,,)-rf(x)\ < -j- +\If{)’, )-rf{x)\ ~ =*

*0
which ends the proof.
LEMMA 7. Letf: R-> R be a limit-additivefunction. Forany x,yeR, I, ke TV,
1< 2\ there exists a sequence (z,,)neN such that

H  rx+(1—r)y and /(.,,) __» r/(x) +(1 - mf(y).

Proof. According to Lemma 6 there exist sequences (X,,),tiY, (y)nsN such that
rx’

Hn—r (1-n), £y, @-nfly).



From (1) it follows that for each ne N there exists a sequence (znm)meN such that

Z,m— - f(Zem) — N I(*F,) HIGG,) e
Hence
AV A
neN nmneN m>m'n H
AV A, 4(%)-1 () <—.
neN m"eN m" H

Putting mn~max(mh, m"), z,,:=z,,m, for neJV we get

< |znm, - .V ,, -+ |v,—rx| + Ir,,—1—r)j’| <
<- +|V,-mx\+|v,- L-nNv— 0,
[/(z,,) - rf(x) —(t- 1) 1(V)] < [/ (-0ye) -1 5) -1 (V) [+ 11(X,) - PEOON +

+/(v,,)-(1 -r)I(v)] N -F+|I(V,,)-rtI(X) |+ (Y)-(I -n)/(>>)] —- 0

which completes the proof.

Recall that by the graph of a functionf: R-*R we mean the set {(.v,y) eR2:
y=f(x)}. We consider the plane R2 with its natural topology.

THEOREM 4. I ff:R ->/? /[va limit-additive function, then the following four
cases are the only possible:

(i) / « an additive and continuous function-,

(ii) f is a function with the dense graph in R2;

(iii) there exists an additive and continuous function <f .R -> R such that the
graph off is contained and dense in the half-plane {(x,y) eR2:y " (pof (x));

(iv) there exists an additive and continuous function if :R-+R such that
graph off is contained and dense in the half-plane {(x,y) eR 2:y ™ \jff (X)}.
Conversely, every function fulfilling one of the conditions (i)—(iv) is limit-additive.

Proof. Suppose/: R -> R to be limit-additive. In virtue of the previous theorems
and lemmas the following cases are the only possible:

(i) / is an additive and continuous function;

(ii") the restriction of/ to any interval is unbounded from above and from
below;

(iii") / is a function bounded from below and unbounded from above on every
interval;

(iv') / is a function bounded from above and unbounded from below on every
interval.

Suppose that (ii') holds and choose an arbitrary rectangle”(a, b) x (c, d). Since the

set A-= !II-: 5:/, Ae N, /< 2*;1 is dense in the interval (0,1), we deduce that

V re(x)+(1-r)f(y)e(c,d)
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provided fix) < ¢, f(y) > d; the existence of such a pair (x, y) e (a, b)2 results from
our assumption. Let (z,),eN be such a sequence that

zn—"™ nc+(l-r).y and /(z,,) — rf{x) +(1-r) f(y).

Hence, for sufficiently large ne N, we have (z,,,/(z,,)) e (a, b)x(c, d). Now, supppose
that (iii') holds and let e f :R -» R denote the function defined by (12); gf is additive
and continuous. Moreover, the definition of of yields fix) ~ <Pf{x), for xeR.
Suppose that (a, b) x (c, d) cz{(x,j) e R2:y > qgf (X)}. Then

whence

V. /(*)<ce

x e (a,b)

Since/is not upper-bounded on {a, b), one can find a ye (a, b) such that f(y) > d.
Proceeding further in the same way as in case (ii") we prove that there exists a:e(a,A)
such that/(z) e(c, d). Consequently, condition (iii) holds true. Using the properties
of the function ipf defined by (13) one can show that (iv') implies (iv). It is easy
to check the converse: every function f: R-+ R fulfilling one of the conditions
(i)—(iv) is limit-additive.

Our last theorem gives full description of the class of limit-additive functions.
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