ISTVAN JUHÁSZ, WILLIAM A.R. WEISS*
 NOWHERE DENSE CHOICES AND π-WEIGHT

Abstract. The paper is devoted to inequalities between $\pi_{0}(X)$ and $\pi_{d}(X)$ where $\pi_{0}(X):=\min \{\pi(U): U$ open and non-empty subset of $X\}$,
$\pi_{d}(X):=\min \{|\mathscr{B}|:$ every open and dense subset of X containes an element from $\mathscr{B}\}$.
From these definitions $\pi_{d}(X) \leqslant \pi_{0}(X)$ for every space X. In the paper we construct a space X for which $\pi_{\mathrm{d}}(X)=\omega_{1}$ and $\pi_{0}(X)=2^{\mathrm{N}}$.

We shall define two cardinal functions π_{d} and π_{0}. We shall give conditions which ensure that $\pi_{d}(X)=\pi_{0}(X)$ and give a consistent example of a space X such that $\pi_{d}(X)<\pi_{0}(X)$.

Recall that for a topological space $X, \pi(X)$ denotes that least cardinal of a π-base for X, i.e.:
$\min \left\{\left|\mathscr{B}_{B}\right|\right.$: for each non-empty open $U \subseteq X$, there is $B \in \mathscr{B}$ such that $\left.B \subseteq U\right\}$. For a space X we denote by $\pi_{0}(X)$ the cardinal:

$$
\min \{\pi(U): U \text { is a non-empty open subset of } X\}
$$

And we denote by $\pi_{d}(X)$ the cardinal
$\min \{|\mathscr{B}|:$ for each dense open $U \subseteq X$, there is $B \in \mathscr{B}$ such that $B \subseteq U\}$, where such families \mathscr{B} are called π_{d}-bases for X. All other terminology used in this article can be found in one of the standard textbooks [1], [3] or [5]. Furthermore we shall assume that all topological spaces under consideration are regular.

Motivation for the two new definitions comes from the following question.
QUESTION. Given a collection \mathscr{U} of non-empty open subsets of a space X, can I pick a point $x(U) \in U$ for each $U \in \mathscr{U}$ such that $\{x(U): U \in \mathscr{U}\}$ is nowhere dense?

Note that $x: \mathscr{U} \rightarrow X$ can be considered as a choice function. The question asks for a choice function with nowhere dense image, hence the first half of our title. Now suppose that \mathscr{U} is a π-base for an open subset $G \subseteq X$. Clearly, the image

[^0]any choice function on \mathscr{U} is dense in G, giving a negative answer to the question and the second half of our title.

A moment's thought will convince the reader that the question has a "NO" answer iff \mathscr{U} is a π_{d}-base for X. Therefore the question has a "YES" answer for all collections \mathscr{U} such that $|\mathscr{U}| \leqslant x$ iff $\pi_{d}(X)>x$. The argument in the previous paragraph then shows that $\pi_{d}(X) \leqslant \pi_{0}(X)$.

These considerations were first made by M. van de Vel. E. K. van Douwen observed that if $\pi_{d}(X)=\omega$, so does $\pi_{0}(X)$ and communicated the general problem of the relationship between π_{d} and π_{0} to us.

We first draw some easy conclusions.
THEOREM 1. For each space X we have
(a) $\pi_{d}(X) \leqslant \pi_{0}(X)$,
(b) $\pi_{0}(X) \leqslant 2^{\pi_{d}(X)}$,
(c) $\pi_{0}(X) \leqslant \pi_{d}(X) \cdot \pi_{\chi}(X)$.

Proof. (a) is above. To prove (b), let \mathscr{A} be a π_{d}-base of X of cardinality $\pi_{d}(X)$. For each $A \in \mathscr{A}$ pick $X(A) \in A$. Then $X(A): A \in \mathscr{A}$ must be dense in some open set U. Since X is regular we must have

$$
\pi_{0}(X) \leqslant \pi(U) \leqslant 2^{d(U)} \leqslant 2^{\pi_{d}(X)} .
$$

Let us continue and prove (c). For each $A \in \mathscr{A}$, pick a local π-base $\mathscr{B}(A)$ for $x(X)$ such that $|\mathscr{B}(A)| \leqslant \pi_{x}(X)$. It is now easy to check that $\cup\{\mathscr{B}(A): A \in \mathscr{A}\}$ forms a π-base for U and verifies (c).

We shall see that for many types of spaces we actually have π_{d} equal to π_{0}. We begin with the following useful lemma.

LEMMA 2. Suppose $\pi_{0}(X)=x, \mathscr{A}$ is a family of $<x$ non-empty open subsets of X and \mathscr{B} is a family of $\leqslant x$ non-empty open subsets of X. Then there is a family \mathscr{C} of λ non-empty open sets precisely refining \mathscr{B} such that no $A \in \mathscr{A}$ is covered by finitely many members of \mathscr{C}. Furthermore \mathscr{C} can be chosen as a subfamily of any given π-base for X.

Proof. Enumerate \mathscr{B} as $\left\{B_{\alpha}: \alpha<\lambda\right\}$. We construct $\mathscr{C}=\left\{C_{\alpha}: \alpha<\lambda\right\}$ by recursively constructing C_{α} for $\alpha<\lambda$ with the inductive hypothesis at $\beta<\lambda$ that for each $\alpha<\beta, C_{a}$ is a non-empty open subset of B_{α} such that no $A \in \mathscr{A}$ is covered by finitely many members of $\left\{\bar{C}_{\alpha}: \alpha<\beta\right\}$.

At stage β note that $\pi\left(B_{\beta}\right) \geqslant \alpha$, and

$$
\mid\left\{A \backslash \cup_{\alpha \in F} \bar{C}_{\alpha}: A \in \mathscr{A} \text { and } F \in[\beta]^{<\omega}\right\} \mid<x .
$$

Hence there is some open $G \subset B_{\beta}$ such that for all $A \in \mathscr{A}$ and for all $F \in[\beta]^{\times \infty}$

$$
\left(A \backslash \bigcup_{\alpha \in F} \bar{C}_{\alpha}\right) \backslash G \neq \varnothing .
$$

Now pick a non-empty open C in our given π-base such that $\bar{C}_{\beta} \subseteq G$. This completes the induction and the proof.

The next lemma reduces the problem to considerations involving π-weight.

LEMMA 3. If X is a space, then X has an open subspace Y such that

$$
\pi_{d}(Y) \leqslant \pi_{d}(X) \leqslant \pi_{0}(X) \leqslant \pi_{0}(Y)=\pi(Y) .
$$

Proof. Let \mathscr{A} be a π_{d}-base for X. It suffices to prove that there is an open $Y \subseteq X$ such that $\pi_{0}(Y)=\pi(Y)$ and $\{Y \cap A: A \in \mathscr{A}\}$ is a π_{d}-base for Y.

Suppose not. Consider a maximal pairwise disjoint family of open sets \mathscr{U} such that for all $U \in \mathscr{U}, \pi_{0}(U)=\pi(U)$. For each $U \in \mathscr{U}$, pick $G(U)$, an open dense subset of U such that for all $A \in \mathscr{A}$, if $U \cap A \neq \varnothing$ then $(U \cap A) \backslash G(U) \neq \varnothing$. Since $\cup \mathscr{U}$ is dense in X, so is $G=\bigcup\{G(U): U \in \mathscr{U}\}$ and no $A \in \mathscr{A}$ is contained in G, contradicting that \mathscr{A} is a π_{d}-base.

We can now state some theorems.
THEOREM 4. If X is a locally compact space, then $\pi_{d}(X)=\pi_{0}(X)$.
Proof. By Lemma 3 we can assume $\pi_{0}(X)=\pi(X)$ without loss of generality. Let $\varkappa=\pi_{0}(X)>\pi_{d}(X)=\lambda$ and show a contradiction.

Let \mathscr{A} be a collection of open sets, of size λ, such that for each dense open $V \subseteq X$ there is some $A \in \mathscr{A}$ such that \bar{A} is compact and $\bar{A} \subseteq V$. Let \mathscr{F} be a π-base for X of size \varkappa. By Lemma 2, we can choose \mathscr{C} as in the statement of the lemma. Since \mathscr{C} refines $\mathscr{B}, \cup \mathscr{C}$ is dense, hence there is a compact $\bar{A} \subset \cup \mathscr{C}$ which contradicts the other property of \mathscr{C}.

THEOREM 5. $\pi_{d}(X)=\pi_{0}(X)$ if either (i) X is locally connected, or (ii) X is a linearly ordered topological space.

Proof. We first show that in each case (i) and (ii) there is a π-base \mathscr{U} for X such that if $U \in \mathscr{U}$ and \mathscr{V} is a pairwise disjoint subcollection of \mathscr{U} such that $U \subseteq \cup \mathscr{V}$ then there is some $V \in \mathscr{V}$ such that $U \subseteq V$. For case (i) this is immediate. For case (ii), let \mathscr{U} be the collection: $\{\{P\}: p$ is isolated $\} \cup\{(a, b): a$ has no immediate successor and b has no immediate predecessor $\}$.

We now use this property of \mathscr{U} to complete the proof that $\pi_{d}(X)=\pi_{0}(X)$. Let $\mathscr{A} \subseteq \mathscr{U}$ be a subcollection of size $<\pi_{0}(X)$. For each open V there is some $U(V) \in \mathscr{U}$ such that no element of \mathscr{A} is contained in $U(V)$. Let \mathscr{V} be a maximal pairwise disjoint subcollection of $\{U(V): V$ is open in $X\} ; \cup \mathscr{V}$ is dense, showing that \mathscr{A} is not a π_{d}-base for X.

It is not true that $\pi_{d}(X)=\pi_{0}(X)$ for every X, but we only have consistent counterexamples. These use the following lemma.

LEMMA 6. If X is a non-separable Lusin space of cardinality ω_{1}, then $\pi_{d}(X) \leqslant \omega_{1}$.
Proof. Enumerate X as $\left\{x_{\alpha}: \alpha \in \omega_{1}\right\}$. Since every nowhere dense subset of X is countable, the following collection forms a π_{d}-base:

$$
\left\{X \backslash \operatorname{cl}\left(\left\{x_{\beta}: \beta \in \alpha\right\}\right): \alpha \in \omega_{1}\right\} .
$$

In [6], there is constructed a dense Lusin subspace Y of 2^{x}, under the assumption BACH plus $\omega_{1}<x<2^{\omega_{1}}$. For this space we have $\pi_{0}(Y)=x$ and $\pi_{d}(Y)=\omega_{1}$.

We shall show that the inequality $\pi_{0}(X) \leqslant 2^{\pi_{d}(X)}$ is sharp by showing that it is relatively consistent that $2^{\omega_{1}}$ is "anything reasonable" and there is a space X with $\pi_{d}(X)=\omega_{1}$ and $\pi_{0}(X)=2^{\omega_{1}}$. This is accomplished by Lemma 6 and the following theorem.

THEOREM 7. CON (ZFC plus $2^{\omega_{1}}=\chi$) implies CON (ZFC plus $2^{\omega_{1}}=\chi$ plus there is a dense Lusin subspace of 2^{x} of cardinality ω_{1}).

Proof. We can suppose that we have

$$
V \mid=" \text { ZFC plus CH plus } 2^{\omega_{1}}=x^{\prime \prime} \text {. }
$$

We shall construct a generic extension of V in order to prove the theorem. We first describe a partial order \mathscr{P} in the model V. Using CH, let X be a dense Baire (for example, countably compact) subspace of 2^{x} of size ω_{1}. Enumerate X as $\left\{x_{a}: \alpha \in \omega_{1}\right\}$. Let $H(\chi)$ be the collection of all finite partial functions from χ into 2. For each $\varepsilon \in H(x)$, denote by $[\varepsilon]$ the set $\left\{f \in 2^{x}: \varepsilon \subseteq f\right\}$ which is an elementary open subset of 2^{x}. Let \mathscr{D} denote the set

$$
\left\{D \in[H(x)]^{<\omega}: \cup\{[\varepsilon]: \varepsilon \in D\} \text { is dense in } 2^{x}\right\} .
$$

Finally, let \mathscr{P} be the set

$$
\left\{\langle Y, \mathscr{V}\rangle: Y \in[X]^{<\omega} \text { and } \mathscr{V} \in[\mathscr{D}]^{\leqslant \omega}\right\}
$$

with the ordering $\left\langle Y_{1}, \mathscr{V}_{1}\right\rangle \leqslant\left\langle Y_{2}, \mathscr{V}_{2}\right\rangle$ iff $Y_{2} \subseteq Y_{1}, \mathscr{V}_{2} \subseteq \mathscr{V}_{1}$ and for each $D \in \mathscr{V}_{2}$,

$$
Y_{1} \backslash Y_{2} \subset \cup\{[\varepsilon]: \varepsilon \in D\} .
$$

Let \mathscr{G} be \mathscr{T}-generic over V. We claim that $V[\mathscr{G}] \mid{ }^{"} 2^{\omega_{1}}=x$ and there is a dense Lusin subspace of 2^{x} of size $\omega_{1}{ }^{\prime \prime}$.

Let $X^{*}=\cup\{Y$: for some $\mathscr{V},\langle Y, \mathscr{V}\rangle \in \mathscr{G}\}$. Observe that P is countably closed and hence $V[\mathscr{G}]$ contains no new countable subsets of V. Since $V \mid-\mathrm{CH}$ and P is 2^{∞}-centered, all cardinals are preserved. We know that $\left|X^{*}\right|=\omega_{1}$ by considering the following dense sets:

$$
\left\{\langle Y, \mathscr{V}\rangle: \text { for some } \alpha>\beta, x_{\alpha} \in Y\right\}, \beta \in \omega_{1} .
$$

It remains to show that X^{*} is a dense Lusin subspace of $2^{x} . X^{*}$ is dense in 2^{x} because the following sets are dense in P :

$$
\{\langle Y, \mathscr{V}\rangle: Y \cap[\varepsilon] \neq \varnothing\}, \varepsilon \in H(x) .
$$

Note that for each $D \in \mathscr{D}$, the set $\{\langle Y, \mathscr{V}\rangle: D \in \mathscr{V}\}$ is dense. We will show that this implies that every dense open subset of X^{*} is co-countable. Let U be a dense open subset of 2^{x}. Let E be a maximal pairwise disjoint collection of elementary open subsets of $U .|E| \leqslant \omega$ and hence $D=\{\varepsilon:[\varepsilon] \in E\} \in \mathscr{D}$. For some $\langle Y\rangle,\langle Y,\{D\}\rangle \in \mathscr{G}$ and since elements of \mathscr{G} are compatible we have that $X^{*} \backslash U \subseteq Y$ and is hence countable.

We note that this proof can be generalized to obtain the following corollary.
COROLLARY 8. CON (ZFC plus $2^{\left(\lambda^{+}\right)}=x$) implies CON (ZFC plus there is a space X with $\pi_{d}(X)=\lambda^{+}$and $\left.\pi_{0}(X)=\chi\right)$.

We also note that this theorem gives a consistant example of an L-space of weight $2^{\omega_{1}}$ where $2^{\omega_{1}}$ is arbitrarily large. See [2], [4] and [6].

Now we will show that the existance of a dense subspace X of $2^{\left(2 \omega_{1}\right)}$ such that $\pi_{d}(X)<\pi_{0}(X)=2^{\omega_{1}}$ is denied by Martin's Axiom and is hence independent of ZFC.

Let X be a space and \mathscr{U} be a collection of subsets of X. We denote by $\mathscr{P}(X, \mathscr{U})$ the set

$$
\left\{\langle S, \mathscr{V}\rangle: S \in[X]^{<\omega} \backslash\{\varnothing\}, \mathscr{U} \in[\mathscr{V}]^{<\omega} \text { and } S \cap \cup \mathscr{V}=\varnothing\right\}
$$

with the partial ordering $\left\langle S_{1}, \mathscr{V}_{1}\right\rangle \leqslant\left\langle S_{2}, \mathscr{V}_{2}\right\rangle$ iff $S_{2} \subseteq S_{1}$ and $\mathscr{V}_{2} \subseteq \mathscr{V}_{1}$.
THEOREM 9. Assume MA. If $x \leqslant 2^{\omega}$ and X is a dense subspace of 2^{x}, then $\pi_{d}(X)=\pi_{0}(X)=\varkappa$.

Proof. We show that if $\lambda<x$, then $\pi_{d}(X)>\lambda$. Suppose not and derive a contradiction by assuming that \mathscr{A} is a π_{d}-base of size λ. Without loss of generality assume that each $A \in \mathscr{A}$ is an elementary open set. Since $\lambda<x$ we can find $Y \in[x]^{\omega}$ such that the support of any $A \in \mathscr{A}$ is disjoint from Y. Let \mathscr{U} be the collection of all elementary open sets with support contained in Y.

Let us notice the following facts. \mathscr{U} is countable. If $A \in \mathscr{A}$ and $\mathscr{V} \in[\mathscr{U}]^{<\omega}$,
 $U \cap \cup \mathscr{U}^{\prime}=\varnothing$ then $\cup \mathscr{U}^{\prime}$ is a dense open subset of 2^{x}.

Now consider $\mathscr{P}(X, \mathscr{U})$. From the above facts, we have that $\mathscr{P}(X, \mathscr{U})$ is σ-cen tered and that for each $A \in \mathscr{A}$, the set

$$
\{\langle S, \mathscr{V}\rangle: S \cap(A \backslash \cup \mathscr{N}) \neq \varnothing\}
$$

is dense in $\mathscr{P}(X, \mathscr{U})$. Furthermore, for each $U \in \mathscr{U}$ the set

$$
\{\langle S, \mathscr{V}\rangle: U \cap \cup \mathscr{V} \neq \varnothing\}
$$

is also dense in $\mathscr{P}(X, \mathscr{U})$.
Let $\mathscr{G} \subseteq \mathscr{P}(X, \mathscr{U})$ be a filter which meets each of the dense sets above; and let $G=\cup\{\cup \mathscr{V}$: for some $S,\langle S, \mathscr{V}\rangle \in \mathscr{G}\}$. Then G is a dense open set contradicting that \mathscr{A} is a π_{d}-base for X.

Only MA for σ-centered posets was used above. In the following theorem we use only MA for a countable poset.

THEOREM 10. Assume MA. If X is separable then $\pi_{d}(X)=\pi_{0}(X)$.
Proof. Since $\pi(X) \leqslant 2^{d(X)} \leqslant c$, it suffices to show that if $\pi_{d}(X)=\lambda<c$ then $\pi_{0}(X)=\lambda$. We suppose $\pi_{0}(X)=x>\lambda$ and derive a contradiction. By Lemma 3 we can assume that $\pi(X)=x$. We can also assume, without loss of generality, that X is countable and has no isolated points.

Let \mathscr{A} be a π_{d}-base for X of cardinality λ, and let \mathscr{B} be a π-base for X of cardinality x. Let \mathscr{C} be the family obtained from Lemma 2 . Let \mathscr{D} be a complete pairwise disjoint subfamily of \mathscr{C} such that $\cup \mathscr{D}$ is dense in X. Let $\mathscr{U}=\{D \backslash F: D \in \mathscr{D}$ and $\left.F \in[X]^{<\omega}\right\}$.

Now consider $\mathscr{P}(X, \mathscr{U})$. This is countable, and each set $\{\langle S, \mathscr{V}\rangle \in \mathscr{P}(X, \mathscr{U}): S \cap$ $\cap(A \backslash \cup \mathscr{V}) \neq \varnothing \emptyset\}$, where $A \in \mathscr{A}$, is dense in $\mathscr{P}(X, \mathscr{U})$. Also each set $\{\langle S, \mathscr{V}\rangle \in$ $\in \mathscr{F}(X, \mathscr{C}): D \cap \cup \mathscr{V} \neq \varnothing\}$, where $D \in \mathscr{D}$, is also dense. MA allows us to find a filter $\mathscr{G} \subseteq \mathscr{P}(X, \mathscr{U})$ which meets each of the above dense sets.

Let $G=\bigcup\{\cup \mathscr{V}:\langle S, \mathscr{V}\rangle \in \mathscr{G}$ for some $S\}$. Since \mathscr{G} meets each of the first type of dense set, no $A \in \mathscr{A}$ is contained in G. Since \mathscr{G} meets each of the second type of dense set and X has no isolated points, G is a dense open subset of X. This contradicts that \mathscr{A} is a π_{d}-base for X.

The result of van Douven that $\pi_{d}(X)=\omega$ implies $\pi_{0}(X)=\omega$ can be gleaned from the proof of this last theorem. If \mathscr{A} is a countable π_{d}-base for X, let Y be a countable subset of X meeting each set in \mathscr{A}. Now follow the proof of Theorem 10 for the subspace $\operatorname{Int}(\bar{Y})$ of X. MA is not needed since only countable many dense sets need to be met. However, van Douwen's original proof is easier and more straightforward.

We have one more result about π_{d} and π_{0}. It uses the following lemma, which is of independent interest.

LEMMA 11. If X has no isolated points and $c(X)=\omega$, then either there is a Suslin tree of open subsets of X or there is a countable collection of open subsets of X such that for each $F \in[X]^{<\omega}, \cup\{C \in \mathscr{C}: C \cap F=\varnothing\}$ is dense.

Proof. We build a tree of open subsets of X, by recursion on the levels of the tree, starting with $T_{0}=\{X\}$. If level T_{α} has been defined and $t \in T_{\alpha}$ we define the node of $t, N(t)$, to be a maximal non-trivial collection of open subsets of t such that for all $U, V \in N(t) \quad \bar{\cap} \bar{V}=\varnothing$. Let $T_{\alpha+1}=\cup\left\{N(t): t \in T_{\alpha}\right\}$.

If $\lim (\lambda)$ and we have T_{α} for all $\alpha<\lambda$, consider the tree $\cup\left\{T_{\alpha}: \alpha<\lambda\right\}$. For each branch b of this tree consider $\operatorname{Int}(\cap b)$. Let $T_{\alpha}=\{\operatorname{Int}(\cap b): b$ is a branch of $\cup\left\{T_{\alpha}: \alpha<\lambda\right\} \backslash\{\varnothing\}$.

Note that since $c(X)=\omega$ this recursion stops after at most ω_{1} steps and that the resulting tree T has no uncountable chains or antichains.

If T is not a Suslin tree, then $|T|=\omega$. In this case, let $\mathscr{C}=T$. Since \mathscr{C} is closed under finite intersections, it only remains to prove that for any $x \in X \cup\{C \in \mathscr{C}: x \in C\}$ is dense. To this end let $p \in X$ and show that p is in the closure of $\cup\{C \in \mathscr{C}: x \in C\}$. However, this result is obtained by a straightforward consideration of the ways in which p and x can "leave" the tree construction and is therefore left for the reader (i.e. it is messy to write out).

Recall that the Novak number of a space X is

$$
n(X)=\min \{x: X \text { can be covered by } \varkappa \text { nowhere dense sets }\} .
$$

COROLLARY 12. If X has no isolated points, then $n(X) \leqslant 2^{c(X)}$.
Proof. This follows from the proof of the lemma since each element of T and each branch of T determine a nowhere dense set, and their union is all of X. The tree T has at most $(c(X))^{+}$elements and $2^{c(X)}$ branches.

We use Lemma 11 in the following theorem.
THEOREM 13. Assume MA. If $c(X)=\omega$ and $\pi(X)<c$, then $\pi_{d}(X)=\pi_{0}(X)$.
Proof. Suppose $\pi_{d}(X)<\pi_{0}(X)$. By Lemma 3 we can assume $\pi_{0}(X)=\pi(X)$. Let \mathscr{A} be a π_{d}-base for X of cardinality $\pi_{d}(X)$. By Lemma 2 there is a π-base \mathscr{C} such that no finite subcollection of \mathscr{C} covers any element of \mathscr{A}. Let \mathscr{C}_{1} be a maximal pairwise disjoint subcollection of \mathscr{C}, By Lemma 11 obtain a countable collection \mathscr{C}_{2} of open subsets of X such that for each $F \in[X]^{<\omega}, \cup\left\{C \in \mathscr{C}_{2}: C \cap F=\varnothing\right\}$ is dense.

Let $\mathscr{G}=\left\{C_{1} \cap C_{2}: C_{1} \in \mathscr{C}_{1}\right.$ and $\left.C_{2} \in \mathscr{C}_{2}\right\}$. Then $\mathscr{\mathscr { C }}$ has the following properties:
(i) no finite subcollection of \mathscr{U} covers an element of \mathscr{A};
(ii) for each $F \in[X]^{<\omega}, \cup\{U \in \mathscr{U}: U \cap F=\varnothing\}$ is dense.

Now, consider $\mathscr{P}(X, \mathscr{U})$. Since \mathscr{U} is countable, $\mathscr{P}(X, \mathscr{U})$ is σ-centered. By property (i) for each $A \in \mathscr{A}$ the set

$$
\{\langle S, \mathscr{V}\rangle: S \cap(A \backslash \cup \mathscr{V}) \neq \varnothing\}
$$

is dense in $\mathscr{P}(X, \mathscr{U})$. Fix a π-base \mathscr{B} of size $<C$. By property (ii), for each $B \in \mathscr{B}$ the set

$$
\{\langle S, \mathscr{V}\rangle: \cup \mathscr{V} \cap B \neq \varnothing\}
$$

is dense in $\mathscr{P}(X, \mathscr{U})$. Let $\mathscr{G} \subseteq \mathscr{P}(X, \mathscr{O})$ be a filter meeting each of the above dense sets. Let

$$
G=\{\cup \mathscr{V}:\langle S, \mathscr{V}\rangle \in \mathscr{G} \text { for some } S\} .
$$

Then G is a dense open subset of X witnessing that \mathscr{A} is not a π_{d}-base for X.
We could have eliminated the hypothesis " $\pi(X)<C$ " from Theorem 13 if we could have constructed \mathscr{U} in the proof such that it "self-witnessed denseness" as in the proofs of Theorems 9 and 10 . We need an extension of Lemma 10, which, in conclusion, we ask as a question.

QUESTION 14. Assume MA. Suppose X is a space with $c(X)=\omega$ and no isolated points. Does there exist a countable family \mathscr{U} of open subsets of X with the following two properties:

1. for each finite $F \subseteq X, \cup\{U \in \mathscr{U}: U \cap F \neq \varnothing\}$ is dense;
2. if $\mathscr{V} \subseteq \mathscr{U}$ such that for each $U \in \mathscr{U},(\cup \mathscr{V}) \cap U \neq \varnothing$, then $\cup \mathscr{V}$ is dense in X ?

REFERENCES

[1] J. BERWISE, Handbook of Mathematical Logic, North Holland, 1977.
[2] E. VAN DOUWEN, F. TALL, W. WEISS, Non-metrizable hereditarily Lindelöf spaces with point-countable bases from CH, Proc. Amer. Math. Soc. 64 (1977), 139-145.
[3] R. ENGELKING, General Topology, Polish Scientific Publishers, Warsaw, 1977.
[4] A. HAJNAL, I. JUHÁSZ, On hereditarily α-Lindelöf and hereditarily α-separable spaces II, Fund. Math. 81 (1974), 147-158.
[5] I. JUHÅSZ, Cardinal Functions - Ten Years Later, Mathematical Centre, Amsterdam, 1980.
[6] F. D. TALL, Some applications of a generalized Martin's Axiom, Trans. Amer. Math. Soc. (to appear).

[^0]: Received March 08, 1983.
 AMS (MOS) subject classification (1980). Primary 54E18. Secondary 54 G 10.

 * Istvan Juhász, Institute of Mathematics, Hungarian Academy of Science 1053, Budapest, Hungary.

 William A. R. Weiss, Department of Mathematics, University of Toronto, Toronto, Ontario, Canada M5S1A1.

