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BOUNDARY VALUES OF THE SOLUTIONS 
OF THE PARABOLIC EQUATION

A b s t r a c t .  The paper deals w ith  th e  problem  of the  behaviour of a given 
solution of a quas i-linea r parabo lic  equation  n ea r  th e  parabo lic  boundary . Neces
sary  and  sufficien t conditions fo r w eak an d  strong  convergence in  th e  Sobolev 
space Wp’ 1, P ^  2, a re  given.

1. I n t r o d u c t io n .  In the theory of partial differential equations the 
problem of t h e  behaviour of the given solution near the boundary arises 
in  a natural way. A problem arises while determining if the given solu
tion has trace on the boundary. Several function spaces arise as the spa
ces of traces of solutions of partial differential equations. The purpose of 
this paper is to obtain conditions giving LM races on the boundary of 
generalized solutions of a quasi-linear parabolic equation. Section 2 deals 
w ith  th e  problem of weak convergence of traces for solutions in the So
bolev space W £1, p 2. Section 3 extends these results to  strong con
vergence. The arguments which we give here are based partially on the 
references [1], [7] and [8].

2. W e a k  c o n v e r g e n c e .  Consider the quasi-linear parabolic equation 
of the form

n
(1) (a^ t, a;) uz) Xi ~ b (t, x, u, ux) - u t =  0

U - i

in a cylinder D =  (0, T] X Q, where Q C  Rn is a bounded domain with 
the boundary 3Q of the class C2, ux — Dx u, ux — (uXi, ux ). Let us 
denote r(x) =  dist (x, 3Q). We make the following assumptions:
(A) There is a positive constant y 1 such that
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for all |  e  R n and (t, x) e  D.
(B) The coefficients ai} belong to Cl(D).
(C) The function b ( t,x ,u ,s )  is defined for (t , x , u , s ) e D  X Rn+1 and sa

tisfies the following conditions.
(i) for a.e. (t , x ) e D , b(t, x, •, •) is a continuous function on Rn+1,

(ii) for every fixed (u, s) e  Rn+1, b ( - ,  •, u, s) is a measurable func
tion on D,

(iii) for all ( t ,  x, u, s) 6  D X Rn+1

|b(t, x, u, s)| <  f(t, x) -f L(\u\ +  |s|),

where L is a positive constant and /  : D -»  R is a non-negative- 
measurable function such that

J  f  f(t, x ) p  r(x)e dxdt <  oo
D

for some constants p, 0  for which 1 <  p <  p ^  0  <  2p— I... 
REMARK 1. Under the assumption (C) the composition b(t, x, u(t,x), 

s(t, a;)) is measurable when u{t, x), s(t, x) are measurable and the mapping,

b(t, x , •, : LJoc(D)n+i -> L^c (D)

is continuous, (see [6]).
In the sequel we use the notion of a generalized solution involving 

the Sobolev spaces: p (D), W£ #(D), W£°(D). We denote by p(D)' 
the Sobolev space of real functions u such that u and its distributional 
derivatives uXi, ..., uXn, ut belong to Lfoc(D) and by W£°(D) the Sobolev 
space of real functions u such that u and its distributional derivatives 
uXl, •••> uXn belong to Lp(D). The space of the functions u  which belong 
to W*,0(D) and such th a t supp u C  Int D we denote by W ^°D .

DEFINITION. A function u is said to be a weak solution of the equa
tion (1) in D if u e  W &  p (D) and u satisfies

n(2) J  f  I E  Uii  ( t , x ) u xt v x .  d®dt +  J J b{t, x , u, ux) v  dxdt +  J j  u tv  dxdt =  0
D i ,j  =  1 D D

for every v e  W£,° (D ), where +  ~ 7  =  1-

It follows from the regularity of the boundary 3 Q that there is
a number d0 >  0 such that for d e  (0, <50] the domain Qt — Q ^  { x  :
: min \x—y\ >  5} with the boundary 3 Q ., possesses the following pro- 
y e a  Q

perty: to each x0e 3  Q we can assign a unique point x & (x0) — x 0—dv(x9)r 
where ^(x0) is the outw ard normal to 3 Q at x0. The inverse mapping to



x 0 ->x4 (x0) is given by the formula x0 =  x4 +  dv& (x4), where vs (x4) is the 
outward norm al to 3 Qs at x4.

Let x s denote an arb itrary  point of 3 Q5. For a fixed s >  0 intro
duce the sets

A. =  3 Qs ^ {x : | x - x 41 <  e)
Bt =  {x : x — x4 +  dv8(x4),xs e3 Q s ^  {x : |x -x 4|< e }

and put

dSi (x4) =  lim
dS0 .-*•+ |B .|

where |A| denotes the Lebesgue measure of a set A. It was proved by 
Michailov [8] that there is a positive number y0 such that

<*S4 ^
(3) 
and

d S.
(4) lim - r= -  (x4(x0)) =  1

5 -> o+ u O o

uniformly w ith respect to x0 e  3 Q.
According to Lemma 1 in [3, p. 382], the distance r(x) belongs to

C2(Q—Q6 ) if <50 is sufficiently small. Denote by o(x) the extension of
the function r(x) into Q satisfying the following properties: o(x) =  r(x)

for x e Q  —Q4c, eeC ^ Q ), g(x) >  in Q4o, y -1 r ( x ) < 8 ( x ) <  n  r(x) in Q

for some positive constant yx, 3 Qs =  {x : o(x) =  d}, [gx(^)l =  1 for 
x e Q  — Qs , d €  (0, a0] and finally 3 Q =  {x : g(x) = 0 } ,  g ( x ) > 0  on Q. 

Introduce the surface integral for /u, d e  (0, d0] and u e  p (D)
T

M(ju, d) = f  I \u(t, x )[p  dSsd t+  j  \u{fi, x ) |p  (r(x) — 6) dx,
u d Qd Qd

where the values of the function u(t, x) on the n-dimensional manifold 
are understood in the sense of traces, (see [9]).

Let us denote

D- = (m, T] X Q4, 3 D“ = (M, T] X 3Qd w {(l} X Q4>

3 D =  [0, Tj X 3 Q u  {0} X Q and Ds =  D*.

Here 3 means the parabolic boundary.
THEOREM 1. Let u be a weak solution of (1) for fixed p ^  2 and

f f u *  |u|p-2 t^dxdt <  oo for some / ? < 1 .  Then the following conditions
D

are equivalent:
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I. M(d, /u) is bounded on (0, 50] X ,(0, do], 

II. J J  u2 \u\p~2 r(x) dxdt <  oo.
D

P r o o f .  Let for ju .de  (0, 60]

v(t, x) u(t,a:)|u(t,x)|p-2(e(x ) -d ) , for (t ,x ) e D $
0, for (t, x ) e D - D j“ .

Using Holder’s inequality and the well known property of weak deriva
tives \u\x — ,sgn U'UX it is easy to prove that v is an admissible test func
tion in (2). Substituting v in (2) we obtain

(5)

ff aijuxi(u\u\p-2)Zi(Q-d)dxdt+j J at)uXi u \u\p~2 qx  dxdt +
y* 1.3 = 1 Js

+
J J b(t, x, u, ux) u |u |p - 2  ( g — 6 ) dxdt +  J J utu | u | p - 2 (g—d) dxdt =  0.

DS °s

By the Green’s formula we have

(6) I f  JlL ailUxiU Mp_2eXjdxdt
jyH i, j  — 1 
Ub

v f f  S  (a ^ M p ^ J) x ! d * d t +i,i = l
d Ss dt +

+

F p - f f  2  (a n S z ) J u \P d x d t  =  lv j  f  2  a « e * te * > l pDt i,i = 1 b 3 Qe i, j = Io

j r f f  E  (a n e x ) x M \ p d x d t  /  ! u ! p d s 6 d t + - ^ - J J | u | p d x d t ,
jM o Q&

where Cx = max 
(t, x) e d 2  (a»eXl)* 

t,j = i

Integrating by parts the last integral in (5) we obtain

1 TJ J utu \u\p~2 (q — 6) dxdt =  —  J  J \u\p (q— d) dxdt
u Qs

(7 )

=  J  |u (T ,x ) |p (e -a )d x -  Y  J  \u([i, x ) |p  ( g — S) dx.
P  Qi Q s
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Using the assumption (C) and Young’s inequality we have the estimate

<8) J J  bn |u |p -2 (g — S) dxdt J J  f  |u |p -! (q — d) d x d t- f

+ L J J  |h|p (q — <5)dxdt +  L J  J  |ttx| (uIp-1 (q— d) d x d t:

Ds

J J  fP(Q— d)a d x d t  +  J J l u j P  (ff— d)a dxdt +  L J J  |u|p (q — d) d x d t+
d£ d%

+  L e fj u*lujp-2 (q — 3) dxdt+— J J |u|p (q — d)dxdt,

W  6

p —&where a — —— —- and e is any positive. The assumption (C) implies that p - 1
• a >  —1.

The first integral in (5) we can estimate as follows

I f  atiu i 1(u lu lp_2)ii(?_ d ) dxdt
jyU u - i

ot  M - i

p - 1
/ /  u | i ulp_2 (e~5) dxdt.

-P - 1
V

Thus combining (5)—(9) we obtain 

J J  u* |u |p -*(g-d) dxdt +

1 T
-|----- J |u(T, x)|p (g — d) dx ^  —  J j |u]PdS{dt +

^  Qn ^  ft

- J |u(ju, x )|p (g— d) d x +  —  J J  Mp d x d t+  | l  +  A \  J J  |u|p (q—d) dxdt +
Qs P d'< D«

J J fp d x d t+  J J |tt|p (g — d)a dxdt +  Lf J J  u* |u|p-2 (g — <5) dxdt.

Ds
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p — 1Choosing e such tha t ^ —  =  Ls and reducing the last term  we obtain2 y
from th is inequality

(10) J  J  u*x |u |p-2 (Q -d ) dxdt +  C2 J  |u(T, x)|p (e - d ) dx  <
Di*O

< C 3JJ  |u|p (g -6 )‘ dxdt +  C4/ /  p r 9 d x d t+ C 5 J  J  Mpdxdt +  C6 M(M, 5),

Dt

2y__  r  = r ___ ?2Lwhere C2=  p(p-£ 1} , C3 =  C4= - ^ f j ,  C5 =  max

2Ciy 1 . r  _  [ 2y2 2yyx \ 
p ( p - l ) |  6 \ p ( p - l )  ’ P ( P -1 ) ) '

Let a e ( —1,0], d e |o , - y - j ,  / i€ (0 ,  d0] and x  e  QSi. From the defini

tion of the function g it follows that (g(x)—5)" ^  thus we obtain

T T
J J  |u|p (g —d)a dxdt =  J  J  |u|p (g—d)“dxdt +  J J  |u|p (g—d)°dxdt +
dm io Qj, /•0
do T do

-+- /  /  lulp (<?“ d)“dxdt ^  J J |u|p<todt+ j" d t j  (v—d)“dv J  |ujPdS„ +
p Q$, ' i« Qs, t* *

+ f  f  !ulp fe- S ) d x d t^  l ^ \  f f |u|Pdxdt +
' ' v Qjo '  ' »• ««.

-f sup f f  |u|PdSadt+(-Y-i do sup J  l u ( / u , x ) l p ( f f - d )
a+  1 o < k j 0|; 8q, \ * /  o<A.<a. ^

—5) dx.

For o > 0  we have (g—d ) ° ^ C 7, where C7 =  m ax [g{x)—d]“ so we 
obtain the following estimate Q

(11) J J  |u|p (g—d)“ dxdt <  Cg

for a >  — 1, S e  (0, /ue(0, 50] where the constant C8 is independent

of 5 and /u.
Now condition (10) implies the estimate

(12) J J  u \  |«|p-* (g -5 )  dxdt <  C9
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for d €  |o, -y-j and n  e  (0, do] which we can w rite in  the followingg form 

J  j  u2x \u\p~2 rj(t, X, n, b) dxdt <  C9

where
{t x  a) =  |e (* ) -« , for (t , x ) e D s

Hence and from the Monotone Convergence Theorem we obtain con
dition II what proves the implication I -*> II.

To prove the implication II => I we show first that condition II im -

, fi e  (0, 50] and

T T
(14) J J  |u|p (g — d)“dxdt =  J  f  |u|p(g—d)“ d x d t+  J  J  |u|p(g—d)“dxdt. 

Integrating by parts we have

plies (11). Let a >  —1, <5e(0,

TJ J jujp (ff—d)a dxdt — T J \u(T, x)\p (Q—d)adx—p J  |u( ,̂ x)|p (q—d)a dx— 
>• <5«0

—p J  J  t \u\p- 2uut(Q—d)“d x d t^ T  J  fu(T, x)|pdx +

+  P 1 / T  f f  f  u2lu\p-2(Q- d ) adxd t f  f  t|« |p-2u*da;dt | T
L  Q«„ \ / L  0So I

thus there is a constant C10 such that for every d e  |o, -y-j, n  e  (0, <30]

T

(15) f  J  |u|p (g — d)° dxdt <  Cio-
r  <5«o

From condition II it  follows tha t
x

/  /  I lufe | dxdt <  00
0 ®a„

3
because r(x) — <50 for x e  Q4o and thus |u |p e  0 ((0, T) X Q4j).

It is well known (see [9]), that such function has the trace on th* 
parabolic boundary of (0, T) X Qit and

T
f  J  |u|p dS4o dt <  oo.
o 3QS„



As g(x) — 30 for x  €  3 Q6o thus there is a constant Cn such that

(16)

(**]
f  f  \u\p(e -d )°d S Sod t < c 11
/* 3 ««o

and juG (0, 60].

Using the mapping x  x s (x), <3) and integrating by parts we obtain
T  T  Sof f jujp (g—d)a dxdt — J  dt j  (v—8)adv J  lu^dS^^

m Qa-Q̂ o f* d d Qv
T  doy0J dt J (v—d)adv J \u(t,xv (x))|p dS

3 Q

+ T ~ yof  dt I  №> x ,(x ))lp dSn 3 Q

v — d0 
v — 8

3 x (x)J dt J  (v -d )“+i dv J  |u(t, x^x))!? ux(t, x (x)) u(t, x^x)) — dS :
ju 5 3 Q

2 T£a+ly2 T 
J  J  |u |p  d S j0 d t  +  J  d t  J  ( V - 6 ) “+ i d r  f  | t t |p - i  \ux\dSy

3 ©Jo 5 Qv

where we have used
3 x
3»

1.

Now using (16) and Holder’s inequality we have
0+1

T & 2 DV2
/  /  M»<e -a> -dxd t < ^ c , 1 + ^ .
/< Qa—Q j0

r  T  «Q "11_ r  T  Jo

• /  d t  J  f  \ulp(v-d)“dSydv * J  dt J J  |u |p  
L/« 6 d Qy J L/< 3 3Q„

~2 u*(v—d) dŜ dv I* ^lf
„ + 1  c “ +
a+1 2-iZ—  f  T 1 1 - f

-|- <9 2 m i l L l j  J  |u |p  (g—S)a dxdt 2 j  j  u 2x \u\p~2 r(x) dxdt
0  +  1 Lf* I d

From the last estimate it follows
T

(17) f  f  \u\p(e - d ) “d x d t < C 12

for 6 e
( ° 't ]

m Q‘-QSti
and n  e  (0, <50], C12 being a convenient positive constant.

Now (14), (15) and (17) imply the condition (11).
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From the first part of the proof we have the following equality 

<18) -i- f  f  j ?  auQXieXl Mp dSg d t + i -  f  |u(fi, x ) |p  (q -6 )  dx =
l> 3Q4 I, 1 = 1 V Qt

=  2  (a»erj)*, lulp d x d t+  f  f  bit, x, u, ux)u|u|p-2 (g -3 )  d x d t+

.+ j - f l u ( T,x ) fp ( e - d ) d x + ( p - 1) f f  JT  atju XtuXj\u\p-2 ie~~b) dxdt.
P Q> Q/. i , ] ~ l

Using (A), (B), (C) and the estim ate (8) w ith e =  1 we get

- i -  j* f  |u |p  dSsd t+  f  \u(n, x ) |p  (q -b )  dx <  ^  f f  |u |p  d x d t+
/• 3 Qi P Q, r f

+ f f  P i e - d ) e 6xd t+  f  f  \u\p (g—S)°dxdt +  2L f f  |u |p  ie - b )  dxdt +

+  y(p—1 ) J J  u | | u |p - 2 (g—6) dxdt.

Condition II and the assumption of the theorem imply

f  |u(T, x)| p  r(x) dx <  oo.
Q

Thus from assumption (C), (11), condition I and the last inequality it 

follows the boundness of the function M{/u, b) on jo, ~ j  X (0, b0].

Let now b e  |-y-, <30j  and / /€(0,  30]. A well known property (see [4]) 

of the traces is tha t for any function h e  WJ (G)

\\h\\LilR)< K \\h x\\LHG),

where R is any submanifold of region G and constant K  depends only 
on region G. Taking advantage of this fact we get



T T
J  J  |u|p ( r—d) dSs dt ^  diam (Q) J  J  |u|p dSs dt ^

l* 3 Qi /* 3 Qa
T T

■ diam (Q) K J  J  ||u|p | dxdt ^  diam (Q) K p J  J  |u|p-» dxdt ■
<* <5«„-Qs0 o <3a„-Qj0

a
T

2
- T

^  diam (Q) Kp f f u2|u|P"2 dxdt 2 f  f  \u\p dxdt
0 Qdo-QSo 

2
0 <?5o-Qdo 

2

Thus, from condition II and (17) if a =  0 and d =  we get tha t the
a

first component of the function M(^, d) is bounded. For the second com
ponent we have the simple estimate

J \u(m, *)Ip № ) - d )  dx  <  J \u{n, x)|p ( r (x ) -  j  dx
O. Di ’ <Qi Qso

2

so from the previous case we get that the function M(/u, d) is bounded 
in  the region (0, <50] x  (0 ,<50] what proves condition I. This ends the 
proof of Theorem 1.

Let us define the functions M(d) = M(d, d) and

M(d) =  /  J  2  a ‘̂ .  |u|p ds»dt +  J iu(<3’ X)|P (e~ d) d x-
0 S Q,  i, j  = 1 Qi

The assumption (A) implies

<19)

From the results of Gagliardo [2] it follows that if u e ^ p (D) then 
the functions M(d) and M(6) are absolutely continuous on (0, do], (see [1]).

REMARK 2. Under the assumptions of Theorem 1 condition I can 
be replaced by

III. M{d) is continuous on [0, 50]
o r

IV. M(d) is bounded on (0, do]-
Indeed, condition I follows from III and (19). Using the Dominated 

and Monotone Convergence Theorems we imply from (18) that there 
exists lim Ai(<5), thus we proved condition III. Condition IV follows

<3 -> 0+
irom  (19).

Let us consider the space Lp (3 D) of all functions such that

ll/ll, J J |/(t, x )|pdSdt+  j  ]/(0, x)jp r(x) dx
0 d Q Q

p <C OO.
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For p >  1 the space Lp w ith the norm || • ||p is a reflexive Banach

space and the space Lp' is dual to L p, where ■—  +  A - =  1. Moreover

the space L 2 is uniformly convex.
Let us denote

(f „x _  I u(t, xs (*)), for (t, x) e  (0, T] X 3 Q 
5^ ’ \u(3,x), for (t, x ) e  {0} X Q,

where u is a solution of (1), and <5 e  (0, <30]. Here the values of the function 
on the lower-dimensional manifold are understood as its trace on tha t 
manifold (see[9]).

THEOREM 2. Let u be a weak solution of (1) for fixed p ^  2 and 
f  f  uj jujp-21# dxd t <C oo for some fi <  1. Assume one of the conditions
D
I or II holds. Then there is a sequence 0 as k  -> oo and a function  
<p e  Lp(3 D) such that

T
J J (u (t,x Sk{x))-.cp{t,x)g(t,x))dSdt +aim

Jc oo 0 d Q

J  (u(dk, X) -<p(0,x)) sr(0, x) r(x) dx =  0 
Q J

+
Q

for each g e  Lp'(3 D).
P r o o f .  From condition I of Theorem 1 and (3) we have

T

C13 |  |u(t, x)|p dS5dt +  J |u(/u, x)|p r(x) dx ^
0 3 Qs Q

1 T
>  — J J M*. x i (X))IP dSdt +  J  \u{fx, x)|p r(x) dx

0 5 Q Q

for any I), fi e  (0, <50] and some constant C13.
Now taking d =  fx we get ||us ||p <  C13 for 6 e  (0, 50]. Thus the set 
: 5 e (0 ,  50]} is weak compact in Lp(3D) and hence the result follows. 
We need some lemmas in  the following
LEMMA 1. Let u s  p ( P ) ,  a >  — 1 and for some constant /?< 1 

JJ u2 \u\p~2 t& dxdt <! oo, Then there exists constants Cu  and C15 such
D
that

(20) J J  |u|p (t—6)“ dxdt <  Ci*

and
(21) J k(<5, x) |p dx <  C15

for d e  
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P r o o f .  Integrating by parts we get

JJ |u |p  (t — d)* dxdt =  - — J |u |p  dx — JJi<- (Mp)t =
Di Qs t=d D#

t  = T [ t-d yiCt + 1

(T -d y
a +  1—  f |u(T, x ) |p  d x ----- XT' f  f  ( t—d)a+1 |u|p-2 uut dxdt

J flT 1 JJ
Qb Dt

sC

'Va'hl  13  ?~ ^  j" * *
J |u<T, x ) |p  d x +  T  * JJ u*|u|p-* ( t -  d)  dxdt
a Ldj

2 .

yo+X
JJ |u|p~2 u2(t—3)“ dxdt 12 J |u(T, x)|P d x +
d> J a «

a+l
+

a + l
JJ u2|u|p-2t d x d t j2 j j j  |u |p  ( t - d ) “ d x d tj3

which implies (20).
Condition (21) follows from the estimate

J |u ( d ,  x)|pdx = J |u ( T ,  x ) |p  dx— JJ (|w|p)t dxdt =  J |u ( T ,  x ) |p  dx-
Q« Dt Qd

— p  JJ |u |p - 2 u u t  dxdt ^  J |u ( T ,  x)|p dx +
Ds

+ p ff u?|u|p-2 (t — dy  d x d t]2 |u|p ( t - d ) - f 1 dxdt 1 2 
Ds J  Ld« J

at the basis of (20).
LEMMA 2. Under the assumptions of Theorem  1 condition II implies

JJ  u2 r  dxdt <  oo.
D

P r o o f .  By Theorem 1 condition II implies the boundedness of the
T p

function M(d) — J  J (u2 + 1 )2 dSdt. Repeating the proof of the implica-
a a q s

tion I => II of Theorem 1 with

v(t, x) — u(u2+l)~jT(f)—5), for (t, x) e  Ds
0, for (t, x) g Da

as a test function we obtain
P~2

JJu2(u2+ l)  2 rdxdt<Coo
D

and the result follows. n
Let us denote by K(t, x) =  ^  ai3(t, x) eXl(x) QXj(%). Then we have 

the following lemma. u j = i
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LEMMA 3. Under the assumptions of Theorem  2 the function

G(d) = j  J u(t, x s (x)) g(t, x) K(t, x) dSdt + J u(8, x) g(0, x) g(x) dx
0 3 Q Q

is continuous on [0, So] and
T

(22) lim G(d) — J J <p(t, x) g(t, x) K(t, x) dSdt +  J 93(0 , x) g(0, x) g(x) dx
0 9 Q

for any function g in L p_1 (3 D).
P r  oo f .  Of course, G(<5) is continuous on (0, <50] so it suffices to pro

ve continuity at 5 =  0. Since ||u{ ||p <  C13 for d e  (0, d0] and elements of
_p_

C1(D) restricted to 3 D are dense in Lp-1 (3D) we can assume that there 
is a g e C \D ) such tha t y\dQ=g. From (2), taking v  =  g(g—8) for (t, x) e D & 
and v  =  0 for (t, x) g  Ds as a test function we have

(23> JJ JE* auux,9x,(e~d)+  ^  aiiux..yQx, +  b9(Q~b) +

dxdt =  0.

Dj Li, j — 1 1. i = 1

+  u tfl'(e—5)

By the Green’s formula we have

(24) I f  ^  |  J £  aaQXiex,uy dS& d t -
Dj £, J =  1 ! =  l

n  T

“ JJ S  (aM8*,ffkuda:dt =  “ J J «(*. **(*)) 0(tj*)K(t,x) dSdt-
Ds t, j  =  1 i  3 Q

J J «(t, xa(x))
j 8Q

dSx
dS (*6 (x )) 9(t, x s (»)) K(t, x  (x ))-g (t, x) K{t, x) dSdt

“ JJ H  (o«eXJS)I t«dadt-
Ds i, j = 1

Integrating by parts the last term  in (23) we get

JJ «ty(e-5)dxdt = J u ( T ,x )y ( T ,x ) ( e ( x ) - d ) d x —
D6 Qa

-  [ u ( 6 ,x ) y ( 5 ,x ) ( e ( x ) - 6 ) d x -  f f uyt(g—8) dxdt =  
(2d ) j  j jQt Da

=  Ju(T, x) y(T, x) (e(x)-5) d x -  J U(d, x) p(0, x) (g (x)-d )  dx—
Qfi Qa

— J u(3, x) (§(x)-3) [y(d, x)—g{0, x)] d x -  JJ uyt{s ~ d )  dxdt.
«4
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From (23), (24) and (25) we obtain

G(3) — j  j  u(t> x s (*)) 9(t, x) K(t, x) dSdt +  J  u(3, x ) g(0, x) q ( x )  dx +-
o a q Q — Q  a

(26) +  3 J  u (3 ,x )gr(0 ,x)dx+JJ  auuxi'gxj(g -d )  d x d t -
Q t  D s  i, J  = 1

f J  u ( t ,x4 (x))| 
a s  q L

dS# 
dS (x. (x)) y(t, a: 6 (x)) K(t, x a (x)) - gr(t, x) K(t, x) d<Sdt —

-JJ J T  (aijeXjy)Xiu d x d t+ JJ  by(g—3)dxdt +  J  u(T, x) y(T,x) (g(x) — 3)dx-
D j i, j  =  1 Ds Qe

— JJ  uyt(g—3) d x d t -  J  u(3, x) (e(x)—3) [y(3,x)-gr(0, x)] dx.
Da Qa

Let us denote the integrals on the right side of (26) respectively by 
J\, J2, J io- We have the following estimates

and

kil <  [  J J l«(t. * , (*))lp dSdt |  i f f  J  ]gK\*>-' dSdt
L 0 3 Q J L o SQ

W  <  f lu(5> ac)lp e(x) dx 1 P f jy(0, x)|p -J e(x) dx
Lq  J L Q -Q s

p-1

p-1
p

so condition I implies

lim J j =  lim J2 =  0.
S -*■ 0+ « -* 0+

Similarly from (4), Lemma 1 and uniform continuity of the func
tions K  and y  we get

lim J 3 =  lim J 5 =  lim J 10 =  0. 
a o+ & -* o+ s -+ o+

Continuity at 3 =  0 of J 6 follows from the integrability of u.
Applying assumption (C) and the result of Lemma 1 we can easily 

show that other integrals have the integrable m ajorants independent of 3 
and the integrands are continuous for almost all (t, x) e  D or x  e  Q re 
spectively, thus from the Monotone and Dominated Convergence Theo
rem s follows their continuity at 3 =  0. So we proved the continuity of 
G(3) on [0, So].

Now, the equality (22) is a simple consequence of Theorem 2.
Let us define the following norm in Lp (3 D)

Mi “ j  J  |/(t, x)|p K(t, x) dS d t+  J |/(0, x)|pg(x) dx
■ 3« e
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Since y~l ^  K(t, x ) ^ y  and y” 1 r(x) ^  £>(x) ^  yt r(x) it follows that the 
norm ||*||* is equivalent to  the norm j| • j|p in Lp(3 D). Thus Lemma 3 im
plies the following theorem.

THEOREM 3. Under the assumptions of Theorem  2 ub weakly con
verges in  Lp( 3) to the function <p, as d -> 0+, where <p is defined in Theo
rem  2.

3. Strong convergence. We begin with a theorem on I^-conver- 
gence.

For d e  (0, <50] we can extend the mapping x , : 3 Q -> 3 Qs on Q - Q ,  
in  such a way that for x e Q ~ Q } we have xs(x) =  x4(x'), where x ' e 3  Q 
and x '—x  — r) v(x') for some rj e  (0, 5]. Now we can define the mapping
.Xs : Q  —> by

x , for x e Q , ,
x6(x) = **(*)+ | - (*“ *«(*))» for * e Q - Q s.2

Thus x a(x) =  x  for each x  e  Qa and x4(x) =  x  4 (x) for each x e  3 Q. Mo-
d  ̂reover ^(x8) ^  — and y~* ^  |J 4(x)| ^  y8, where constant y2 is i n d e p e n -

dent of d and J ^  (x) is the Jacobian of the mapping xi(*)- 
Let us denote

t, for t e  [6, T],

| t + y 5 ,  for t e  [0, 5].t»(t) -  „ , — «« - i^ j.

LEMMA 4. Let h be a non-negative function in L ' jDj  —Daj. Then

(27) J J  ?i(td, x6) dxdt ^  max (2y2, 2) Jj h(t, x) dxdt
D —D s  D  g —Da

T
and if ii e  L!(D) then lim J J  h(ts, x'5) dxdt =  0.

5 “*■ 0+ D —Di

P r o o f .  By change of variables we get
t  s

J J h(td, x6) dxdt =  j J h(t, x5(x)) dxdt +  J J  h(ts, x*) dxdt +
D - D s  5 Q—Qtt 0 Q—Qi

6 T

+  J (" h(td(t), x) dxdt =  J J h(t, x) J~&{x) dxdt +
0 Qa 5 x 6(Q-Q«)

t  5 T

+  2 J J h(t, x) J - (̂x) dxdt +  2 J J h(t, x) dxdt ^  y2 J  J hdxdt +
A. XS(Q—Qd) 1  Q 4 5 Q $ ”~<̂ 5
2 2 —26 6 
+  2y2 J  J  h dxdt +  2 J J h dxdt ^  max (2y2, 2) Jj h dxdt.



Now the second part of the assertion is obvious by the well known pro
perty of integral.

THEOREM 4. Let u b e a  weak solution of (1) for p =  2, JJ uH? dxdt <
D

<  oo for some p <  1 and let one of conditions I or II hold for p =  2. Then 
there is a function <p belonging to Lp(3 D) such that

lim «a =  9? strong in L \dD ).
{-►0+

P r o o f .  As || • ft and || • |]J are equivalent it suffices to show that the
re is a (p e  L2(3 D) such that Mm =  0. By Theorem 3 there is

8 -*• 0+
a y e  L2f3 D) such that lim u4 =  cp weakly in L2. Since L^d D) is uni-

«-►0+
formly convex it suffices to show that lim ||uj* =  ||<p||‘.

3-*0+
Let us denote by < • ,  • >  the inner product L \  3D) with the norm 

Mia and
n n

v (9 )=  2  2  (ave.T,9)Xiu + h9 e - u9tQ- 
U * i  i, i -1

Ohserve that if u e  Wj^ p (D) then u(tJ, x4) e  VP-1 (D), thus, as in the 
proof of Lemma 3 (see [26]), we find that

(<p, g) =  JJ y.’(g)dxdt+  [ U(T, X )  g(T, x) q { x )  dx
D  Q

for any g e  CJ(D) and hence for any g e  1(D).
Taking g =  u(t}, x8) we obtain

(28) {<p, u(td, x8)) =  J J  yj(u{t, x)) dxdt 4 J  u2(T, x) g(x) d x+
D a Qa

+  JJ  yj(u(t5, x6(x))) dxdt + j u(T, x) u(T, x5(x)) q ( x )  dx
D —D  a Q —Qa

as x6(x) =  x and t6(t) — t for x e  Q6 and t e  [<5, T}.
We show that

(29) lim f f x6)) dxdt — 0
5 - * 0+ D - D i

(30) lim j U(T, x) u(T, xs(x)) g(x) dx =  0
5 ~> 0 +  Q - Q s

and
dx] =  lim (||uj*)2.

J a-*o+

From Theorem 3 we have that

(!MIJ)2 =  lim (<P, u ( t \ x 5))
S-+0+
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because x®(x) =  x s (x) on 3 Q and t4(0) =  — d, so from (28)—(31) it follows
— Z
2

tha t lim ||ua(|| =  ||9 ? | as required.
4  - »  0 +

To prove (29)—(31) set

» « ,* > = { “ “ ■ 

in equation (2) and thus we obtain

x ) ( e _ <5). for ( t ,x ) e D s,
for ( t , x ) e D —Ds

(32> JJ  2  a«uxiux)(e” d>+  2  ai}uxiuexi+ b u ( e ~ d) +
Ds Li, j  “ 1 l , j  = l

+  UtU(Q— 5) I dxdt =  0.

Condition II and equality

imply

lim /J 2  awu^u^te-djdxdt =  JJ J ?  oyu^u^edxdt
s -* 0+ Ds i, j = 1 D i, ) -  1

It
lim d J J  JT  aljux uxj dxdt =  0.

s-«-o+ Ds i, j = 1
Similarly using (11), Holder’s inequality we obtain tha t

lim § f f bu dxdt =  0.
«-*<>+ JDJS

From the assumption of the theorem and (11) we get 

d JJ uut dxdt ^  d [J u2 dxdt +  6 ("J u2t dxdt
Dj

thus

r>6 Da

: d J J  u2 axdt + d1-
D  Da

IS
tPu2 dxdt

lim 6 C C uut dxdt — 0.
a-*o+ Ds

Hence and from (32) we have

lim [ f  f y>(u) dxd t+  f u2(T, x) q(x ) dx l =« -° +L o. Qj J
n  n

JJ  "  H  a«UT, ue * r  y  (alj6xu)x u - 2 u u t(Q-d)lim
s-*o+ Ds 1, )  =  1 i. j  =  1

dxdt +

+  J  uz(T, x) (e(x) —<3) dx =  lim
D 4. j  =  1
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=  lim (||u j|i)2
S->-0+

-  J J ( u2)t ( e —d) d xd t +  |  u 2(T, x)  ( e ( x ) - S )  d x |  =
Da Qa J

=  lim | f  f u2(t, x) K(t, x) dSdt +  f uz(d, x) (e(x)—d )d x l =
* - ° + l j  5Q4 Qa J

=  lim I f  f u2(t, x d (x)) K(t, x )dS d t +  f u2(d, x) £(x) dx +
Lo 8Q Q

T
+  f f u2(t, x fi(x)) [K(t, x,,(x))—K(t, x)] d x d t— f u2(d, x) g(x) dx —

5 3 Q Q-Qa
a

— d J  uz(6, x ) d x — J  J u2(t, x4 (x)) K(t, x) dSdt
Qa 0 3 Q

because the four last term s tend to zero as <5-»-0+. So we proved (31). 
It follows from assumptions (B) and (C) that

(33) | |  y(u(t8, x 6)) dxdt < C 16 | |  [|wx||ux(t8, x i )|e +  |u ||u (ta, x s)| +
D—Da D—Da

+ \u\ \ux{tb, x ’JI +  Zlu^, X5)! e +  H  |li(t4, X5)| e +  |tt*l \u(t\ X5)| Q +
-f ju| |ut(ts, xA)| g] dxdt

for some positive constant C16 independent of S. Let us denote the inte
grals on right respectively by Pi, P 2, P 7.

Since g(x*(x)) ^  g(x) for x  e  Q we have

P f ( d ) ^  JJ u |g d x d t | |  u 2 (ts, Xs) q(x 6) dxdt
D —D a yv, M  D - D a

thus from condition II and Lemma 4 we get tha t lim P i(d) =0.
a-*o+

Condition (11) implies u e L 2(D) thus quite similarly as above we 
obtain that lim P 2 (<S) =  0 and since P 5(6 ) ^  sup g(x) P 2(<3), lim P 5(S) =  0, 
tQO «->o+ x s q  a-*o+

We have the following estimation
T  i

| |  u2 dxdt =  |  j  u2 dxdt +  |  |  u 2 dxdt =
D - D  a 0 Q - Q a  0 Qa

t  a a
=  |  dt J ds J u 2(t, x) dSdt +  |  d t |  u2(t, x) dx ^

0 0 3 Q , 0 Qa

(34) J , , ^
^  b sup |  | u2(t, x) dSdt +  d sup |  u^ t, x) dx ^

s e ( o , a ] i 34 s t e ( o ,a iQJ4

I d j sup f T u2(t, x) dSdt +  sup |  u2(t, x) dx 
ĵ s e (o, a] q 3 t e (0, a) q(

by Theorem 2 and conditions (3) and (21) of Lemma 1.
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jP3(3) <  JJ Inx{ t\ X5)! eT (x*(x)) j / 2 dxdt

thus by Holder’s inequality we get

P * ( d JJ u2 ft6, x4) g(xa(x)) dxdt y  JJ u2(t, x) dxdt
D —Dd D —Da

so lim P 3(6) =  0 by (34) and Lemma 4. Using Holder’s inequality we 
»-*o+ 

have

Since g(x5(x)) >  y  we have

p 2 (d )<  JJ  S ^ dxdt J J  f 2e S d x d t
D - D ,  '  D - D i

thus lim Pi{d) = 0 by assumption (C), and Lemma 4.
5 -*0+

In the same way we get

P | (3) ^  JJ gu*dxdt JJ u2(ts,x*) dxdt sup £>(x)
D —D a D —Da r  £  Q

thus lim Pe(<5) =  0 by Lemma 4 and condition II.
6 -► 0+

Since ta ^  — we get

JJ  |ut(ta, x5)| (t5) 2 |u| dxdt sup e(x)| | j - j  <

\ 2 / 2 \— 
sup e(x)J JJ u*(t'\ x 5) (t'Y  dxdt I — j 2 J j u2dxdt
i  e q /  D- Di \  1 d -D s

and hence lim P 7(6) =  0 by Lemma 4, assumption of this theorem and
s-»o+

condition (34), as 1 — ~~ >  0. Thus we proved the condition (29).

Condition (30) follows from the estimation

f u(T, x) u(T, x6(x)) o(x) dx ^
L 6-Qa

I sup e(x) J J u2(T, x) dx-y2 J u2(T, x) dx
\ x  G Q I  Q_ Qj Q - Q t

and the fact that u(T, •) e  L2(Q). This completes the proof of Theorem 4. 
In the case p >  2 we begin w ith the following result.
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LEMMA 5. Let u be a weak solution of (1) satisfying one of condi
tions I or II for a fixed p >  2 and j j  u \ (|u|p~2+ l)^ d a :d t  <  oo for some

D
(I <  1. Then u6 converges to <p in L<*(3 D) for each q, where 0 <  q <C p. 
The function (p is defined in Theorem  2.

P r o o f .  F irst we note that u i converges weakly to <p in J>(3 D) 
by Theorem 2. We shall show tha t u} converges to <p in L2(3 D).

Let a(0) =  0 for p ^ 9 <  p, a(0) =  - — — P for -jr <= 0  <  2p —1p ^

and %(0) — — 0 —a(0). For 0  and % such tha t p : 0  <  2p —1 and 2

■ % <  3 we have

J J / V d * d t <
D  L D

pa

dxdt
_  pa

J j g  p~2 dxdt
D F<  oo

by assumption (C) as p —2 <  1.

Since p (D) d  Wfc* 2 (D), u is a weak solution of (1) for p =  2. 
By Lemma 2, condition II is fulfilied w ith p =  2. Thus we can use the 
result of Theorem 4. Hence us converges to  some function (p in LHd D)
so cp — <p a.e.

For measurable sets A d d  D and s satisfying 4- + q _ 1 we have

J |u4 -  9>|<3 <  |A\s J  |u4 -  <p\*> J Kl*

; iais №

Thus ub — (p is equi-absolutely integrable and bounded in  L<3(3 D) so i t  
is compact for b such that 0 <  b ^  <50. Now for any sequence bk -> 0 
there is a subsequence b£ ->0+ w ith u4i -<p-+ 0 a.e. and the result 
follows.

To prove LP-convergence we shall need the following theorem on 
Nemytsky Operators (see [10], p. 155).

THEOREM. I f f(t, x , u), defined on 3 D X R, satisfies Caratheodory 
conditions, conditions (i) and (ii) of assumption (C) and

|/(t, x, u)| <  g(t, x)+K|u |*,

where g e  I/f(3 D), 1 ^  s, t <  oo and K  is a positive constant, then f  gene
rates a continuous operator from  L*(3 D) into L‘(3 D) given by the for
mula , . . , . , ..

h : u ( . ,  ') - + f ( ' ,  • ,«(•,  •))•

This operator is called the N em ytsky Operator.
We now establish the following Lp-convergence theorem.
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THEOREM 5. Let u be a weak solution of (1) satisfying one of condi
tions I or II for fixed  p >  2, J J  (u2(]u|p-2+1) t^dxdt for some /? <  1, then

D
ug converges to the function q> in Lp(3 D).

P r o o f .  Let us denote by ud the trace of the composition u(t\t),
xa(x)) on 3 D. It is clear that ud =  us_ for d e  (0,d0].

2

We begin w ith the following
REMARK. If ud is bounded in  Lp(3 D) and us—>tp in L<J(3 D) for

V
g <  p then u 6|u 6|p ~ 2 <p\(p\p-i weakly in (3 D). This means that the 
mapping given by the formula

f(t, x , ub) =  u6|u6|p-2 

p-i
is continuous from L<3(3 D) to L 9 (3 D) by Theorem on Nemytsky Ope
rators.

Hence ua|ua|p~2 -> <p\cp\v~2 as <5->0+

- g qin L  p_1 (3 D), where we take —-—- >■ 1. Also u s\u &\p ~z is bounded in \ p _ j

p
L  p-i (0 D) and so it is weakly compact and the result follows.

The rest of the proof is similar to that of Theorem 4. For every 
g 6 W 1’1 (D) we getp

p - i

J J  g K  dSdt +  J 93(0 , x) g(0, x) q(x ) dx
0 a q

=  JJ  rp{g) dxdt +  J u(T, x) g(T, x )  q ( x )  dx
D  Q

since u6 -> <p as d 0+ weakly in L p(3 D) (see the proof of Lemma 3).
Set g =  u(ts, xP) \u(td, x^Ip-2 in the above equality and noting that

p_
u (t\ x 5) =  u on Ds and ua|ua|p-2 -> ^^Ip-2 weakly in Lp-1 (3 D) we 
obtain

(IMIp)p =  lim
d -+■ 0+

+

J J <p u,,|u'1p“2 K dSdt +
0 2 Q

J J  yj{u\u\p~2) dxdt +
D t

f 93(0 , x) tta(0 , x) |tia(0 , x)|p- 2  {>(x) dx =  lim
«3 a~*0+

/OC\ "1
+  f |u(T, x)|p g(x) dx +  lim f f yj{u(t\x' ) |u(ta, xa)|p~2) dxdt -

L  J  f i - ° + L D - D a

+  J u(T, x) u(T, xa(x)) |u(T, xa(x))|p-2 g(x) dx.
Q—Qi



Setting , , .
u |u |p -2 (e-S ), for ( t , x ) e D a,
0, for ( t , x ) e D —D

v  —

in (2) we obtain t

!!  2  aijux,(ululp-a)xjte“ a)dxdt+ JJ £  auuI u|u|p-2exdxdt+
D, i, j  “  1 Dt l , j - I

!+ JJ bu|u|p-2 (g—d) dxdt + JJ utu|u[p-a (g— d) dxdt =  0.
D a  D t

As in the proof of Theorem 4 it is obvious that

8

thus

im 5 | | |  aiiuI  (u|u|p-2)^+ b u Iu |p -2+ n tu|u[p-J | dxdt +
- 0+ d. Lt. i = 1 ‘ J

+  8 |  |u(T, x ) |p  dx =  0
Q>

lim f f V (u|u|p~2) d x d t+  f |u(T, x ) |p  g(x) dx I =
» - » + Ld; I  J

=  lim — JJ j ?  (an gX)u|u|p)x d x d t -  JJ (|u|p)t(g -d ) dxdt-f
*-»0+ L Dj i, j = 1 Dt

1+  f |u(T, x)|p (g(x) d) dx 1 =  lim I f f |u|p K  dSdt+
i  J 4 ->0+ L»

+  f |u (d ,x )|p (g (x )-3 )dx  =  lim (||usP )p .
Qj 4 -»• 0+

Thus, it suffices to show th a t second component on the right of (36) 
tends to zero as d -> 0+. I t is easily seen tha t this integrand can be esti
mated by

K  (l« * l |w i(d ) | |u ( 5 ) |P - 2 g + | u |  Im^ ^ Ip - J  +  Iu I |u x(5 )| |u .(d)|p _ 2 +  

+ /|u (d ) |P -1g + |u |  |u(6)|p-i q + \ u x \ |u(6)|*-i q+\u\  |u t(«)| |u(d)|p- 2,

w here K  is a suitable constant and we denote u(d) =  u(ts, X s).

Estimation of the  integrals of the first, second, fourth, fifth and 
sixth term s is similar to the previous calculations (see the proof of Theo
rem  4).

We have the following inequality

abcP-2 ^  const (ap +  b2cp~2+  cp)

for each positive a, b, c and p >  2.
Set a =  |u|, b =  |ux(3)| or b =  jut(6)| and c =  |u{d)|. Now we can esti

m ate the th ird  and seventh term s analogously as in the proof of Theo
rem  4. This completes the proof of Theorem 5.
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