MALGORZATA ROZMUS-CHMURA

REGULAR SOLUTIONS OF SOME FUNCTIONAL EQUATIONS IN THE INDETERMINATE CASE

Abstract. The paper deals with the existence and uniqueness of regular solutions of the equation $\varphi(x)=h(x, \varphi(f(x)))$. Also in the indeterminate case the existence of solutions of $\varphi(f(x))=g(x, \varphi(x))$ is studied.

In the present paper we shall consider the following functional equations

$$
\begin{align*}
& \varphi(x)=h(x, \varphi[f(x)]), \tag{1}\\
& \varphi[f(x)]=g[x, \varphi(x)]
\end{align*}
$$

where $\varphi: I=\{0, a) \rightarrow R, 0<a \leqslant \infty$ is an unknown function.
The phrase regular solution used in the title will have the following meaning: "a solution which is continuous in the whole interval I and possesses a right-side derivative at the point zero".

The problem of regular solutions of linear functional equations is contained in [1] and [2]. The theory of continuous solutions of equations (1) and (2) has been developed in [4], [5], [6], [7], [8].
§ 1. Let I be an interval $[0, a), 0<a \leqslant \infty$ and let Ω be a neighbourhood of $(0,0) \in R^{2}$. Assume that the given functions f, g and h fulfil the following conditions.
(i) The function $f: I \rightarrow R$ is continuous, strictly increasing, there exists $f^{\prime}(0+) \neq 0$ and $0<f(x)<x$ in $I \backslash\{0\}$.
(ii) The function $h: \Omega \rightarrow R$ is continuous, there exist $c>0, d>0$ and a continuous fuction $\gamma:[0, c) \subset I \rightarrow R$ such that

$$
\begin{equation*}
\left|h\left(x, y_{1}\right)-h\left(x, y_{2}\right)\right| \leqslant \gamma(x)\left|y_{1}-y_{2}\right| \text { in } U \cap \Omega \tag{3}
\end{equation*}
$$

where $U: 0 \leqslant x<c,|y|<d$. Moreover, there exist A and B such that

AMS (MOS) subject classification (1980). Primary 39B20.

$$
\begin{equation*}
h(x, y)=A x+B y+R(x, y), \tag{4}
\end{equation*}
$$

where

$$
\begin{equation*}
R(x, y)=o\left(\sqrt{x^{2}+y^{2}}\right),(x, y) \rightarrow(0,0) \tag{5}
\end{equation*}
$$

For every $x \in I$ we denote

$$
\begin{equation*}
\Omega_{x}:=\{y:(x, y) \in \Omega\} \tag{6}
\end{equation*}
$$

and

$$
\Lambda_{x}:=\left\{h(x, y): y \in \Omega_{x}\right\} .
$$

(iii) For every $x \in I, \Omega_{x}$ is an open interval and $\Lambda_{f(x)}=\Omega_{x}$.
(iv) The function $g: \Omega \rightarrow R$ is continuous for every $x \in I$. For every fixed $x \in I$ the function g as a function of y is invertible. There exist. $c>0, d>0$ and a continuous function $\gamma:[0, c) \subset I \rightarrow R$ such that

$$
\begin{equation*}
\left|g\left(x, y_{1}\right)-g\left(x, y_{2}\right)\right| \leqslant \gamma(x)\left|y_{1}-y_{2}\right| \text { in } U \cap \Omega, \tag{7}
\end{equation*}
$$

where $U: 0 \leqslant x<c,|y|<d$ and γ has a positive bound in $[0, c)$. Moreover, there exist A and $B \neq 0$ such that

$$
\begin{equation*}
g(x, y)=A x+B y+R(x, y) \tag{8}
\end{equation*}
$$

where

$$
R(x, y)=o\left(\sqrt{x^{2}+y^{2}}\right),(x, y) \rightarrow(0,0)
$$

For every $x \in I$ we denote

$$
V_{x}:=\left\{g(x, y): y \in \Omega_{x}\right\}
$$

where Ω_{x} is given by (6).
(v) For every $x \in I, \Omega_{x}$ is an open interval and $V_{x}=\Omega_{f(x)}$.

The indeterminate case

$$
\begin{equation*}
f^{\prime}(0) \gamma(0)=1 \tag{9}
\end{equation*}
$$

for equation (1) and

$$
\begin{equation*}
\frac{f^{\prime}(0)}{\gamma(0)}=1 \tag{10}
\end{equation*}
$$

for equation (2) will be considered in this paper.
§ 2. Let us consider equation (1) and let $\varphi(x)=x \psi(x)$. Then equation (1) is of the form

$$
\begin{equation*}
\psi(x)=H(x, \varphi[f(x)]), \tag{11}
\end{equation*}
$$

where

$$
H(x, z):= \begin{cases}\frac{1}{x} h(x, f(x) z), & \text { for } x \neq 0 \tag{12}\\ A+B f^{\prime}(0) z & \text { for } x=0\end{cases}
$$

is defined in the set

$$
\Omega^{1}=\{(x, z):(x, f(x) z) \in \Omega\}
$$

For an arbitrary $x \in I$ we denote

$$
\Omega_{x}^{1}:=\left\{z:(x, z) \in \Omega^{1}\right\}
$$

and

$$
\Lambda_{x}^{1}:=\left\{H(x, z): z \in \Omega_{x}^{1}\right\} .
$$

LEMMA 1. Assume hypotheses (i), (ii), (iii) and condition (9). Then the function H given by the formula (12) fulfils the following conditions:
(a) H is continuous in a neighbourhood of the point $(0, \eta)$, where η is arbitrary constant.
(b) For every η, there exist a $\delta \in(0, c]$ and $a d_{1}>0$ such that

$$
\begin{equation*}
\left|H\left(x, z_{1}\right)-H\left(x, z_{2}\right)\right| \leqslant \gamma_{1}(x)\left|z_{1}-z_{2}\right| \text { for } x \in[0, \delta),|z-\eta|<d_{1}, \tag{13}
\end{equation*}
$$

where

$$
\gamma_{1}(x)= \begin{cases}\frac{f(x)}{x} \gamma(x), & \text { for } x \in(0, \delta) \tag{14}\\ 1, & \text { for } x=0\end{cases}
$$

is a continuous function.
(c) For every $x \in I, \Omega_{x}^{1}$ is an open interval and $\Lambda_{f(x)}^{1} \subset \Omega_{x}^{1}$.

Proof. Ad (a). It suffices to show, that the function H is continuous at the point $(0, \eta)$. We have

$$
\lim _{\substack{x \rightarrow 0+\\ z \rightarrow \eta}} H(x, z)=\lim _{\substack{x \rightarrow 0^{+} \\ z \rightarrow \eta}} \frac{1}{x} h[x, f(x) z]=\lim _{\substack{x \rightarrow 0+\\ z \rightarrow \eta}}\left[A+B \frac{f(x)}{x} z+\frac{1}{x} R(x, f(x) z)\right] .
$$

From (5) we obtain

$$
\lim _{\substack{x \rightarrow 0^{+} \\ z \rightarrow \eta}} \frac{R(x, f(x) z)}{\sqrt{x^{2}+[f(x) z]^{2}}}=0
$$

whereas (i) implies

$$
\left|\frac{R(x, f(x) z)}{\sqrt{x^{2}+[f(x) z]^{2}}}\right| \geqslant\left|\frac{R(x, f(x) z)}{x \sqrt{1+z^{2}}}\right|
$$

Therefore,

$$
\lim _{\substack{x \rightarrow 0^{+} \\ z \rightarrow \eta}} H(x, z)=A+B f^{\prime}(0) \eta=H(0, \eta),
$$

which finishes our proof in case (a).
Ad (b). The function f is continuous and $f(0)=0$; thus there exist a $\delta \in(0, c]$ and a $d_{1}>0$ such that for every $x \in(0, \delta)$ and $|z-\eta|<d_{1}$ the inequality $|f(x) z|<d$ holds. Therefore, the inequality

$$
\begin{gathered}
\left|H\left(x, z_{1}\right)-H\left(x, z_{2}\right)\right|=\left|\frac{1}{x}\left[h\left(x, f(x) z_{1}\right)-h\left(x, f(x) z_{2}\right)\right]\right| \leqslant \\
\leqslant \frac{f(x)}{x} \gamma(x)\left|z_{1}-z_{2}\right| \text { for } x \neq 0
\end{gathered}
$$

holds and

$$
\left|H\left(0, z_{1}\right)-H\left(0, z_{2}\right)\right|=|B| f^{\prime}(0)\left|z_{1}-z_{2}\right| .
$$

From (3) we have

$$
|B|=\left|h_{y}(0,0)\right| \leqslant \gamma(0) .
$$

Consequently,

$$
|B| f^{\prime}(0) \leqslant \gamma(0) f^{\prime}(0)=1 .
$$

Condition (13) is fulfilled with the function γ_{1} given by formula (14). We have also

$$
\lim _{x \rightarrow 0} \frac{f(x)}{x} \gamma(x)=f^{\prime}(0) \gamma(0)=1 .
$$

This implies that γ_{1} is continuous in $[0, c)$.
Ad (c). We may assume that Ω is of the form

$$
\Omega:\left\{\begin{array}{l}
0 \leqslant x<a \\
a_{1}(x)<y<a_{2}(x),
\end{array}\right.
$$

where $a_{1}(x)<0$ and $a_{2}(x)>0$ for $x \in[0, a)$. It is easily seen that

$$
\Omega^{1}:\left\{\begin{array}{l}
0 \leqslant x<a \\
\frac{a_{1}(x)}{f(x)}<z<\frac{a_{2}(x)}{f(x)} \text { for } x \neq 0 \\
z \text { is arbitrary for } x=0 .
\end{array}\right.
$$

In particular, we have $\Omega_{0}^{1}=(-\infty,+\infty)$ whence $\Lambda_{f(0)}^{1} \subset \Omega_{0}^{1}$. For $x \neq 0$ we have

$$
\begin{gathered}
\Lambda_{f(x)}^{1}=\left\{v: v=H[f(x), z], z \in \Omega_{f(x)}^{1}\right\}= \\
=\left\{v: v=\frac{1}{f(x)} h[f(x), f(x) z], z \in\left(\frac{a_{1}[f(x)]}{f^{2}(x)}, \frac{\alpha_{2}[f(x]}{f^{2}(x)}\right)\right\}= \\
\equiv\left\{v: f(x) v=h[f(x), y], y \in\left(\alpha_{1}[f(x)], a_{2}[f(x)]\right)=\Omega_{f(x)}\right\} .
\end{gathered}
$$

From (iii) we obtain

$$
\Lambda_{f(x)}=\left\{h[f(x), y]: y \in \Omega_{f(x)}\right\} \subset \Omega_{x}
$$

whence

$$
\frac{a_{1}(x)}{f(x)}<v<\frac{a_{2}(x)}{f(x)} .
$$

Therefore

$$
\Lambda_{f(x)}^{1} \subset\left(\frac{a_{1}(x)}{f(x)}, \frac{a_{2}(x)}{f(x)}\right)=\Omega_{x}^{1} .
$$

The proof of Lemma 1 is complete.
From Lemma 1 and condition (11) we obtain.
LEMMA 2. We assume (i), (ii), (iii)). If ψ is a continuous solution of equation (11) in I, then $\varphi(x)=x \psi(x)$ is a regular solution of equation (1)
in I and such that $\varphi(0)=0$. If φ is a regular solution of equation (1) in I and such that $\varphi(0)=0$ and $\varphi^{\prime}(0)=\eta$, then the function

$$
\psi(x)= \begin{cases}\frac{\varphi(x)}{x} & \text { for } x \neq 0 \\ \varphi^{\prime}(0) & \text { for } x=0\end{cases}
$$

yields a continuous solution of equation (11) in I such that $\psi(0)=\eta$.
The uniqueness of regular solutions depends essentially on the behaviour of the sequence

$$
\begin{equation*}
\Gamma_{n}(x):=\prod_{i=0}^{n-1} \gamma_{1}\left[f^{f}(x)\right], \tag{15}
\end{equation*}
$$

where γ_{1} is defined by (14).
THEOREM 1. We assume (i), (ii) (iii) and (9). Let η be an arbitrary constant. If there exist an $M>0$ and $a \delta_{1} \in(0, \delta]$ (where δ is the constant from Lemma 1) such that

$$
\Gamma_{n}(x) \leqslant M, n=0,1, \ldots \text { for } x \in\left[0, \delta_{1}\right)
$$

then equation (1) has at most one regular solution in I fulfilling conditions $\varphi(0)=0, \varphi^{\prime}(0)=\eta$.

Proof. From our hypotheses and from Lemma 1 it follows that the assumptions of Theorem 1 from [4] are fulfilled. Thus equation (11) has at most one continuous solution in I fulfilling the condition $\psi(0)=\eta$. Now, our assertion results from Lemma 2.

REMARK 1. If equation (11) has a continuous solution, then

$$
\begin{equation*}
H(0, \eta)=\eta . \tag{16}
\end{equation*}
$$

The definition of function H implies that equation (16) assumes the form

$$
A+B f^{\prime}(0) \eta=\eta .
$$

Let

$$
\mathcal{H}(x):=|H(x, \eta)-\eta|= \begin{cases}\left\lvert\, \frac{1}{x} h[x, f(x) \eta]-\eta\right. & \text { for } x \neq 0 \tag{17}\\ 0 & \text { for } x=0\end{cases}
$$

THEOREM 2. We assume (i), (ii), (iii) and condition (9). If (for a fixed η fulfilling equation (16)) there exists a $\delta_{2}>0$ such that

$$
\begin{equation*}
\sum_{n=0}^{\infty} \Gamma_{n}(x) \mathcal{H}\left[f^{n}(x)\right] \tag{18}
\end{equation*}
$$

is uniformly convergent in $\left[0, \delta_{2}\right)$ then equation (1) has a regular solution in I fulfilling conditions $\varphi(0)=0, \varphi^{\prime}(0)=\eta$.

Proof. From the hypotheses of our theorem and from Lemma 1 it follows that the assumptions of Theorem 3 from [4] concerning equa-
tion (11) are satisfied. Consequently, equation (11) possesses a continuous solution in I fulfilling the condition $\psi(0)=\eta$. Now, our assertion results from Lemma 2.
§ 3. If we put $\varphi(x)=x \psi(x)$ in equation (2), then we come to

$$
\begin{equation*}
\psi[f(x)]=K[x, \psi(x)], \tag{19}
\end{equation*}
$$

where the function

$$
K(x, z)=\left\{\begin{array}{l}
\frac{1}{f(x)} g(x, x z) \text { for } x \neq 0 \tag{20}\\
\frac{A}{f^{\prime}(0)}+\frac{B}{f^{\prime}(0)} z \text { for } x=0
\end{array}\right.
$$

is defined in the region

$$
\Omega^{2}=\{(x, z):(x, x z) \in \Omega\}
$$

For any fixed $x \in I$ we put

$$
\Omega_{x}^{2}=\left\{y:(x, y) \in \Omega^{2}\right\}
$$

and

$$
V_{x}^{2}=\left\{K(x, z): z \in \Omega_{x}^{2}\right\} .
$$

LEMMA 3. Suppose that assumptions (i), (iv), (v) and condition (10) are satisfied. Then the function $K(x, z)$ fulfils the following conditions:
(a) $K(x, z)$ is continuous in a neighbourhood of each point $(0, \eta)$, where η is an arbitrary constant.
(b) For every real η there exist constants $\delta \in(0, \mathrm{c}]$ and $d_{1}>0$ such that

$$
\begin{equation*}
\left|K\left(x, z_{1}\right)-K\left(x, z_{2}\right)\right| \leqslant \gamma_{1}(x)\left|z_{1}-z_{2}\right| \text { for } 0 \leqslant x<\delta,|z-\eta|<d_{1} \text {, } \tag{21}
\end{equation*}
$$

where

$$
\gamma_{1}(x)=\left\{\begin{array}{lc}
\frac{x}{f(x)} \gamma(x) & \text { for } x \in(0, \delta) \tag{22}\\
1 & \text { for } x=0
\end{array}\right.
$$

is a continuous function.
(c) For every $x \in I$ the set Ω_{x}^{2} is an open interval and $V_{x}^{2}=\Omega_{f(x)}^{2}$.
(d) For any fixed $x \in I$ the function $K(x, z)$ is invertible with respect to z.

Proof. Ad (a). In order to prove that $K(x, z)$ is continuous it suffices to show its continuity at a point ($0, \eta$);

$$
\begin{gathered}
\lim _{\substack{x \rightarrow 0^{+} \\
z \rightarrow \eta}} K(x, z)=\lim _{\substack{x \rightarrow 0^{+} \\
z \rightarrow \eta}} \frac{1}{f(x)} g(x, x z)= \\
=\lim _{\substack{x \rightarrow 0^{+} \\
z \rightarrow \eta^{+}}}\left[A \frac{x}{f(x)}+B \frac{x}{f(x)} z+\frac{1}{f(x)} R(x, x z)\right] .
\end{gathered}
$$

Hypothesis (8) implies

$$
\lim _{\substack{x \rightarrow 0^{++} \\ z \rightarrow \eta}} \frac{R(x, x z)}{x \sqrt{1+z^{2}}}=0
$$

whence

$$
\lim _{\substack{x \rightarrow 0^{+} \\ z \rightarrow \eta}} \frac{1}{f(x)} R(x, x z)=\lim _{\substack{x \rightarrow 0^{+} \\ z \rightarrow \eta^{+}}} \frac{R(x, x z)}{x} \cdot \frac{x}{f(x)}=0 .
$$

Consequently

$$
\lim _{\substack{x \rightarrow 0+\\ z \rightarrow \eta}} K(x, z)=\frac{A}{f^{\prime}(0)}+\frac{B}{f^{\prime}(0)} \eta=K(0, \eta),
$$

which finishes the proof of (a).
Ad (b). Evidently, for every real η one can find a $\delta \in(0, c]$ and a positive d_{1} such that the inequality $|x z|<d$ is satisfied whenever $x \in(0, \delta)$ and $|z-\eta|<d_{1}$. Applying condition (7) we get
$\left\lvert\, K\left(x, z_{1}\right)-K\left(x, \left.z_{2}\left|=\left|\frac{1}{f(x)}\left[g\left(x, x z_{1}\right)-g\left(x, x z_{2}\right)\right]\right| \leqslant \frac{x}{f(x)} \gamma(x)\right| z_{1}-z_{2} \right\rvert\,\right.$ for $x \neq 0$. \right.
For $x=0$ we have

$$
\left|K\left(0, z_{1}\right)-K\left(0, z_{2}\right)\right|=\frac{|B|}{f^{\prime}(0)}\left|z_{1}-z_{2}\right| .
$$

Condition (7) implies also that

$$
|B|=\left|g_{y}(0,0)\right| \leqslant \gamma(0) .
$$

Since $0<f(x)<x$, we have $f^{\prime}(0)=\lim _{x \rightarrow 0} \frac{f(x)}{x}>0$, because $f^{\prime}(0) \neq 0$ by assumption. Consequently, on account of (10) we have

$$
\frac{|B|}{f^{\prime}(0)} \leqslant \frac{\gamma(0)}{f^{\prime}(0)}=1 .
$$

This proves that condition (21) is satisfied with $\gamma_{1}(x)$ defined by (22). Since

$$
\lim _{x \rightarrow 0+} \frac{x}{f(x)} \gamma(x)=\frac{\gamma(0)}{f^{\prime}(0)}=1
$$

the function $\gamma_{1}(x)$ is continuous in $[0, \delta)$ which completes the proof of condition (b).

Ad (c). We may assume that the domain Ω has the form

$$
\Omega:\left\{\begin{array}{l}
0 \leqslant x<a \\
\alpha_{1}(x)<y<\alpha_{2}(x),
\end{array}\right.
$$

where $a_{1}(x)<0$ and $a_{2}(x)>0$. It is easy to check that, in such a case, the region Ω^{2} is of the form

$$
\Omega^{2}:\left\{\begin{array}{l}
0 \leqslant x<a \\
\frac{a_{1}(x)}{x}<z<\frac{a_{2}(x)}{x} \\
z \text { is arbitrary }
\end{array} \quad \text { for } x \neq 0\right.
$$

Since $f(0)=0$ we have $\Omega_{f(0)}^{2}=\Omega_{0}^{2}=(-\infty, \infty)$. On the other hand

$$
K(0, z)=\frac{A}{f^{\prime}(0)}+\frac{B}{f^{\prime}(0)} z, \text { whence } V_{0}^{2}=(-\infty, \infty)
$$

i.e. $V_{0}^{2}=\Omega_{f(0)}^{2}$. For $x \neq 0$ we have

$$
\begin{aligned}
V_{x}^{2}=\{v: v & \left.=\frac{1}{f(x)} g(x, x z), z \in\left(\frac{a_{1}(x)}{x}, \frac{a_{2}(x)}{x}\right)\right\}= \\
= & \left\{v: f(x) v=g(x, y), y \in \Omega_{x}\right\}
\end{aligned}
$$

Assumption (v) implies

$$
\left\{f(x) v: f(x) v=g(x, y), y \in \Omega_{x}\right\}=\left(\alpha_{1}[f(x)], \alpha_{2}[f(x)]\right)
$$

whence

$$
V_{x}^{2}=\left(\frac{\alpha_{1}[f(x]}{f(x)}, \frac{a_{2}[f(x)]}{f(x)}\right)=\Omega_{f(x)}^{2},
$$

which proves our assertion (c).
Ad (d). Since $K(0, z)=\frac{A}{f^{\prime}(0)}+\frac{B}{f^{\prime}(0)} z$ and $B \neq 0$ by assumption, function $K(0, z)$ is invertible. For $x \neq 0$ the function $K(x, z)$ is a one-to--one mapping with respect to z because $g(x, y)$ is invertible as a function of the second variable (with an arbitrarily fixed $x \in I$). This proves (d).

The following lemma is a simple consequence of equation (19) and Lemma 3.

LEMMA 4. Assume (i), (iv) and (v). If ψ is a continuous solution of equation (19) then the function $\varphi(x)=x \psi(x)$ is a regular solution of equation (2) fulfilling the condition $\varphi(0)=0$. If φ is a regular solution of equation (2) in I such that $\varphi(0)=0$ and $\varphi^{\prime}(0)=\eta$, then the function

$$
\psi(x)=\left\{\begin{array}{l}
\frac{\varphi(x)}{x} \text { for } x \neq 0 \\
\varphi^{\prime}(0) \text { for } x=0
\end{array}\right.
$$

is a continuous solution of (19) fulfilling the condition $\psi(0)=\eta$.
Let $\Gamma_{n}(x)$ be defined by formula (13) where $\gamma_{1}(x)$ is given by (22).
THEOREM 3. Assume (i), (iv), (v) and condition (10). Moreover, suppose that there exists an interval $J \subset I$ such that $\Gamma_{n}(x)$ tends to zero uniformly on J. Then a regular solution of equation (2) fulfilling the conditions $\varphi(0)=0$ and $\varphi^{\prime}(0)=\eta$, depends on an arbitrary function.

Proof. On account of our assumptions and by means of Lemma 3 we infer that the assumptions of Theorem 6 from [4] concerning equa-
tion (19) are satistied. Thus a continuous solution ψ of (19) fulfilling the condition $\psi(0)=\eta$ (if such a solution exists) depends on an arbitrary function. Now, Lemma 4 completes our proof.

Condition

$$
\begin{equation*}
K(0, \eta)=\eta \tag{23}
\end{equation*}
$$

is necessary for equation (19) to have a continuous solution with $\psi(0)=$ η.

REMARK 2. The definition of $K(x, z)$ implies that equation (23) has the form

$$
\frac{A}{f^{\prime}(0)}+\frac{B}{f^{\prime}(0)} \eta=\eta .
$$

Put

$$
K(x):=|K(x, \eta)-\eta|= \begin{cases}\left|\frac{1}{f(x)} g(x, x \eta)-\eta\right| \begin{array}{l}
\text { for } x \neq 0 \\
\text { for } x=0 \tag{24}
\end{array}\end{cases}
$$

where η is a solution of (23) and

$$
\begin{equation*}
H_{m}(x):=\sum_{i=0}^{n-2} \frac{\mathcal{K}\left[f^{4}(x)\right]}{\Gamma_{i+1}(x)} \Gamma_{n}(x), n=2,3, \ldots \tag{25}
\end{equation*}
$$

THEOREM 4. Assume (i), (iv), (v) and condition (10). If, for a fixed η, there exists a point $x_{0} \in \Lambda\{0\}$ such that both $\Gamma_{n}(x)$ and $H_{n}(x)$ tend to zero uniformly on $\left[f\left(x_{0}\right), x_{0}\right]$, then equation (2) has a regular solution φ in I fulfilling the conditions $\varphi(0)=0$ and $\varphi^{\prime}(0)=\eta$, depending on an arbitrary function.

Proof. The assumptions of our theorem and Lemma 3 imply that the hypotheses of Theorem 7 from [4] concerning equation (19) are satisfied. Consequently, equation (19) has a continuous solution ψ in I fulfilling the condition $\psi(0)=\eta$ and depending on an arbitrary function. Now our assertion results from Lemma 4.

REferences

[1] B. CHOCZEWSKI, Regular solutions of a linear functional equation of the first order, A Nehezipasi Muszaki Egyetem Kozlemenyeibol, Miskolc 30 (1970), 255-262.
[2] B. CHOCZEWSKI, Regula solutions of a linear functional equation in the indeterminate case, Ann. Pol. Math. 21 (1969), 257-265.
[3] B. CHOCZEWSKI, M. KUCZMA, On the "indeterminate case" in the theory of a linear functional equation, Fund. Math. 58 (1966), 163-175.
14] D. CZAJA, M. KUCZMA, Continuous solutions of some functional equation in the indeterminate case, Ann. Pol. Math. 24 (1970), 9-20.
[5] J. KORDYLEWSKI, M. KUCZMA, On the functional equation, Ann. Pol. Math. 7 (1959), 21-32.
[6] M. KUCZMA, On continuos solutions of a functional equation, Ann. Pol. Math. 8 (1960), 209-214.
[7] M. KUCZMA, On the form of solutions of some functional equations, Ann. Pol. Math. 9 (1960), 55-63.
[8] M. KUCZMA, Functional equations in a single variable, Monografie Mat. 46, PWN Warszawa 1968.

