
WŁADYSŁAW KIERAT

ON A CERTAIN EXTENSIONS OF LINEAR SPACES 
WITH AN ALGEBRAIC DERIVATION

A b s t r a c t .  C erta in  p roperties of solutions of o rd inary  linear d ifferen tia l 
equations have an  algebraic character. In  th is  note w e a re  concerned w ith  these 
p roperties. O ur purpose is to show some connections betw een the  theory  of diffe­
ren tia l rings and  the  theory  of lin ear spaces equipped w ith  an  endom orphism  sa ­
tisfying some additional conditions. I t w ill be show n th a t some lin ear spaces m ay 
be ex tended  to d iffe ren tia l rings.

0 . Let V be a commutative ring w ith an unit element e. Assume that
V has no proper divisors of zero. By D we shall denote a transformation 
in the ring V  satisfying the following conditions:

The operation D is said to be an algebraic derivative. The ring V is called 
a differential ring. The elements of V  satisfying the equation D x — 0 
will be called constants. The un it element and the zero element are con­
stants. The set of constants constitutes a  suihring F Cl V. In m any cases 
F is a field. Very im portant for applicatios of the theory is the case, when 
the algebraic derivative D satisfies the following additional condition:

By F[i] we shall denote the set of all polynomials of one variable 
w ith coefficients from the field F.

Let us consider the equation

(«)

(«)

D (x+ y) =  D x+ D y  

D(xy) =  D xy+ xD y.

(r)
D x y —xD y  =  0 implies that x  and y  are 

linearly dependent over F.

(0 .1)

where p is in F[t].
p(D) x  =  0,
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Let NP(D) denote the set of all solutions of equation (0.1) and let 
dim NP(D) denote the dimension of NP(D). J. Mikusinski has observed that 
if an algebraic derivative D satisfies the condition (y) then

(i) dim Np(D) n,

Where n  means the degree of p {[5]).
Assume that the ring V has an element t such tha t Dt = e. By T it 

w ill be denoted a new operation in  V given by the formula T x — tx . It 
is easy to see tha t

(t) D T -T D  =  I,

where I denotes the identity transformation in V. If F is a field then the 
ring V  can be interpreted as an algebra over F. D and T are linear trans­
formations in V.

It is known that if a linear transformation D mapping a linear space
V  over a field F w ith the characteristic zero into itself fulfils the con­
dition (i) and there exists a linear transform ation T satisfying the above 
condition (r), then

(ii) dim NP(D) +  dim Nq(D) =  dim Npq(D)

for each p and q in F[t] ([6 ]).
The linear space V has interesting properties, when

..... for each s i n V  there is a polynomial p #  0  in F[t], 
such that p(D) x  =  0.

In this case we say that D is a locally algebraic linear transformation in 
V. We know that if a linear transformation D has properties (i), (ii) 
and (iii), then there exists a linear transformation T such that equality 
(t) holds ([7], [9], [10]). Another condition used in this note reads as 
follows.

Every equation p(D) x =  0 has a non-trivial
(iv) solution in V, when p e  F[t] and the degree

of p is positive.

After the above preliminaries we give the following definition. 
DEFINITION 0.1. A linear space V  over a field F w ith a linear 

transformation D satisfying the conditions (i), (ii), (iii) and (iv) is said to 
be generated by F under D.

In this note we show that every linear space V over a field F w ith 
the characteristic zero generated by F under D may be extended to 
a differential ring V  with respect to D by extending the space V and 
the scalar field F.

This note consists of four sections. In the first section we present 
results concerning the algebraic structure of V  in connection with a gi­
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ven linear transformation D admitting properties (i), (ii), (iii) and (iv)_ 
The second section of this note is devoted to a construction of a minimal 
extension V  of the space V by means of an  extension of the scalar field 
F. In the third section we shall deal w ith transference of linear transforma­
tions from V on V. Finally, in the fourth section we shall define a m ul­
tiplication in V  in such a way that D will be an algebraic derivative in V.

1. Let V  be a linear space over a field F w ith the characteristic zero 
and D be a linear transformation acting in V. Assume that D satisfies 
the conditions (i) and (ii). Any arb itrary  linear space V over a field F  
with a fixed linear transformation D may be interpreted as a module 
over the ring F[t], if we put px = p(D) x  for p e F [ t]  and x  e V .  Every 
invariant with respect to D linear subspace W  of V is a submodule of V"..

DEFINITION 1.1. An element £ in V is said to be algebraic w ith  
respect to D if it satisfies the equation p(D) x  — 0 for some O ^ p e F f t ] .

By Va we shall denote the set of all algebraic elements x in V. It is 
easy to see that Va is a submodule of V.

DEFINITION 1.2. A module V over a ring R is said to be divisible 
if for each element y  in V and for each scalar a 0 of R there exists an 
element x  in V  such that ax — y.

It is known that an arbitrary module V over the ring F[t], defined 
above, is divisible only, when the transformation D has properties (i), (ii) 
and (iii) [9]. We know that a submodule W  of an arbitrary  module V 
has no submodule W such that V is a direct sum of W and W. E. M. Le~ 
vie has shown [4] that if V is a module over a ring F[t], where F is 
a field with the characteristic zero and W is a divisible submodule of V, 
then there exists a submodule W such that V = W  ©  W. A combination 
of the last statements gives the following result.

THEOREM 1.1. Let D be a linear transformation acting in a linear 
space V over a field F w ith the characteristic zero satisfying the condi­
tions (i) and (ii). Then for the submodule V a there exists a direct sum­
mand V t) (i.e. V =  Va ©  V t).

Now we are going to recall the following lemma which will be used 
later.

LEMMA 1.1 (J. Mikusihski). If the polynomials p and q are relati­
vely prime, then we have

Np(D) r\ N q(D) {0}.

A proof can be found in [6 ].
From Lemma 1.1 we obtain immediately the following propositions.
PROPOSITION, 1.1. Let p be an irreducible polynomial in F[t] and

co

Vp =  U Npn(D).T h e n V a is a direct sum of subspaces V p.
n  = 1
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PROPOSITION 1.2. Let A  be a set o f elements belonging to V p, li­
nearly independent over F. Then the set q(D)A is linearly independent 
over F as well, when p and q are relatively prime.

PROPOSITION 1.3. Let A  be a set elements of V t linearly indepen­
d en t over F. Then for each polynomial p in F[t] the set p(D) A is linear­
ly  independent too.

The following propositions will be connected w ith the transforma­
tion  T.

PROPOSITION 1.4. Let p be an arbitrary irreducible polynomial in 
F[t) and let A  be a linearly independent subset of NP(D). Then the set

oo

-L =  U TnA  is also linearly independent.
n *= 0

P r o o f .  Let x x, ..., x m be in A  and let n be a fixed non-negative in­
teger. Consider the equality

m  n

0 .1) =
fi = 1 i = 0

Hence, we have
a* n

y  y  a T 'x
/  J  ,  j  M v  H

=  0 .<1.2) p"(D)
.H  =  1 v “  0

In  virtue of the following identity

(1.3) pn(D )Tkx  — j [ [T p(D) + (n —v + 1) p'(D)] pn~k{D) x
V  =  1

for k ^ n ,  where p' denotes the ordinary derivative of p see [2 ], equali­
ty  (1 .2 ) may be w ritten as follows

V  =  1

This implies tha t
[ m

K = 1

=  o.

n\ [p'{D)]n
m 'jj
V  a x  IX j un n I

u =  1 J
o,

because A  is included in NP(D). Since the field F  has the characteristic 
zero, thus (p')n and pn are relatively prime. By Lemma 1.1 we obtain

V  a x  =  0 .nn n
» = l

This implies that a — 0 for fj, =  1 ,..., m. Thus equality (1.1) reduces to
m  n —1

<1-4) 2 0-
H — 1 v = 0
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Repeating above consideration several times one can show that auv =  O 
for ju =  1 , m and v =  0 , n. This completes the proof of the proposi­
tion.

COROLLARY 1.1. I f  p is an irreducible polynomial in F[t], the spa­
ce V  w ith respect to the transformation D has properties (i), (ii) and (iii> 
and the set B is a basis of NP(D), then the set

C„ =  LJ1 TVB
v — 0

is a basis of  Np„(D). M o re o v e r , the se t
co

Co =  |J  T’B 
is a basis of V p. v = 0

P r o o f .  Since in this case there exists a linear transformation T  
we obtain the proposition by Proposition 1.4.

COROLLARY 1.2. Let B be a basis of N P{D). Under the assumptions 
of Corollary 1 . 1  the set

(1.5) Cn = U pn(D)T*B
V  ^  n

is linearly independent for n — 1 , 2 , ... .

P r o o f .  Let  n > m .  From Corollary 1.1 it follows that the sets Cn 
and Cm are bases of IVpn(D) and iVom(D) respectively. Observe first that the 
space

Pm(D) Npn(D)
is spanned by the set

(1.6) l j  pm(D) T”B.
v — m

Since
dim NpHD,r  dim Npm(D) +d im  pm(D) Wpn(D).

The set (1.6) is linearly independent. This implies that the set (1.5) is also 
linearly independent.

2. Let 7  be an arbitrary extension of the field F. Let X x be the cha­
racteristic function of the one-element set {a;}. This means tha t X x(t) =  1 
if x  = t and X x(t) — 0 if t e V — {x} . B y 7(V) we shall denote the set of 
all linear combinations of functions X x, x  e  V, w ith coefficients from 7. 
The set 7(V) is a linear space over 7  w ith respect to the usual operations 
of addition and multiplication. The elements X x constitute a basis of 7(V)y 
when x  runs through V. Let X  denote the subspace of 7(V) spanned by 
the elements of the form

(2 -D
where and X2 are in  F. To Shorten the notation the quotient space 
7{V)/% we denote by V. The natural embedding of V into 7(V) will be
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denote by <p (<p : x  -*■ Xx). In  addition, by k  we shall denote the canonical 
mapping of 7(V) onto V. It is easy to verify that 0  =  k°<p is an F-linear 
mapping from V into V.

THEOREM 2.1. The space V  is universal in the following sense: for 
any F-linear mapping P from  V  into an arbitrary linear space W  over 
the  field 7 there exists a 7-linear mapping P from V  into W  such that 
P  — J>O0.

P r o o f .  Let I I  be a mapping from 7(V) into W  defined as follows:
if f  = y \ xX x, then we put 

x e v

(2 .2 ) n f = £ a xPx.
x e v

It is easy to see that I I  is an 7-linear mapping, furtherm ore

(2.3) X  C  Ker n .

Let [/] €  V  be the equivalency class corresponding to f. Now, we 
introduce a new mapping P from V  into IV putting

(2.4) ?[f] = n f .

The definition of the mapping P is correct as the inclusion (2.3) holds. It 
is not difficult to verify that

<2.5) (P°0) x  = I lX x =  Px.

This completes the proof of the theorem.
From this theorem the following corollaries will be derived. 
COROLLARY 2.1. I f A  is a F-linearly independent set in V, i.e. A is 

u linearly independent set over F, then 0(A ) is a 7-linearly independent 
set in V.

P r o o f .  Let B be a basis of V containing the set A. Now, we define 
an F-linear transform ation P  from V  into 7(V) as follows: if x  e  A  we 
take P x  =  X x, if x e B —A  we put Px  =  0. The transform ation P  is com­
pletely defined as an F-linear transformation, because B is a basis of V. 
By Theorem 2 . 1  there exists an J-linear transformation P from V  into 
J(V) such that (P°0) (x) — X x for x  e  A. Since the elements X x, x  e  A  
are 7-linearly independent therefore the elements 0(x), x  e  A  are 7-li- 
r,early independent too.

From Corollary 2.1 we obtain immediately the following corollary. 
COROLLARY 2.2 If B is a basis in V, then 0(B) is a basis in V. 
COROLLARY 2.3. 0  is an injective mapping from  V into V. 
P r o o f .  Let 1(B) denote the linear space over the field 7  which 

consists of all linear combinations of functions X x, x e B ,  whose coeffi­
cien ts are taken from 7. Let P  be the F-linear mapping from V onto 
7(B) defined as in  Corollary 2.1, where B  is taken in place of A. The
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F-linear mapping P establishes an F-linear injective mapjping from V into 
7 (B . By Theorem 2 . 1  there exists an 7-linear mapping V such tha t 
(Po«p) (x) =  Px. Thus 0  m ust be injective.

3. In this section we show tha t for every F-linear transformation 
D in V there exists an ^-linear transformation D in V  such that

(3.1) &(Dx) -  D 0(x).

In order to prove it we define an J-'linear transform ation D in  7(V) by 
putting

<3.2) D X x = X Dx

lor x e V .  The linear transform ation D is completely determined by (3.2), 
because the  set {Xx : x e V }  is a basis of 7(V). One can verify th a t X is 
an invariant smbspace with respect to D. Thus the transformation D can 
be transm ited from 7(V) onto V  by means of the formula

(3.3) D[/] =  [D/I.

From this we get

(3.4) D $ (x)  =  &(Dx)

for x  e V .  More generally for every polynomial p w ith coefficients from 
F  we have

(3.5) p(D) <&(x) =  &(p(D) x),

when x is in V.
We are now looking for solutions of the equation

(3.6) p(D) z =  0.

in V, where p is in F[t].
PROPOSITION 3.1. The element z = &(x) is a solution of equation

(3.6) if and only if p{D) x  =  0.
P r o o f .  Let p(D) x  — 0, then p(D) z =  0, by (3.5). Conversely, let 

p(D) z =  0 and z = <P(x) for some x  in  V. By (3.5) we obtain 0 =  p(D) z =  
4>(p(D)x). In virtue of Corollary 2.3 we have p(D )x  =  0.

Denote by (@(Va)) and (3>(Vt)) the subspaces of V  spanned by #(V a) 
and <5(Vt) respectively.

THEOREM 3.1. V  is a direct sum  of (<5(Va)) and (&(Vt)). Further­
more, each of these spaces is invariant relatively to D.

P r o o f .  Let 2 = a 1 ^ (x 1)+  ... + a n# (x n) ,x i€  V t, a i e 7  for i= .  1 , 2 ,... n. 
Moreover, assume tha t x t are linearly independent over F. Let p 'be any 
polynomial in F[t], then we have p(D) z = ,a i 3»(p D) x x)+  ... + an &(p(D)xn), 
by (3.5). In view of Proposition 1.3 and Corollary 2.1 we conclude 
ai =  ... — an — 0 . Thus we have z — 0 . This means that only the zero
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dem ent belongs to (^(V a)) and (s£(Vt)). The invariability of the spaces 
($<Va)> and <*(Vt)} under D follows from (3.5).

THEOREM 3.2. The space ($ (V a)) is a direct sum of subspaces 
<3>(Vp)), when p runs through the set of all irreducible polynomials in  
Fit].

P r o o f .  We need only to prove that (&(VP)) r\ {0 (V q) — {0}, when 
p and q are relatively prime. Let 2  =  ax 3>(X!) +  ... + a„  $(x„), x 4 e V p 
and a x e l  for i =  1,..., n. In  addition, assume tha t x t are linearly inde­
pendent over F, then we have q(D) z =  <P(q(D) Xi) +  ... + an <&(q(D) x„) 
by (3.5). In virtue of Proposition 1.2 and Corollary 2.1 we come to a con­
clusion that cti =  ... =  an — 0. This completes the proof of the theorem.

From the two last theorems we obtain immediately the following co­
rollary.

COROLLARY 3.1. Assume that p e F [ t ] ,  moreover let p = p\l ... p rk*, 
where Pi are irreducible polynomials in F[t] for i =  1,..., k. I f z is a solu­
tion of equation (3.6), then there are elements zl t ..., zk belonging to 
V pt =■ (&(Vp )) such that z  — zx+ ... + zh.

PROPOSITION 3.2. Let p be an irreducible polynomial in F[t]. An  
element z is a solution of equation

P r o o f .  The part „if” is a consequence of Proposition 3.1 and iden­
tity  (1.3). Assume that z is a solution of equation (3.7), then  z e V p, by 
Theorem 3.1 and Theorem 3.2. Thus z m ay be w ritten  as follows

where and «mv e l  for n =  1,..., k  and v =  0 , ... n. W ithout loss of
generality we can assume n ^ m .  Multiplying both sides (3.8) by pm(D) 
we obtain

(3.7) pm(D) x  =  0

if and only if z e  (&( U T VB)), where B is a basis of NP(D).

n  k
(3.8)

n  k
(3.9)

y =  0 ft =■ 1

By (3.5) we have
n k

(3.10)

From (1.3) it follows
71 k

(3-11)
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In  view of Corollaries 1.2 and 2.1 we get a = 0  for and:
1 ^  n  ^  k. Thus we have

4. From  now on we shall assume that the linear space V over the 
field F  w ith the characteristic zero is generated by F under D. By 7  we 
shall denote the algebraic closure of F. Let N p(q>) be th e  kernel of p(D) 
in V, where p e  F[t}. W ithout loss of generality we can restrict ourselves 
to polynomials w ith the leading coefficients which are equal to one; 
such polynomials will be called normed. Let p be any normed and irre­
ducible polynomial in F[t]. By x p we shall denote an element of V  whidh 
is a non-zero solution of the equation p(D )x  =  0, p(t) — t n+ an- 1t n~l + 
+  ... + a ! t +  a0. The elements x p, D xp, ..., D" _ 1  x p constitute a basis of the 
space NP(Dy P u t zp =  <&(xp), then the elements zp, Dzp, ..., Dn _ 1  zp consti­
tute a basis of 2Vp(<2 ), by (3.4) and Proposition 3.2. The linear transfor­
mation D is represented by the m atrix

with respect to this basis, where at are the coefficients of p. The roots 
of p are the eigenvalues of m atrix  (4.1). Let ..., £„ be the roots of p. 
The elements l i , ..., are different, because the field F  has the characte­
ristic zero ([3], p. 200). Let y u ... ynu i =  1 ,2 ,..., n  be an  eigenvector of 
the m atrix (4.1) corresponding to the eigenvalue | t. Since & are diffe­
rent for the different subscripts i, thus the m atrix

is not singular. This implies that the elements

Zpi =  Yu zP+ y2i zp+ ... + ynt n_1zp 

are 7-linearly independent for i =  1 ,2 ..... n. It is not difficult to verify

Let T be a linear transformation in V such tha t identity (t) holds. One 
can transfer the linear transform ation T from V onto V  as it was showed 
in section 3. This new transformation will be denoted by 7. The property 
(r) is preserved by the transformations D and 7. Let Bp— ( 7 kzp i: k —0,1,

m—1 k

v — 0  n  ■= 1

(4.1)

0  1 0 ... 0  

0  0  1 ... 0

Oo O-l 0 .2 . . .  On— 1

y u  -  Y\ n
(4.2)

Y n i  ••• 7 n n

that
Dzpi—£jZpi =  0  for i =  1 ,..., n.
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2 , i — 1 , n}.  Let us consider the set B =  U Bp, where p runs through
p

the set of all irreducible polynomials p in  F{t], I t is easy to see that 
B is a basis of V.

Now, we introduce an operation of m ultiplication in V. Since V is 
a space generated by the field F and 7  is the algebraic closure of F, the­
refore for each £ in 7  there exists an element zg such that

D z £— g z (  =  0.

For two elements 7 mz( and 7 nzs in  B we take eTmz ^ 7 nz( = 7 m+nz(+n- 
We extend the multiplication operation defined up to now only for the 
elements belonging to B on the whole space V  in such a w ay tha t it will 
be an 7-bilinear transform ation on V  X V.

It is easy to verify tha t the linear space V  over the field w ith the 
above defined multiplication is an algebra without divisors of zero. An 
easy check shows th a t D has property (d). The elem ent e = <&(e) where 
e is a non-trivial solution of D x  =  0 is a unit element of th is algebra. It 
is easy to see tha t the elements ae, when a runs through the field 7  con­
stitute the field of constants with respect to D. Thus V  can be interpreted 
as a differential ring.
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