WLADYSEAW KIERAT

ON A CERTAIN EXTENSIONS OF LINEAR SPACES
WITH AN ALGEBRAIC DERIVATION

Abstract. Certain properties of solutions of ordinary linear differential
equations have an algebraic character. In this note we are concerned with these
properties. Our purpose iS to show some connections between the theory of diffe-
rential rings and the theory of linear spaces equipped with an endomorphism sa-
tisfying some additional conditions. It will be shown that some linear spaces may
be extended to differential rings.

o. Let V be a commutative ring with an unit element e. Assume that
V has no proper divisors of zero. By D we shall denote a transformation
in the ring V satisfying the following conditions:

(«) D(x+y) = Dx+Dy
(« D(xy) = Dxy+xDy.

The operation D is said to be an algebraic derivative. The ring V is called
a differential ring. The elements of V satisfying the equation Dx —0
will be called constants. The unit element and the zero element are con-
stants. The set of constants constitutes a suihring F CIV. In many cases
F is a field. Very important for applicatios of the theory is the case, when
the algebraic derivative D satisfies the following additional condition:

Dxy—xDy = 0 implies that x and y are
(1) linearly dependent over F.

By F[i] we shall denote the set of all polynomials of one variable
with coefficients from the field F.
Let us consider the equation

(0.1) p(D) x = 0,
where p is in F[t].
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Let NPD denote the set of all solutions of equation (0.1) and let
dim NPD) denote the dimension of NP(D). J. Mikusinski has observed that
if an algebraic derivative D satisfies the condition (y) then

(i) dim NpD) n,

Where n means the degree of p {[5]).

Assume that the ring V has an element t such that Dt = e. By T it
will be denoted a new operation in V given by the formula Tx —tx. It
is easy to see that

(t) DT-TD = |,

where | denotes the identity transformation in V. If F is a field then the
ring V can be interpreted as an algebra over F. D and T are linear trans-
formations in V.

It is known that if a linear transformation D mapping a linear space
V over a field F with the characteristic zero into itself fulfils the con-
dition (i) and there exists a linear transformation T satisfying the above
condition (r), then

(ii) dim NPD+ dim NgD) = dim NpD)

for each p and q in F[t] ([¢]).
The linear space V has interesting properties, when

..... for each sinV there is a polynomial p# o in FJ[t],
such that p(D)x = 0.

In this case we say that D is a locally algebraic linear transformation in
V. We know that if a linear transformation D has properties (i), (ii)
and (iii), then there exists a linear transformation T such that equality
(t) holds ([7], [9], [10]). Another condition used in this note reads as
follows.
Every equation p(D)x = 0 has a non-trivial
(iv) solution in V, when p e F[t] and the degree
of p is positive.

After the above preliminaries we give the following definition.

DEFINITION 0.1. A linear space V over a field F with a linear
transformation D satisfying the conditions (i), (ii), (iii) and (iv) is said to
be generated by F under D.

In this note we show that every linear space V over a field F with
the characteristic zero generated by F under D may be extended to
a differential ring V with respect to D by extending the space V and
the scalar field F.

This note consists of four sections. In the first section we present
results concerning the algebraic structure of V in connection with a gi-
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ven linear transformation D admitting properties (i), (ii), (iii) and (iv)_
The second section of this note is devoted to a construction of a minimal
extension V of the space V by means of an extension of the scalar field
F. In the third section we shall deal with transference of linear transforma-
tions from V on V. Finally, in the fourth section we shall define a mul-
tiplication in V in such a way that D will be an algebraic derivative in V.

1 Let V be a linear space over a field F with the characteristic zero
and D be a linear transformation acting in V. Assume that D satisfies
the conditions (i) and (ii). Any arbitrary linear space V over a field F
with a fixed linear transformation D may be interpreted as a module
over the ring F[t], if we put px = p(D)x for peF[t] and xeV. Every
invariant with respect to D linear subspace W of V is a submodule of V.

DEFINITION 1.1. An element £ in V is said to be algebraic with
respect to D if it satisfies the equation p(D) x —O0 for some O”*peFft].

By Va we shall denote the set of all algebraic elements x in V. It is
easy to see that Va is a submodule of V.

DEFINITION 1.2. A module V over a ring R is said to be divisible
if for each element y in V and for each scalar a 0 of R there exists an
element x in V such that ax —y.

It is known that an arbitrary module V over the ring F[t], defined
above, is divisible only, when the transformation D has properties (i), (ii)
and (iii) [9]. We know that a submodule W of an arbitrary module V
has no submodule W such that V is a direct sum of W and W. E. M. Le~
vie has shown [4] that if V is a module over a ring F[t], where F is
a field with the characteristic zero and W is a divisible submodule of V,
then there exists a submodule W such that V = W© W. A combination
of the last statements gives the following result.

THEOREM 1.1. Let D be a linear transformation acting in a linear
space V over a field F with the characteristic zero satisfying the condi-
tions (i) and (ii). Then for the submodule Va there exists a direct sum-
mand V1) (i.e. V= Va®© Vi)

Now we are going to recall the following lemma which will be used
later.

LEMMA 11 (J. Mikusihski). If the polynomials p and g are relati-
vely prime, then we have

Np(D) N NgD  {0}.
A proof can be found in [s]

From Lemma 11 we obtain immediately the following propositions.
PROPOSITION, 1.1. Let p be an irreducible polynomial in F[t] and

co

Vp= U NpD).ThenVais adirect sum of subspaces Vp.

n=1
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PROPOSITION 1.2. Let A be a set of elements belonging to Vp, li-
nearly independent over F. Then the set g(D)A is linearly independent
over F as well, when p and q are relatively prime.

PROPOSITION 1.3. Let A be a set elements of Vt linearly indepen-
dent over F. Then for each polynomial p in F[t] the set p(D) A is linear-
ly independent too.

The following propositions will be connected with the transforma-
tion T.

PROPOSITION 1.4. Let p be an arbitrary irreducible polynomial in
F[t) and let A be a linearly independent subset of NP([D). Then the set

-L= U TnA is also linearly independent.

n*=o

Proof. Letxx .. xmbe in A and let n be a fixed non-negative in-
teger. Consider the equality

0.1 =
fi=11=0
Hence, we have
a n
<1.2) p"dD) 'y, y a Tx =o.
H=1 v.“ ‘0

In virtue of the following identity

(1.3) pn(D)Tkx —j [T p(D)+ (n—v+ 1) p'(D)] pn~k{D) x

v=1
for kA~ n, where p' denotes the ordinary derivative of p see [2], equali-
ty (1.2) may be written as follows

v=1 —

This implies that

N PO ¥ auxn] o
J

u=1

because A is included in NPD). Since the field F has the characteristic
zero, thus (p)n and pn are relatively prime. By Lemma 1.1 we obtain

V a

»=1

This implies that a —O0 for f, = 1,..., m. Thus equality (1.1) reduces to

nan= 0.

44 2" o
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Repeating above consideration several times one can show that aw = O
forju= 1 , mandv=0 ,n This completes the proof of the proposi-
tion.

COROLLARY 1.1. If p is an irreducible polynomial in F[t], the spa-
ce V with respect to the transformation D has properties (i), (ii) and (iii>
and the set B is a basis of NPRD), then the set

C,= Lh T\B

v—0

is a basis of Np,(D). Moreover, the set

Co= | TB
is a basis of Vp. V=o
Proof. Since in this case there exists a linear transformation T
we obtain the proposition by Proposition 1.4.

COROLLARY 12. Let B be a basis of ND. Under the assumptions
of Corollary 1.1 the set

(1.5) Cn= U pn(D)T*B
is linearly independent for n —1V,z,n... )

Proof. Let n>m. From Corollary 1.1 it follows that the sets Cn
and Cm are bases of Mn[D and iMam(D respectively. Observe first that the

space
Pm(D) Non(D

is spanned by the set

(1.6) lj pm(D) T’B.

Since dim NpHDr  dim N +dim pm(D) WD)
The set (1.6) is linearly independent. This implies that the set (1.5) is also
linearly independent.

2. Let 7 be an arbitrary extension of the field F. Let Xx be the cha-
racteristic function of the one-element set {a;}. This means that Xx(t) = 1
if x =tand Xx(t) —0if teV —{x}. By 7(V) we shall denote the set of
all linear combinations of functions Xx,x e V, with coefficients from 7.
The set 7(V) is a linear space over 7 with respect to the usual operations
of addition and multiplication. The elements X x constitute a basis of 7(V)y
when x runs through V. Let X denote the subspace of 7(V) spanned by
the elements of the form

-D
where and X2 are in F. To Shorten the notation the quotient space
7{V)/% we denote by V. The natural embedding of V into 7(V) will be
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denote by 9p(:x “mXx). In addition, by k we shall denote the canonical
mapping of 7(V) onto V. It is easy to verify that 0 = k°<p is an F-linear
mapping from V into V.

THEOREM 2.1. The space V is universal in the following sense: for
any F-linear mapping P from V into an arbitrary linear space W over
the field 7 there exists a 7-linear mapping P from V into W such that
P —J>Q00.

Proof. Let Il be a mapping from 7(V) into W defined as follows:
if f =y \xXx, then we put

Xev

(2 2) nf=£axPx.

Xev
It is easy to see that Il is an 7-linear mapping, furthermore
(2.3) X C Kern.

Let [/]€ V be the equivalency class corresponding to f. Now, we
introduce a new mapping P from V into IV putting

(2.4) ?[f] = nf.

The definition of the mapping P is correct as the inclusion (2.3) holds. It
is not difficult to verify that

<2.5) (P°0) x = IIXx = Px.

This completes the proof of the theorem.

From this theorem the following corollaries will be derived.

COROLLARY 2.1. If A is a F-linearly independent set in V, i.e. A is
u linearly independent set over F, then 0(A) is a 7-linearly independent
set in V.

Proof. Let B be a basis of V containing the set A. Now, we define
an F-linear transformation P from V into 7(V) as follows: if xe A we
take Px = Xx, if xe B —A we put Px = 0. The transformation P is com-
pletely defined as an F-linear transformation, because B is a basis of V.
By Theorem 2.1 there exists an J-linear transformation P from V into
J(V) such that (P°0) (x) —Xx for x e A. Since the elements Xx, xe A
are 7-linearly independent therefore the elements 0(x), x e A are 7-li-
r.early independent too.

From Corollary 2.1 we obtain immediately the following corollary.

COROLLARY 22 If B is a basis in V, then 0(B) is a basis in V.

COROLLARY 23. 0 is an injective mapping from V into V.

Proof. Let 1(B) denote the linear space over the field 7 which
consists of all linear combinations of functions Xx, xeB, whose coeffi-
cients are taken from 7. Let P be the F-linear mapping from V onto
7(B) defined as in Corollary 2.1, where B is taken in place of A. The
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F-linear mapping P establishes an F-linear injective mapjping from V into
7(B. By Theorem 2.1 there exists an 7-linear mapping V such that
(Po«p) (x) = Px. Thus 0 must be injective.

3. In this section we show that for every F-linear transformation

D in V there exists an ~-linear transformation D in V such that

(3.1) &(Dx) - D 0(x).

In order to prove it we define an J-'linear transformation D in 7(V) by
putting

<3.2) D Xx= XDx

lor xeV . The linear transformation D is completely determined by (3.2),
because the set {Xx:xeV } is a basis of 7(V). One can verify that X is
an invariant smbspace with respect to D. Thus the transformation D can
be transmited from 7(V) onto V by means of the formula

(3-3) D[/] = [D/.
From this we get
(3.4) D $(x) = &(Dx)

for x eV. More generally for every polynomial p with coefficients from
F we have

3.5) p(D) <&x) = &(p(D) x),

when x is in V.
We are now looking for solutions of the equation

(3.6) p(D)z = 0.

in V, where p is in F[t].

PROPOSITION 3.1. The element z = &(x) is a solution of equation
(3.6) if and only if p{D)x = 0.

Proof. Let p(D)x —0, then p(D)z = 0, by (3.5). Conversely, let
p(D) z = 0and z = <P(x) for some x in V. By (3.5) we obtain 0 = p(D) z =
4>(p(D)x). In virtue of Corollary 2.3 we have p(D)x = 0.

Denote by (@(Va)) and (3>(Vt)) the subspaces of V spanned by #(Va)
and <5(Vt) respectively.

THEOREM 3.1. V is a direct sum of (<5(Va)) and (&(Vt)). Further-
more, each of these spaces is invariant relatively to D.

Proof. Let2=ai(x)+ .. +an#(xn),xi€ Vt,aie7 for i=.1,2,...n.
Moreover, assume that xt are linearly independent over F. Let p 'be any
polynomial in F[t], then we have p(D) z =,ai 3»(p D) x¥+ ... +an &(p(D)xn),
by (3.5). In view of Proposition 1.3 and Corollary 2.1 we conclude
ai = .. —an—o. Thus we have z —o. This means that only the zero
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dement belongs to (*(Va)) and (s£(Vt)). The invariability of the spaces
($<Va)> and <*(Vt)} under D follows from (3.5).

THEOREM 3.2. The space ($(Va) is a direct sum of subspaces
<3>(Vp)), when p runs through the set of all irreducible polynomials in
Fit].

Proof. We need only to prove that (&(VP) r\ {0(Vqg) — {0}, when
p and g are relatively prime. Let 2 = ax3>(X!)+ ... +a,, $(x,,), x4eVp
and axel for i = 1,...,n. In addition, assume that xt are linearly inde-
pendent over F, then we have q(D)z = <P(q(D) Xi)+ ... +an <&(q(D) x,,)
by (3.5). In virtue of Proposition 1.2 and Corollary 2.1 we come to a con-
clusion that cti = .. = an—0. This completes the proof of the theorem.

From the two last theorems we obtain immediately the following co-
rollary.

COROLLARY 3.1. Assume that peF[t], moreover let p = p\l ... pk*
where Pi are irreducible polynomials in F[t] for i = 1,..., k. If z is a solu-
tion of equation (3.6), then there are elements zlt..,zk belonging to
Vpt == (&(Vp)) such that z —zx+ ... +zh.

PROPOSITION 3.2. Let p be an irreducible polynomial in F[t]. An
element z is a solution of equation

(3.7 pmD) X = o
if and only if ze (&( U T\B)), where B is a basis of NP(D).

Proof. The part ,,if” is a consequence of Proposition 3.1 and iden-
tity (1.3). Assume that z is a solution of equation (3.7), then zeV p, by
Theorem 3.1 and Theorem 3.2. Thus z may be written as follows

n k

(3.8)

where and «<mwe | for n= 1,..,k and v= 0,..n. Without loss of
generality we can assume n”~m . Multiplying both sides (3.8) by pm(D)
we obtain

n k
(3.9
y=10 ft m1l

By (3.5) we have

n o«
(3.10)
From (1.3) it follows

1«

(3-12)
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In view of Corollaries 1.2 and 2.1 we get a =0 for and:
1~ n” k. Thus we have
ma Kk

V—0 nm=1

4, From now on we shall assume that the linear space V over the
field F with the characteristic zero is generated by F under D. By 7 we
shall denote the algebraic closure of F. Let Np(@® be the kernel of p(D)
in V, where p e F[t}. Without loss of generality we can restrict ourselves
to polynomials with the leading coefficients which are equal to one;
such polynomials will be called normed. Let p be any normed and irre-
ducible polynomial in F[t]. By xp we shall denote an element of V whidh
is a non-zero solution of the equation p(D)x = 0, p(t) —tn+an- 1tn~l+
+ .. +a! t+a0 The elements xp, Dxp, ..., D* _1 xp constitute a basis of the
space NP(Dy Put zp = <&(p), then the elements zp, Dzp, ..., Dn_1 zp consti-
tute a basis of 2\p@&), by (3.4) and Proposition 3.2. The linear transfor-
mation D is represented by the matrix

0 1 0 0
(4 1) 0 0 1 0
Oo o 0.2... On-1

with respect to this basis, where at are the coefficients of p. The roots
of p are the eigenvalues of matrix (4.1). Let ..., £, be the roots of p.
The elements li,.., are different, because the field F has the characte-
ristic zero ([3], p. 200). Let yu..ynu i = 1,2,...,n be an eigenvector of
the matrix (4.1) corresponding to the eigenvalue |t. Since & are diffe-
rent for the different subscripts i, thus the matrix

yu - Y\n
4.2

Yni *** 7nn

is not singular. This implies that the elements

Zpi = YuzP+yZzp+ .. +yntn_izp

are 7-linearly independent for i = 1,2...n. It is not difficult to verify
that
Dzpi—£jZpi = o for i = 1,...,n.

Let T be a linear transformation in V such that identity (t) holds. One
can transfer the linear transformation T from V onto V as it was showed
in section 3. This new transformation will be denoted by 7. The property
(r) is preserved by the transformations D and 7. Let Bp—(7 kzpi:k—0,1,
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2, 1—1, n}. Letusconsider the set B= U Bp, where p runs through

the set of all irreducible polynomials p in I?{t], It is easy to see that
B is a basis of V.

Now, we introduce an operation of multiplication in V. Since V is
a space generated by the field F and 7 is the algebraic closure of F, the-
refore for each £ in 7 there exists an element zgsuch that

DzfE—gz (= O.

For two elements 7nmz( and 7nzs in B we take &mz"7 nz( = 7m+nz(+n-
We extend the multiplication operation defined up to now only for the
elements belonging to B on the whole space V in such a way that it will
be an 7-bilinear transformation on V X V.

It is easy to verify that the linear space V over the field with the
above defined multiplication is an algebra without divisors of zero. An
easy check shows that D has property (d). The element e = <&g) where
e is a non-trivial solution of Dx = 0 is a unit element of this algebra. It
is easy to see that the elements ae, when a runs through the field 7 con-
stitute the field of constants with respect to D. Thus V can be interpreted
as a differential ring.
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