PIOTR MIKUSIŃSKI

COMPARISON OF FAMILIES OF PSEUDONORMS

Abstract. Two relations between families of pseudonorms are considered: relation of being weaker than and relation of being sequentially weaker than. Connections between these concepts are discussed.

1. By a convergence G on a set X we mean a mapping from X^N to 2^x $(N = \{1, 2, ...\})$. We say that a sequence x_n is G-convergent to x, and write $x_n \to x$ (G), iff $x \in G(x_n)$. A real valued function f on X is said to be G-continuous, iff $x_n \to x$ (G) implies $f(x_n) \to f(x)$.

Let G and H be convergences on X. We write $G \subseteq H$, iff $G(x_n) \subseteq G$ is equal to H, and write G = H, if $G \subseteq H$ and $H \subseteq G$.

In the following E denotes a linear space over the field of real numbers R. A non-negative functional p defined on E is called a *pseudonorm*, iff

(1)
$$p(\lambda x) = |\lambda| p(x),$$

$$(2) p(x+y) \leq p(x)+p(y)$$

where $x, y \in E$ and $\lambda \in R$.

Let P be any family of pseudonorms defined on E. Then by LP we denote a convergence defined as follows:

$$x_n \rightarrow x$$
 (LP) iff $p(x-x_n)$ tends to zero for each $p \in P$.

By MP we denote the family of all LP-continuous pseudonorms on E, i.e., $p \in MP$ iff $p(x-x_n)$ tends to zero for each sequence x_n which is LP-convergent to x. Clearly, $P \subseteq MP$.

Received November 06, 1979.

AMS (MOS) subject classification (1980). Primary 46A45.

Let P and Q be any families of pseudonorms on E.

LEMMA 1. If $P \subseteq Q$, then $LQ \subseteq LP$.

LEMMA 2. LP = LMP.

LEMMA 3. $LQ \subset LP$ iff $MP \subset MQ$.

Easy proofs are omitted.

We say that two families of pseudonorms P and Q are equivalent, if LP = LQ.

The definition of convergence originates from [1] and the definition of operator L from [3].

2. Let P and Q be two families of pseudonorms on a linear space E. In [2] the following definition is given.

DEFINITION 1. We say that P is weaker (plus faible) than Q if for each pseudonorm $p \in P$ there exist a pseudonorm $q \in Q$ and a positive number c such that $p(x) \leq cq(x)$ for all $x \in E$.

If a family of pseudonorms is used only as a description of a convergence, another definition seems to be more adequate.

DEFINITION 2. We say that P is sequentially weaker than Q, if $LQ \subset LP$.

We discuss in this note some relations between both notions.

THEOREM 1. If P is weaker than Q, then P is sequentially weaker than Q.

Proof. Assume that $x_n \to x$ (LQ) and let $p \in P$. Then $p(x-x_n) \leq q(x-x_n)$ for some positive number c and some pseudonorm $q \in Q$, and, consequently $p(x-x_n) \to 0$, because $q(x-x_n) \to 0$.

An example presented in section 3 shows that the converse implication is not true, in general.

THEOREM 2. If P is sequentially weaker than Q, then P is weaker than MQ.

Proof. This follows from Lemma 3 and from the evident

LEMMA 4. If $P \subseteq Q$, then P is weaker than Q.

COROLLARY 1. The following conditions are equivalent

 1° P is sequentially weaker than MQ

 2° P is weaker than MQ

 $.3^{\circ} P \subset MQ.$

Proof. This follows from Theorem 1, Theorem 2, Lemma 3 and Lemma 4.

THEOREM 3. Let $Q = \{q_1, q_2, ...\}$ be a countable family of pseudonorms and let

$$Q' = \left\{ \sum_{i=1}^{n} q_i; n = 1, 2, \ldots \right\}.$$

If P is sequentially weaker than Q, then P is weaker than Q'.

Proof. Let p be any pseudonorm from the family P. We have to show that there exist a pseudonorm $q \in Q'$ and a positive number c such that

$$p(x) \leq cq(x)$$

for all $x \in E$. Assume that it is not true. Then there exists a sequence $x_n \in E$ such that, for n = 1, 2, ...,

$$p(x_n) > n^2 r_n(x_n)$$

where $r_n(x) = \sum_{i=1}^n q_i(x)$. Let

$$y_n=\frac{nx_n}{p(x_n)}.$$

Since the r_n are an increasing sequence of pseudonorms and $r_n(y_n) \leq 1/n$, then $y_n \to 0$ (LQ'). Consequently $y_n \to 0$ (LQ), because LQ' = LQ. But $p(y_n) = n$, and so $y_n \to 0$ (LP). This contradicts the assumption that P is sequentially weaker than Q.

COROLLARY 2. If p and q are two pseudonorms on E such that

(3)
$$q(x_n) \to 0 \text{ implies } p(x_n) \to 0$$

for each sequence $x_n \in E$, then $p(x) \leq cq(x)$ for some positive number c and for all $x \in E$.

Proof. Families P and Q from Theorem 3 can consist of one element each: $P = \{p\}$ and $Q = \{q\}$. Then condition (3) means that P is sequentially weaker than Q.

3. Let F be a linear subspace of a linear space E and let P be a family of pseudonorms on E. By $P|_F$ we denote a family of restrictions to the subspace F of pseudonorms from the family P.

THEOREM 4. Let p be a pseudonorm on the subspace F. If q is a pseudonorm on the space E such that $\{p\}$ is sequentially weaker than $\{q\}|_F$, i.e.,

(4)
$$q(x_n) \to 0$$
 implies $p(x_n) \to 0$ for each sequence $x_n \in F$,

then there exists a pseudonorm r on E such that p(x) = r(x) for $x \in F$ and such that $\{r\}$ is sequentially weaker than $\{q\}$, i.e.,

(5)
$$q(x_n) \to 0$$
 implies $r(x_n) \to 0$ for each sequence $x_n \in E$.

Proof. By Corollary 2, there exists a real number c such that $p(x) \leq cq(x)$, for all $x \in F$. It is easy to check that the functional

$$r(x) = \inf \{p(a) + cq(\beta); x = a + \beta, a \in F\}$$

is a pseudonorm on E, i.e., satisfies conditions (1) and (2).

Since

$$r(x) \leq p(0) + cq(x) = cq(x),$$

the pseudonorm r satisfies condition (5). It remains to show that r(x) = p(x) for $x \in F$. If $x \in F$, then

$$r(x) \leq p(x) + cq(0) = p(x).$$

On the other hand, if $x, a \in F$, then $\beta = x - a \in F$. Consequently

(6)
$$p(x) \leq p(\alpha) + p(\beta) \leq p(\alpha) + cq(\beta)$$

and hence

$$p(x) \leq \inf \{p(a) + cq(\beta); x = a + \beta, a \in F\} = r(x),$$

because inequalities (6) hold for all x, a, β such that $x = a + \beta$ and $x, a \in F$. We have proved the identity of pseudonorms r and p on F. This completes the proof.

Let p be a pseudonorm on a subspace F of E and let Q be a family of pseudonorms on E. We say that p is continuous on the subspace F, if $p \in M(Q|_F)$. In general, not every continuous pseudonorm on a subspace can be extended to a continuous pseudonorm on whole space. This means that the equality $(MQ)|_F = M(Q|_F)$ is not always true. A simple example is given in [4].

THEOREM 5. Let Q be a family of pseudonorms on E and let P be a family of pseudonorms on a linear subspace $F \subseteq E$. If P is weaker than $Q|_F$, then there exists a family S of pseudonorms on E weaker than Q and such that $P = S|_F$.

Proof. Let $p \in P$ and let q be a pseudonorm from Q such that $p(x) \leq cq(x)$ for some c > 0 and for $x \in F$. Then

$$\overline{p}(x) = \inf \{ p(a) + cq(\beta); \ x = a + \beta, \ a \in F \}$$

is an LQ-continuous pseudonorm on E such that $\bar{p}(x) \leq cq(x)$ for all $x \in E$. Denote by S the family of such extensions of all pseudonorms from P. The family S satisfies the required conditions.

Now we present an example of a linear space E endowed with a family of pseudonorms Q and a subspace $F \subseteq E$ endowed with a family of pseudonorms P such that P is sequentially weaker than $Q|_F$ and such that there is no family of pseudonorms S on E satisfying the following two conditions:

(I) S is sequentially weaker than Q,

(II) $S|_F$ and P are equivalent.

EXAMPLE. Let E be the space of all real valued functions on the product $N \times [0, 1]$ such that

$$\sup \{ |f(n, t)|; n \in N \} < \infty$$

for all $t \in [0, 1]$. Let Q be the family of all pseudonorms

 $q_t(f) = \sup \{ |f(n, t)|; n \in N \}.$

Let F be the space of all functions $f \in E$ such that for each fixed $n \in N$ the function f(n, t) is constant on the set $[0,1]\setminus A$, where A is countable subset of [0, 1]. By $p_{n,t}$ we denote a pseudonorm

$$p_{n,t}(f) = |f(n,t)|,$$

and by p we denote a pseudonorm

 $p(f) = \sup \{ \sup \{ \sup \{ |f(n, t)|; t \in [0, 1] \}; n \in N \}.$

Let

$$P = \{p\} \cup \{p_{n,t}; n \in N, t \in [0,1]\}.$$

It is easy to check that P is sequentially weaker then $Q|_F$.

Assume, on the contrary, that there exists a family of pseudonorms S on E such that (I) and (II) are satisfied.

The sequence

$$f_i(n, t) = \begin{cases} 0 & \text{if } n < i, t \in [0, 1] \\ 1 & \text{if } n \ge i, t \in [0, 1] \end{cases}$$

is not P-convergent, so, by (II), there exists a pseudonorm $s \in S$ such that $s(g_i) > \varepsilon$ (i = 1, 2, ...) for some $\varepsilon > 0$ and for some subsequence g_i of the sequence f_i . We shall construct, by induction, a sequence A_n of subsets of the interval [0, 1]. Denote by A_1 the interval [0, 1/2], if the sequence

 $s(g_i X_{N \times [0, 1/2]})$

contains infinitely many positive elements. Otherwise, by A_1 we denote the interval (1/2, 1].

Assume that we have fixed the interval $A_n = [k/2^n, (k+1)/2^n]$ (or $((k+1)/2^n, (k+2)/2^n]$), where $0 \le k \le 2^n - 1$. Then, by A_{n+1} we denote the interval $[k/2^n, (2k+1)/2^{n+1}]$ (or $((k+1)/2^n, (2k+3)/2^{n+1}]$), if the sequence

 $s(g_i X_{N \times [k/2^n, (2k+1)/2^{n+1}]})$ (or $s(g_i X_{N \times ((k+1)/2^n, (2k+3)/2^{n+1}]})$) contains infinitely many positive elements. Otherwise, by A_{n+1} we denote the interval $((2k+1)/2^{n+1}, (k+1)/2^n]$ (or $((2k+3)/2^{n+1}, (k+2)/2^n]$).

For the sequence of intervals A_n , constructed in this way, there exists a subsequence h_i of the sequence g_i such that

$$s(h_i X_{N \times A_i}) > 0,$$

for i = 1, 2, Then we put

$$x_i = \frac{h_i X_{N \times A_i}}{s(h_i X_{N \times A_i})}.$$

Now we have to consider two cases.

First case. $\bigcap_{n=1}^{\infty} A_n = \phi$. Then the sequence x_i is LQ-convergent to zero, but it is not LS-convergent to zero, because $s(x_i) = 1$ for all *i*. This is a contradiction.

Second case. $\bigcap_{n=1}^{\infty} A_n = \{t_0\}$ for some $t_0 \in [0, 1]$. Then the sequence

$$y_i = x_i X_{N \times \{t_0\}}$$

is LP-convergent to zero. Consequently $s(y_i)$ tends to zero. Since $s(x_i) = 1$ for all $i \in N$, then $s(x_i - y_i)$ is positive for sufficiently large *i*. The sequence

$$\frac{x_i - y_i}{s(x_i - y_i)}$$

is LQ-convergent to zero and it is not LS-convergent to zero. But S is equentially weaker than Q. This is a contradiction.

One can give a much simpler example, when P is not a total family of pseudonorms, i.e., when the convergence LP is not Hausdorff.

The presented example shows that the converse implication to that in Theorem 1 is not true. In fact it shows much more: none of the families equivalent to family P has that property. Assume, that some family of pseudonorms P_1 on F, equivalent to P, is weaker than $Q|_F$. Then by Theorem 5, there exists a family S on E such that $P_1 = S|_F$ and such that S is weaker than Q. Hence $LP_1 = LP = L(S|_F)$ and $LQ \subset LS$. However we just have shown that it is impossible.

REFERENCES

- A. R. BEDNAREK, J. MIKUSIŃSKI, Convergence and topology, Bull. Acad. Polon. Sci. Sér. Sci. Math. Astronom. Phys. 17 (1969), 437-442.
- [2] H. G. GARNIR, M. DE WILDE, J. SCHMETS, Analyse Fonctionnelle, Tome 1, Birkhäuser Verlag Basel 1968, 26.
- [3] J. MIKUSINSKI, Converggence and locally convex spaces, Bull. Acad. Polon. Sci. Sér. Sci. Math. Astronom. Phys. 23 (1975), 1171-1173.
- [4] P. MIKUSIŃSKI, On pseudonormability of some particular classes of spaces, (to appear).