PIOTR MIKUSINSKI

COMPARISON OF FAMILIES OF PSEUDONORMS

Abstract. Two relations between families of pseudonorms are considered:
relation of being weaker than and relation of being sequentially weaker than. Con-
nections between these concepts are discussed.

L By a convergence G on a set X we mean a mapping from XN to
2X (N = {1,2,...}). We say that a sequence xnis G-convergent to x, and
write xn->-x (G), iff xeG (xn). A real valued function / on X is said to
be G-continuous, iff xn-+ x (G) implies f(xn)-> f(x).

Let G and H be convergences on X. We write GCZH, iff G(xn)G
d H(x,) holds for every sequence xn of elements from X. We say that
G is equal to H, and write G = H,if GC Hand HCG.

In the following E denotes a linear space over the field of real num-
bers R. A non-negative functional p defined on E is called a pseudonorm,
iff

(1) p(Aar) = |/ p(x),
() p(x+y)"*p(x) +piy)

where x,yeE and leR.
Let P be any family of pseudonorms defined on E. Then by LP we
denote a convergence defined as follows:

xn->x(LP) iff p(x—xn) tends to zero for each peP.

By MP we denote the family of all LP-continuous pseudonorms on
E, i.e., p€ MP iff p(x—xn) tends to zero for each sequence xn which is
LP-convergent to x. Clearly, P G MP.
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Let P and Q be any families of pseudonorms on E.

LEMMA 1. If PC Q, then LQ C LP.

LEMMA 2. LP = LMP.

LEMMA 3. LQ C LP iff MP C MQ.

Easy proofs are omitted.

We say that two families of pseudonorms P and Q are equivalent,
if LP = LQ.

The definition of convergence originates from [1] and the definition
of operator L from [3].

2. Let P and Q be two families of pseudonorms on a linear space

E. In [2] the following definition is given.

DEFINITION 1. We say that P is weaker (plus faible) than Q if for
each pseudonorm pe P there exist a pseudonorm qeQ and a positive
number c such that p(x) ~ cq(rr) for all x e E.

If a family of pseudonorms is used only as a description of a con-
vergence, another definition seems to be more adequate.

DEFINITION 2. We say that P is sequentially weaker than Q, if
LQ C LP.

We discuss in this note some relations between both notions.

THEOREM 1. If P is weaker than Q, then P is sequentially weaker
than Q.

Proof. Assume that xn-*x(LQ) and let peP. Then p(x—xn)*

cq(x —xn) for some positive number ¢ and some pseudonorm geQ,
and, consequently p(x—xn)-> o, because q(x—xn)->o.

An example presented in section 3 shows that the converse implica-
tion is not true, in general.

THEOREM 2. If P is sequentially weaker than Q, then P is weaker
than MQ.

Proof. This follows from Lemma 3 and from the evident

LEMMA 4. If P d Q, then P is weaker than Q.

COROLLARY 1 The following conditions are equivalent
1° P is sequentially weaker than MQ
2° P is weaker than MQ
3° P C MQ.

Proof. This follows from Theorem 1, Theorem 2, Lemma 3 and
Lemma 4.

THEOREM 3. Let Q = {qi, q2 =} be a countable family of pseudo-
norms and let

n

Q— 2 ag;n 1’2°"T
If P is sequentially weaker than Q, then P is weaker than Q'
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Proof. Let p be any pseudonorm from the family P. We have to
show that there exist a pseudonorm geQ' and a positive number c such
that

p(x) " cq(x)

for all x e E. Assume that it is not true. Then there exists a sequence
xne E such that, forn —1,2,...,

p(x,) > n2n(xn)
where rn(x) = g,(x). Let
i=1
_nxn
Vn  p(x,,)'

Since the r, are an increasing sequence of pseudonorms and rn(yn)< 1/n,
then yn 0(LQ"). Consequently y,->0(LQ), because LQ'= LQ. But
p(yn) = n,and so vy,,-1* 0 (LP). This contradicts the assumption that P is
sequentially weaker than Q.

COROLLARY 2. If p and g are two pseudonorms on E such that

(3) g(xn) =m0 implies p(xn)-> 0

for each sequence xne £, then p(x) * cq(x) far some positive number c
and for all xeE.

Proof. Families P and Q from Theorem 3 can consist of one ele-
ment each: P = {p} and Q = {q}. Then condition (3) means that P is
sequentially weaker than Q.

3. Let F be a linear subspace of a linear space E and let P be a fa-
mily of pseudonorms on E. By P\F we denote a family of restrictions to
the subspace F of pseudonorms from the family P.

THEOREM 4. Let p be a pseudonorm on the subspace F. If q is
a pseudonorm on the space E such that {p} is sequentially weaker than
M 1§, LE,

4 q(x,,) -> 0 implies p(x,)-> 0 for each sequence x,,e F,

then there exists a pseudonorm r on E such that p(x) —r(x) for xe F
and such that {r} is sequentially weaker than {q}, i.e.,

(5) g(xn) "m0 implies r(x,,)-*» 0 for each sequence xne E.

Proof. By Corollary 2, there exists a real number c such that
p(x)  cq(x), for all xeF. It is easy to check that the functional

r(x) = inf {p(a)+cq(/s); x —a+ (¢, o€f}

is a pseudonorm on E, i.e., satisfies conditions (1) and (2).
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Since
r(x)~ po)+ ca(x) = cq(x),

the pseudonorm r satisfies condition (5). It remains to show that r(x) =
= p(x) for xeF. If xe F, then

r(x)  p(x)+ca() = p(x).
On the other hand, if x,aeF, then (i= x —ae F. Consequently
() p(x) < p(a)+ p() < p(a)+ cq(fi)
and hence
p(x)Ninf {p(d)+ cq(/3); x ~ a+fi, aeF} = r(x),

because inequalities (s) hold for all x, a, fi such that x = <+ /?and x, aeF.
We have proved the identity of pseudonorms r and p on F. This com-
pletes the proof.

Let p be a pseudonorm on a suhspaoe F of E and let Q be a family
of pseudonorms on E. We say that p is continuous on the subspace F,
if p SM(Q|f). In general, not every continuous pseudonorm on a subspace
can be extended to a continuous pseudonorm on whole space. This means
that the equality (MQ)|F = M(Q|F) is not always true. A simple example
is given in [4].

THEOREM 5. Let Q be a jamily of pseudonorms on E and let P be
a family of pseudonorms on a linear subspace F (HE. If P is weaker than
Q|r, then there exists a family S of pseudonorms on E weaker than Q
and such that P = S|F.

Proof. Let p€P and let g be a pseudonorm from Q such that
p(x) » cq(x) for some ¢c> 0 and for x e F. Then

p(x) = inf {p(a)+cq(3); x = a+ft, aeF}

is an LQ-continuous pseudonorm on E such that p(x) * cq(x) fox all
x e E. Denote by S the family of such extensions of all pseudonorms
from P. The family S satisfies the required conditions.

Now we present an example of a linear space E endowed with a fa-
mily of pseudonorms Q and a subspace F (HE endowed with a family
of pseudonorms P such that P is sequentially weaker than Q|F and such
that there is no family of pseudonorms S on E satisfying the following
two conditions:

() S is sequentially weaker than Q,
(1) S|F and P are equivalent.

EXAMPLE. Let E be the space of all real valued functions on the

product N X [o, 1] such that

sup {l/(n, t)); ne N) < oo
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for all te [0,1]. Let Q be the family of all pseudonorms

qt(f) = sup {*(n, t); neN }.

Let F be the space of all functions fe E such that for each fixed
neN the function f(n, t) is constant on the set [0,1]\A, where A is
countable subset of [0,1]. By pn,t we denote a pseudonorm

and by p we denote a pseudonorm

It is easy to check that P is sequentially weaker then Q|f-

Assume, on the contrary, that there exists a family of pseudonorms
S on E such that (I) and (Il) are satisfied.

The sequence

is not P-convergent, so, by (Il), there exists a pseudonorm se S such that
s(9i)> £( = 1,2,.) for some s> o and for some subsequence gi of the
sequence We shall construct, by induction, a sequence An of subsets
of the interval [0, 1]. Denote by Axthe interval [0,1/2], if the sequence

Si9i™N X [0, 1/2])
contains infinitely many positive elements. Otherwise, by Ax we denote
the interval (1/2,1]

Assume that we have fixed the interval An — [k/2n, (fc+ 1)/2n] (or
((k+1)2n, (k+2)/2n]), where 0~ k < 2n—L1 Then, by An+1 we denote the
interval [k/2", (2k+ 1)/2«+i] (or ((k+1)/2", (2k+ 3)/2n+1]), if the sequence
S(o iXNX (or s(9i™N (e'cts)l"Hi)) contains infinitely ma-

ny positive elements. Otherwise, by An+i we denote the interval
((2k+ )/2n+1, (k+1)/2"] (or ((2k+ 3)/2n+1, (k+ 2)/2™)).

For the sequence of intervals An, constructed in this way, there exists
a subsequence Ti, of the sequence gi such that

s(hiXNx A) > o,

for i =1,2,.... Then we put

Now we have to consider two cases.

167



First case. f| An= 0. Then the sequence xt is LQ-convergent to

n=1
zero, but it is not LS-comvergent to zero, because s(xt) —1 for all i. This
is a contradiction.

@
Second case. H An—{t0} for some to€[o,1]. Then the sequence
n=1

Hi —xiXNx

is LP-convergent to zero. Consequently s(y4 tends to zero. Since s(xt) = 1
for all ie N, then s(xt—yt) is positive for sufficiently large i. The se-
quence

Xj-yj

s(Xi~yi)
is LQ-convergent to zero and it is not LS-convergent to zero. But S is
equentia'lly weaker than Q. This is a contradiction.

One can give a much simpler example, when P is not a total family
of pseudonorms, i.e., when the convergence LP is not Hausdorff.

The presented example shows that the converse implication to that
in Theorem 1 is not true. In fact it shows much more: none of the fami-
lies equivalent to family P has that property. Assume, that some family
of pseudonorms Pi on F, equivalent to P, is weaker than Q|F. Then by
Theorem 5, there exists a family S on E such that Pj = S|F and such
that S is weaker than Q. Hence LPt —LP = L(S\F) and LQ (Z LS. How-
ever we just have 'shown that it is impossible.
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