
Annales Mathematicae Silesianae 36 (2022), no. 2, 176–183
DOI: 10.2478/amsil-2022-0014

GENERAL LIMIT FORMULAE
INVOLVING PRIME NUMBERS

Reza Farhadian , Rafael Jakimczuk

Abstract. Let pn be the nth prime number. In this note, we study strictly in-
creasing sequences of positive integers An such that the limit
limn→∞ (A1A2 · · ·An)

1/pn = e holds. This limit formula is in fact a gen-
eralization of some previously known results. Furthermore, some other gener-
alizations are established.

1. Introduction

Euler’s number e, is a mathematical constant approximately equal to
2.718281828459045..., and can be characterized in many ways. The most well-
known of them is the following fundamental and primordial limit formula (see,
e.g., [2], [8])

lim
n→∞

(
1 +

1

n

)n

= e.

A better approximation than the above common limit is obtained by the
limit (see, e.g., [8])

lim
n→∞

[
(n+ 2)n+2

(n+ 1)n+1
− (n+ 1)n+1

nn

]
= e.
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It can also be expressed exactly by the following infinite series and limit
in which n! appears (see, e.g., [6] and [8])

e =

∞∑
n=0

1

n!
= 1 +

1

1
+

1

1 · 2
+

1

1 · 2 · 3
+ . . . ,

and

lim
n→∞

n
n
√
n!

= e.

There are also some limit formulae involving recursive sequences that tend to
the number e. For example, let Fn be the nth Fibonacci number. Following
[3] and [5], we have

lim
n→∞

(
lnFn+1

lnFn

)n

= e,

lim
n→∞

n
√
lnF3 lnF4 · · · lnFn

lnFn
=

1

e
.

This amazing mathematical constant can also be expanded by prime num-
bers. Let pn be the nth prime number, we have (see [4], [9])

lim
n→∞

pn
n
√
p1p2 · · · pn

= e.

Furthermore, the well-known prime number theorem (PNT) in the form
ϑ(x) =

∑
p≤x ln p ∼ x implies that

∑n
i=1 ln pi ∼ pn, which gives (see [1]

and [7])

lim
n→∞

(p1p2 · · · pn)
1

pn = e.(1.1)

On the other hand, from the well-known Stirling’s approximation n! ∼√
2πnn√n

en and by use of the PNT in the form pn ∼ n lnn, we obtain

ln 1 + ln 2 + · · ·+ lnn = n lnn− n+ o(n) ∼ n lnn,(1.2)

which gives

lim
n→∞

(1 · 2 · · ·n)
1

pn = lim
n→∞

(n!)
1

pn = e.(1.3)
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In this paper, we wish to establish sufficient conditions for a strictly in-
creasing sequence An of positive integers satisfying the following limit formula

lim
n→∞

(A1A2 · · ·An)
1

pn = e,(1.4)

that is, a generalization of limit formulae in (1.1) and (1.3). Furthermore,
some other generalizations are established.

2. Main results

In this section we aim to present our main results. We first prove the
following theorem.

Theorem 2.1. Let’s consider a strictly increasing sequence An of positive
integers such that An = n1+o(1). Then, limit formula (1.4) holds.

Proof. We give two proofs.
1) For sake of clarity we put o(1) = g(n). We shall prove that An satisfies

the asymptotic formula

(lnA1 + lnA2 + · · ·+ lnAn) ∼ n lnn.(2.1)

We have (see (1.2))

n∑
i=1

lnAi =

n∑
i=1

ln
(
i1+g(i)

)
=

n∑
i=1

ln i+

n∑
i=1

g(i) ln i

= n lnn+ o(n lnn) +
n∑

i=1

g(i) ln i.(2.2)

Since o(1) = g(i), we have limi→∞ g(i) = 0. Therefore given ε > 0 there exists
N (depending of ε) such that if i > N then |g(i)| < ε. Therefore we have∣∣∣∣∣

n∑
i=1

g(i) ln i

∣∣∣∣∣ ≤
n∑

i=1

|g(i)| ln i ≤
N∑
i=1

|g(i)| ln i+ ε

n∑
i=N+1

ln i

≤
N∑
i=1

|g(i)| ln i+ ε

n∑
i=1

ln i

=

N∑
i=1

|g(i)| ln i+ ε (n lnn+ o(n lnn)) ≤ 2εn lnn.(2.3)
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Hence, since ε > 0 can be arbitrarily small, equation (2.3) gives

n∑
i=1

g(i) ln i = o (n lnn) .(2.4)

Substituting equation (2.4) into equation (2.2) we obtain (2.1). The theorem
is proved.

2) The following proposition is well-known ([11]): Let
∑∞

i=1 bi and
∑∞

i=1 ai
be two series of positive terms such that bi ∼ ai. Then if

∑∞
i=1 ai diverges we

have
∑n

i=1 bi ∼
∑n

i=1 ai.
Now, equation An = n1+o(1) is equivalent to the limit lnAn

lnn → 1. Therefore
the mentioned proposition and equality (1.2) gives (2.1). �

A family of sequences An that satisfy An = n1+o(1) is given in the next
theorem. Before, we need the following definition.

Definition 2.2. Let f(x) be a function defined on the interval [a,∞) such
that f(x) > 0, limx→∞ f(x) = ∞ and with continuous derivative f ′(x) > 0.
The function f(x) is of slow increase if the following condition holds

lim
x→∞

xf ′(x)

f(x)
= 0.(2.5)

Typical functions of slow increase are f(x) = lnx, f(x) = ln lnx, f(x) =
ln2 x, f(x) = ln x

ln ln x . Functions of slow increase are studied in [10].

Theorem 2.3. Let An be a strictly increasing sequence of positive integers
such that An ∼ nf(n), where f(x) is a function of slow increase. Then the
sequence An satisfies limit in (1.4).

Proof. We shall prove (see Theorem 2.1) that An = n1+o(1). We have

An = h(n)nf(n) = nn
lnh(n)
lnn +

ln f(n)
lnn ,

where h(n)→ 1. Now, we have the trivial limit

lim
x→∞

lnh(n)

lnn
= 0

and the limit (use L’Hospital’s rule and (2.5))

lim
x→∞

ln f(x)

lnx
= lim

x→∞

xf ′(x)

f(x)
= 0. �
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Since (prime number theorem) pn ∼ n lnn and lnx is a function of slow
increase, Theorem 2.3 is applicable and we obtain again limit in (1.1). That is,

lim
n→∞

(p1p2 · · · pn)
1

pn = e.

Let us consider the sequence An = cn,k, where cn,k is the nth number with
exactly k(≥ 2) prime factors in their prime factorization. It is well-known
([10]) that these numbers satisfy the property cn,k ∼ nf(n), where f(x) is
a function of slow increase. Therefore limit in (1.4) holds for these numbers.
That is, we have

lim
n→∞

(c1,kc2,k · · · cn,k)
1

pn = e.

Now, we prove two curious theorems that relate an arbitrary sequence An,
such that An+1

An
→ 1, the prime numbers and the e number. These theorems

generalize limit formula in (1.4).

Theorem 2.4. Let k be an arbitrary but fixed positive integer. Let us
consider a strictly increasing sequence An (n ≥ 1) of positive integers such that

An+1 ∼ An.(2.6)

Let pAn be the Anth prime number. The following asymptotic formulae hold:

n∑
i=1

(
Ak

i+1 −Ak
i

)
lnk Ai ∼ (pAn)

k
,(2.7)

lim
n→∞

(
n∏

i=1

A
(Ak

i+1−A
k
i ) ln

k−1 Ai

i

) 1

(pAn)
k

= e.(2.8)

In particular if k = 1, we obtain

n∑
i=1

di lnAi ∼ pAn
,

lim
n→∞

(
n∏

i=1

Adi
i

) 1
pAn

= e,

where di = Ai+1 −Ai.
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Proof. Note that the function lnk x is strictly increasing and continuous
in the interval [1,∞). Therefore the integral mean value theorem applied in
the interval [Ak

n, A
k
n+1] gives∫ Ak

n+1

Ak
n

lnk x dx =
(
Ak

n+1 −Ak
n

)
lnk c,(2.9)

where c is such that

Ak
n < c < Ak

n+1.(2.10)

Note that (see (2.6)) An+1 ∼ An implies

lnAn+1 ∼ lnAn.(2.11)

Properties (2.9) and (2.10) give

(
Ak

n+1 −Ak
n

)
lnk Ak

n <

∫ Ak
n+1

Ak
n

lnk x dx <
(
Ak

n+1 −Ak
n

)
lnk Ak

n+1.(2.12)

Properties (2.12) and (2.11) give

1 <

∫ Ak
n+1

Ak
n

lnk x dx(
Ak

n+1 −Ak
n

)
lnk Ak

n

<
lnk Ak

n+1

lnk Ak
n

=

(
lnAn+1

lnAn

)k

→ 1,

that is, by the compression theorem,∫ Ak
n+1

Ak
n

lnk x dx ∼
(
Ak

n+1 −Ak
n

)
lnk Ak

n.(2.13)

Note that by L’Hospital’s rule we have

lim
x→∞

∫ x

Ak
1
lnk t dt

x lnk x
= 1.(2.14)

Now, we use the same well-known proposition that we use before in the
second proof of Theorem 2.1. This proposition, equalities (2.13), (2.14), (2.6),
(2.11) and the prime number theorem (pn ∼ n lnn) give

kk
n∑

i=1

(
Ak

i+1 −Ak
i

)
lnk Ai ∼

n∑
i=1

∫ Ak
i+1

Ak
i

lnk x dx =

∫ Ak
n+1

Ak
1

lnk x dx

∼ Ak
n+1 ln

k Ak
n+1 ∼ Ak

n ln
k Ak

n = kk (An lnAn)
k ∼ kk (pAn

)
k
,
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that is, property (2.7). Equality (2.8) is an immediate consequence of (2.7).
The theorem is proved. �

It can be seen that Theorem 2.4 gives limit formula (1.3) when Ai = i and
k = 1.

Theorem 2.5. Let k be an arbitrary but fixed positive integer. Let us
consider a strictly increasing sequence An (n ≥ 1) of positive integers such that

An+1 ∼ An.

Let pAi
be the Aith prime number. The following asymptotic formulae hold:

n∑
i=1

(Ai+1 −Ai) p
k−1
Ai

lnAi ∼
1

k
(pAn

)
k
,

lim
n→∞

(
n∏

i=1

A
(Ai+1−Ai)p

k−1
Ai

i

) k

(pAn)
k

= e.

Proof. The proof is the same as the proof of Theorem 2.4. In this case
we use the function xk−1 lnk x. Note that (L’Hospital’s rule) we have

lim
x→∞

∫ x

A1
tk−1 lnk t dt

xk

k lnk x
= 1. �

Note that taking Ai = i and k = 1 in Theorem 2.5 gives limit formula (1.3).
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