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ON WEIGHTS WHICH ADMIT HARMONIC
BERGMAN KERNEL AND MINIMAL SOLUTIONS

OF LAPLACE’S EQUATION

Tomasz Łukasz Żynda

Abstract. In this paper we consider spaces of weight square-integrable and
harmonic functions L2H(Ω, µ). Weights µ for which there exists reproducing
kernel of L2H(Ω, µ) are named ’admissible weights’ and such kernels are named
’harmonic Bergman kernels’. We prove that if only weight of integration is
integrable in some negative power, then it is admissible. Next we construct
a weight µ on the unit circle which is non-admissible and using Bell-Ligocka
theorem we show that such weights exist for a large class of domains in R2.
Later we conclude from the classical result of reproducing kernel Hilbert spaces
theory that if the set {f ∈ L2H(Ω, µ)|f(z) = c} for admissible weight µ
is non-empty, then there is exactly one element with minimal norm. Such an
element in this paper is called ’a minimal (z, c)-solution in weight µ of Laplace’s
equation on Ω’ and upper estimates for it are given.

1. Historic background

It is well-known that the Hilbert space of square-integrable and harmonic
functions is a reproducing kernel Hilbert space. Both cases of real-valued and
complex-valued harmonic functions were examined. We have a direct formula

Received: 23.03.2022. Accepted: 30.08.2022. Published online: 15.09.2022.
(2020) Mathematics Subject Classification: 46E22, 35J15.
Key words and phrases: harmonic Bergman kernel, reproducing kernel Hilbert space,

weight of integration, admissible weight, functional of point evaluation, Laplace’s equation,
minimal solution.

©2022 The Author(s).
This is an Open Access article distributed under the terms of the Creative Commons Attribution License
CC BY (http://creativecommons.org/licenses/by/4.0/).

https://orcid.org/0000-0003-1813-0519
http://creativecommons.org/licenses/by/4.0/


On weights which admit harmonic Bergman kernel ... 239

for the reproducing kernel of such a space on the unit ball in Rn (see e.g. [1])
and estimates for other domains (see e.g. [6], [10]). There is also a paper in
which weighted harmonic Bergman kernel is considered (see [7]), but weights
are very specific — they are some power of distances of points of a domain
from the boundary.

Z. Pasternak Winiarski (see [9]) was the one who considered ’admissible
weights’ for the case of classical Bergman space of holomorphic functions.

Note also that usually term ’minimal solution of a differential equation’
denotes different kind of extremal solutions (see e.g. [3], [12]) than in this
paper.

2. Bergman space of harmonic functions

By domain in the whole paper we will understand an open, connected and
non-empty subset of Rn.

Let Ω be a bounded domain in RN . Let µ : Ω → R be measurable and
positive a.e. (such a function will be called a weight). By L2(Ω, µ) we will
denote the set of (classes of) functions f : Ω → R square integrable in the
sense

||f ||µ :=

∫
Ω

|f(w)|2µ(w)dw <∞.

By L2H(Ω, µ) we will denote the set of functions from L2(Ω, µ) which are
harmonic on Ω and real valued. Such a space will be called the harmonic
Bergman space. Inner product on it can be defined in the following way

〈f |g〉µ :=

∫
Ω

f(w)g(w)µ(w)dw.

Sometimes we will simplify the above notation to 〈f |g〉 and ||f ||, when it will
not cause misunderstanding.

Proposition 2.1. L2H(Ω, 1) is closed in L2(Ω, 1) topology, i.e. it is a
Hilbert space.

Proof. Let D be Laplace’s operator, h be any smooth function with
compact support and fn → f in L2(Ω, 1) topology. Then Dfn = 0 and

0 = 〈Dfn|h〉 = 〈fn|D∗h〉 = 〈fn|Dh〉,



240 Tomasz Łukasz Żynda

because the Laplace’s operator is self-adjoint. Since fn → f in L2(Ω, 1) topol-
ogy, fn converges to f also in weak topology and

0 = 〈f |Dh〉.

Finally

0 = 〈Df |h〉.

Since h is an arbitrary element of a dense subspace of L2(Ω, 1), we conclude
that Df = 0. �

If weight µ is bounded from above and below by non-zero constants, then
topology of L2H(Ω, µ) is the same as topology of L2H(Ω, 1). In particular
L2H(Ω, µ) is complete. Indeed, to see this we just need to write simple in-
equality:

min
w∈Ω

µ(w)

∫
Ω

f(w)dw ≤
∫

Ω

f(w)µ(w)dw ≤ max
w∈Ω

µ(w)

∫
Ω

f(w)dw,

which holds for function f which is non-negative for almost every point of Ω.
We can also prove something more general:

Proposition 2.2. Let µ be a weight on Ω, such that:
(CB) for any compact set X ⊂ Ω there exists CX such that for any z ∈ X

and any f ∈ L2H(Ω, µ) we have

|f(z)| ≤ CX ||f ||µ.

Then L2H(Ω, µ) is a closed subspace of L2(Ω, µ).

Proof. If fn → f in L2H(Ω, µ) topology, then by condition (CB) fn → f
also locally uniformly on Ω. Moreover∫

X

|f(w)|2dw ≤ L(X) sup
z∈X
|f(z)|2,

where L(X) denotes Lebesgue measure of X. Therefore if fn → f locally uni-
formly, then also fn → f in L2H(X, 1) topology. And L2H(X, 1) by Proposi-
tion 2.1 is complete. �

A function K : Ω× Ω→ R, such that
(i) K(z, ·) ∈ L2H(Ω, µ) for any z ∈ Ω;
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(ii) 〈f(·)|K(z, ·)〉µ = f(z) for any z ∈ Ω and any f ∈ L2H(Ω, µ) (reproducing
property);

will be called the harmonic Bergman kernel of space L2H(Ω, µ).
Note that not each Hilbert space of functions is equipped with reproducing

kernel. Example of (weighted) classical Bergman space of holomorphic func-
tions without corresponding reproducing kernel was given by Z. Pasternak-
Winiarski in [9]. However, as in the case of classical Bergman space:

Theorem 2.1. The following conditions are equivalent:
(i) there exists harmonic Bergman kernel of L2H(Ω, µ);
(ii) condition (CB) holds.

Proof. (i) ⇒ (ii) By the reproducing property and Cauchy inequality

|f(z)| = |〈f(·)|K(z, ·)〉µ| ≤ ||f ||µ||K(z, ·)||µ ≤
√
K(z, z)||f ||µ.

(Note that

||K(z, ·)||2µ = 〈K(z, ·)|K(z, ·)〉 = K(z, z)

by the reproducing property.) We can take

CX := max
z∈X

√
K(z, z)

for any compact X ⊂ Ω, which is finite by general theory of reproducing
kernels.

(ii) ⇒ (i) Condition (ii) implies that functionals of point evaluation, i.e.
functionals

Ez : L2H(Ω, µ) 3 f 7→ f(z) ∈ R

are continuous. If functionals of point evaluation are continuous, then by the
Riesz representation theorem for any z ∈ Ω there exists ez ∈ L2H(Ω, µ),
such that

〈f |ez〉 = f(z)

for any f ∈ L2H(Ω, µ). Function K defined in the following way

K(z, w) := ez(w)

is the harmonic Bergman kernel of considered space. �

Weight µ for which condition (CB) is satisfied will be called an admissible
weight.
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2.1. Sufficient condition for a weight to be admissible

In the case of the classical Bergman space of holomorphic functions
(see [9]), if only weight is integrable in some negative power, then it is admis-
sible. The following sufficient condition for existence of harmonic Bergman
kernel holds:

Theorem 2.2. Let µ be a weight on Ω, such that there exists a ≥ 1, for
which ∫

Ω

1

µa(w)
dw <∞.

Then µ is admissible.

The difference comes from the fact that if f is holomorphic, then |f |p is
subharmonic for any p > 0, but if f is (real) harmonic, then |f |p is subhar-
monic for any p ≥ 1 (see [8]).

Proof. Let z ∈ Ω be fixed. Let r > 0 be sufficiently small for a ball
B(z, r) := {w ∈ RN ||w− z| < r} to lie in Ω. Let p := 1+a

a and q := 1 + a. Let
now f ∈ L2H(Ω, µ). Then

2

p
≥ 1

and by the mean value theorem for subharmonic functions we have

|f(z)|
2
p ≤

Γ(n2 + 1)

π
n
2 rn

∫
B(z,r)

|f(w)|
2
p dw.

(Note that the volume of n-dimensional ball of radius r is equal to

π
n
2 rn

Γ(n2 + 1)
.

It is a classical result. See e.g. [4] for more details.)
Of course∫

B(z,r)

|f(w)|
2
p dw =

∫
B(z,r)

|f(w)|
2
pµ(w)

1
pµ(w)−

1
p dw.
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Since p, q > 1 and 1
p + 1

q = 1, we may use Hölder’s inequality:

∫
B(z,r)

|f(w)|
2
pµ(w)

1
pµ(w)−

1
p dw

≤

(∫
B(z,r)

|f(w)|2µ(w)dw

) 1
p
(∫

B(z,r)

µ(w)−
q
p dw

) 1
q

.

So we have

|f(z)| ≤

(∫
B(z,r)

µ(w)−
q
p dw

) p
2q (

Γ(n2 + 1)

π
n
2 rn

) p
2

||f ||µ.

Finally

(2.1) |f(z)| ≤

(∫
B(z,r)

µ(w)−adw

) 1
2a (

Γ(n2 + 1)

π
n
2 rn

) 1+a
2a

||f ||µ.

As we can see, constant Cz in the proof depends only on the distance of point
z to the boundary. Since µ−a is integrable on whole Ω, we conclude that in
fact for any compact set X ⊂ Ω we can fix CX , such that condition (CB)
holds. �

2.2. Example of a weight which is not admissible

An example of a weight for which there is no reproducing kernel of cor-
responding classical (weighted) Bergman space was found by Z. Pasternak-
Winiarski (see [9]). Here we will use a similar idea to give an example of
non-admissible weight for harmonic Bergman space. We will need the follow-
ing theorem by Runge (see [11] for more details):

Theorem 2.3. Let X ⊂ C be a compact set such that C \X is connected.
Let f : X → C be continuous on X and holomorphic on the interior of X.
Then f is a uniform limit of a sequence of holomorphic polynomials on X.

Let Ω be the unit disk in R2. Let

An := {(x, y) ∈ R2 : ||(x, y)|| < 2−n} ∪ {(x, y) ∈ R2 : |y| < 2−n ∧ 0 < x < 1},
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where || · || is the classical norm on R2. Let

Mn := (Ω \An) ∪An+1.

Now let fn : Mn → R2 be defined in the following way

fn(x, y) :=

{
1 + 1

n for (x, y) ∈ An+1,

0 for (x, y) ∈ Ω \An.

By Theorem 2.3 there exist holomorphic polynomials Gn such that

|Gn(x, y)− fn(x, y)| < 1

n

for any (x, y) ∈Mn. Bearing in mind that a sequence of holomorphic functions
is convergent if and only if its real and imaginary part are convergent and
imaginary part of fn is zero, we conclude that in fact there exist harmonic
polynomials gn such that

|gn(x, y)− fn(x, y)| < 1

n

for any (x, y) ∈ Mn. It implies that |gn(x, y)| < 1
n for (x, y) ∈ Ω \An and

1 < |gn(x, y)| < 1 + 2
n for (x, y) ∈ An+1. Now let us define polynomials:

hn(x, y) :=
gn(x, y)

gn(0, 0)
.

Since |gn(0, 0)| > 1, hn is well-defined. Moreover(
1 +

2

n

)−1

< |hn(x, y)| < 1 +
2

n

on An+1 and

|hn(x, y)| < 1

n

on Ω \An. Now let us denote

Dn := Ω ∩An.
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Then we may define a weight:

(2.2) µ(x, y) :=


1 if (x, y) ∈ Ω \D1,

0 if x ∈ [0, 1) ∧ y = 0,

min
{

1, 1
|hn(x,y)|2

}
if (x, y) ∈ Dn \Dn+1.

Since µ is bounded from above (by 1), hn ∈ L2H(Ω, µ) for any n ∈ N, as
harmonic polynomials. It is easy to show that

|hn(x, y)|2µ(x, y) < 9

and

lim
n→∞

|hn(x, y)|2µ(x, y) = 0.

Therefore, by the Lebesgue Majorized Convergence Theorem we have∫
Ω

lim
n→∞

|hn(x, y)|2µ(x, y)dw = lim
n→∞

∫
Ω

|hn(x, y)|2µ(x, y)dw = 0.

By its own definition, |hn(0, 0)| = 1 for any n ∈ N, but ||hn||µ → 0. It means
that functional of point evaluation L2H(Ω, µ) 3 f 7→ f(0, 0) ∈ R is not
continuous and by Theorem 2.1 harmonic Bergman kernel of L2H(Ω, µ) does
not exist.

2.3. Weights and biholomorphisms

Here we will need the following theorem:

Theorem 2.4. Let Ω1,Ω2 be domains in CN of one of the following types:
Type 1: smooth bounded pseudoconvex domain with the real analytic bound-

ary;
Type 2: smooth bounded strictly pseudoconvex domain and (more generally);
Type 3: smooth bounded domain for which a ∂-operator exists and satisfies

subelliptic estimates.
Then any biholomorphic mapping between Ω1 and Ω2 extends smoothly to the
boundary.

This theorem was proved by S. Bell and E. Ligocka in [2]. Note that each
(geometrically) convex domain is pseudoconvex and moreover in C1 each do-
main is pseudoconvex. (See [5] or [8] for more details.)
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In the following two theorems we are going to use the same symbol for
biholomorphism and its smooth prolongation to the boundary, if it exists,
which should not be misleading.

Theorem 2.5. Let Ω1,Ω2 ⊂ C1 = R2 be biholomorphic domains of Type
1, 2 or 3 from Theorem 2.4. Let Φ: Ω1 → Ω2 be a biholomorphism and µ be a
weight on Ω2. Then
(i) for any g measurable and non-negative almost everywhere we have:∫

Ω2

g(w)µ(w)dw <∞⇔
∫

Ω1

(g ◦ Φ)(w)(µ ◦ Φ)(w)dw <∞;

in particular, h ∈ L2H(Ω2, µ) if and only if h ◦ Φ ∈ L2H(Ω1, µ ◦ Φ).
(ii) µ is admissible on Ω2 if and only if µ ◦ Φ is admissible on Ω1.

Proof. (i) First let us recall that

(2.3)
∫

Ω1

(g ◦ Φ)(w)(µ ◦ Φ)(w)|det JCΦ(w)|2dw =

∫
Ω2

g(w)µ(w)dw.

By the fact that u := |det JCΦ| is a smooth function on compact set Ω1 (see
Theorem 2.4), we have

C1

∫
Ω1

(g ◦ Φ)(w)(µ ◦ Φ)(w)dw ≤
∫

Ω1

(g ◦ Φ)(w)(µ ◦ Φ)(w)|det JCΦ|2dw

≤ C2

∫
Ω1

(g ◦ Φ)(w)(µ ◦ Φ)(w)dw,

where C1 := minw∈Ω u(w) > 0 and C2 := maxw∈Ω u(w). By (2.3) we can
change integral in the middle to get:

C1

∫
Ω1

(g ◦ Φ)(w)(µ ◦ Φ)(w)dw ≤
∫

Ω2

g(w)µ(w)dw(2.4)

≤ C2

∫
Ω1

(g ◦ Φ)(w)(µ ◦ Φ)(w)dw.

If the integral on the right hand side is finite, then the integral in the middle
must be also finite and if the integral in the middle is finite, then the integral
on the left hand side must be also finite.

For the proof of the second part of (i) we just recall that a composition of
harmonic and holomorphic function is a harmonic function.
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(ii) Since Φ is biholomorphism, we need only to show implication in one
direction.

If µ is admissible on Ω2, then for any compact set X ⊂ Ω2, w ∈ X and
any f ∈ L2H(Ω2, µ) we have

(2.5) |f(w)| ≤ CX

√∫
Ω2

|f(w)|2µ(w)dw.

By using (2.4) for inequality (2.5) we gain

|(f ◦ Φ)(w̃)| ≤ CX
√
C2

√∫
Ω1

|f ◦ Φ(w)|2(µ ◦ Φ)(w)dw,

for Ω1 ⊃ Y := Φ−1(X), w̃ := Φ−1(w) ∈ Y , so (CB) is satisfied for CY :=
CX
√
C2. �

Corollary 2.1. For any simply-connected bounded domain Ω in R2 = C
which is of Type 1-3 there exists a non-admissible weight on Ω.

Proof. By the Riemann Mapping Theorem there exists biholomorphism
Φ: Ω → K(0, 1). By Theorem 2.4 Φ has a smooth prolongation to ∂Ω. By
Theorem 2.5 the weight µ ◦ Φ, where µ is a weight constructed in (2.2), is
non-admissible weight on Ω. �

3. Reproducing kernel Hilbert space and minimal norm property

The content of this section is true for general reproducing kernel Hilbert
spaces and well-known. We decided, however, to give details for completness.
In the whole section we will assume that µ is admissible weight, without
further reminding.

Theorem 3.1. If Kµ(z, z) 6= 0, then

kz(·) :=
Kµ(z, ·)
Kµ(z, z)

is the only element of H with the following properties:
(i) kz(z) = 1;
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(ii) if mz ∈ H, mz(z) = 1 and ||mz|| ≤ ||kz||, then mz = kz. Moreover

||kz|| =
1√

Kµ(z, z)
.

Proof. By the reproducing property and the Cauchy inequality for any
f ∈ H, z ∈ U we have

|f(z)| = |〈f(w)|Kµ(z, w)〉| ≤ ||f(w)|| · ||Kµ(z, ·)||,

i.e.

(3.1) |f(z)| ≤
√
Kµ(z, z)||f ||.

Moreover
√
Kµ(z, z) is the smallest possible constant for which inequality

(3.1) holds. Indeed, let Ez : L2H(Ω, µ) 3 f 7→ f(z) ∈ C be functional of point
evaluation. By the Riesz correspondence theorem,

||Ez||∗ = |Kµ(z, ·)||,

but

||Kµ(z, ·)|| =
√
Kµ(z, z).

At once ||Kµ(z, ·)||µ is by definition the smallest constant for which inequality
(3.1) holds.

Now we have
1√

Kµ(z, z)
≤ ||f ||
|f(z)|

=

∣∣∣∣∣∣∣∣ f

f(z)

∣∣∣∣∣∣∣∣ .
But ∣∣∣∣∣

∣∣∣∣∣Kµ(z, w)

Kµ(z, z)

∣∣∣∣∣
∣∣∣∣∣
2

=
1

Kµ(z, z)

by the reproducing property. To end the proof we need only to show that,
if ||mz|| = ||kz||, then mz = kz. Note that for fz := 1

2(mz + kz) we have
fz(z) = 1 and

||fz|| =
∣∣∣∣∣∣∣∣12(mz + kz)

∣∣∣∣∣∣∣∣ ≤ 1

2
(||mz||+ ||kz||) = ||kz||.

On the other hand we showed above that

||fz|| ≥ ||kz||,
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so ||fz|| = ||kz||. Since in our case the triangle inequality is in fact an equality
and each Hilbert space is strictly convex, there exists α ∈ C, such that mz =
αkz. Thus ∣∣∣∣∣∣∣∣12(mz + kz)

∣∣∣∣∣∣∣∣ =
1

2
(α+ 1)||kz||.

Since

||fz|| = ||kz||,

we see that α = 1 and in conclusion mz = kz. �

In fact, something more general is true.

Proposition 3.1. Let c ∈ R. In the set Vz,c={f ∈L2H(Ω, µ)|f(z) = c}, if
non-empty, there is exactly one element with minimal norm. Such an element
will be called a (z,c)-minimal solution of Laplace’s equation in weight µ on Ω.

Proof. For c = 1 it is just a consequence of Theorem 3.1. It is obvious
that for c 6= 0, the linear operator

Af := cf

is a bijection between Vz,1 and V µz,c, and

||Af ||µ = |c| · ||f ||µ.

Therefore in V µz, c there is exactly one element fc with minimal norm and

fc = cf1,

where f1 is the unique element of Vz,1 with minimal norm.
Now let us consider the case c = 0. Of course zero is the only element of

V µz, 0 with minimal norm. �

Now we will investigate the case in which f(z) = 0 for each f ∈ H and
some z ∈ Ω.

Theorem 3.2. The following conditons are equivalent for a point z ∈ Ω:
(i) f(z) = 0 for any f ∈ L2H(Ω, µ);
(ii) Kµ(z, z) = 0;
(iii) Kµ(z, ·) ≡ 0.
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Proof. (i)⇒ (ii) If for some z ∈ U we have f(z) = 0 for any f ∈ H, then
in particular for g(·) = Kµ(z, ·) we have g(z) = 0.

(ii) ⇒ (iii) Because

||Kµ(z, ·)||2 = Kµ(z, z) = 0

and integrated function is continuous and non-negative, Kµ(z, ·) ≡ 0 on U .
(iii)⇒ (i) By the reproducing property, for any f ∈ L2H(Ω, µ), we have

f(z) = 〈f(w)|Kµ(z, w)〉 = 〈f |0〉 = 0. �

4. Upper estimates for minimal solutions of Laplace’s equation

By Proposition 3.1 in the set of weight square-integrable solutions of
Laplace’s equation which take value equal to c at some given point, if not
empty, there exists exactly one element with minimal norm.

Theorem 4.1. Let µ be a weight on Ω ⊂ Rn, such that∫
Ω

1

µ(x)
dx <∞

and ∫
Ω

µ(x)dx <∞.

Let f denote minimal (z, c)-solution in weight µ of Laplace’s equation on Ω.
Then

|f(w)| ≤ |c|

√∫
Ω

µ(x)dx

√∫
Ω

1

µ(x)
dx

Γ(n2 + 1)

π
n
2 δ(w)n

,

where δ(w) denotes the distance of w to the boundary of Ω. In fact

|f(w)| ≤ |c|

√∫
Ω

µ(x)dx

√∫
B(w,εδ(w))

1

µ(x)
dx

Γ(n2 + 1)

π
n
2 (εδ(w))n

for any 0 < ε ≤ 1.
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In particular, if µ is equal to 1 almost everywhere, then

|f(w)| ≤ |c|L(Ω)
Γ(n2 + 1)

π
n
2 δ(w)n

,

where L(Ω) denotes the Lebesgue measure of Ω.

Note that the estimate does not depend on point z.

Proof. First let us consider the situation when c = 1. By Theorem 3.1

|f(w)| =
∣∣∣∣Kµ(z, w)

Kµ(z, z)

∣∣∣∣ .
By the Cauchy–Schwarz inequality

|Kµ(z, w)| = |〈Kµ(z, ·)|Kµ(w, ·)〉| ≤ ||Kµ(z, z)|| · ||Kµ(w,w)||

=
√
Kµ(z, z)

√
Kµ(w,w)

and in consequence

|f(w)| ≤
√
Kµ(w,w)√
Kµ(z, z)

.

(Remember that ||Kµ(z, ·)||2 = 〈Kµ(z, ·)|Kµ(z, ·)〉 = Kµ(z, z) by the repro-
ducing property.)

By the Riesz representation theorem ||Ew||∗ = ||Kµ(w, ·)|| =
√
Kµ(w,w).

On the other hand ||Ew||∗ is the smallest real number Cw for which inequality

|f(w)| ≤ Cw||f ||µ

holds for any f ∈ L2H(Ω, µ). Combining this with inequality (2.1) for a = 1,
we get

√
Kµ(w,w) ≤

√∫
B(w,r)

1

µ(x)
dx

Γ(n2 + 1)

π
n
2 rn

for r ≤ δ(w). Moreover by the reproducing property and the Cauchy–Schwarz
inequality

1 = |〈1|Kµ(z, ·)〉| ≤ ||1|| · ||Kµ(z, ·)|| =

√∫
Ω

µ(x)dx
√
Kµ(z, z).
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Therefore

1√
Kµ(z, z)

≤

√∫
Ω

µ(x)dx.

If c 6= 1, c 6= 0, then a minimal (z, c)-solution in weight µ is equal to
minimal (z, 1)-solution in weight µ multiplied by c, as in the proof of theorems
from the previous section.

If c = 0, then inequality from the theorem is trivial. �
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