STRONG m-CONVEXITY OF SET-VALUED FUNCTIONS

Teodoro Lara (iD, Nelson Merentes, Roy Quintero, Edgar Rosales

Abstract

In this research we introduce the concept of strong m-convexity for set-valued functions defined on m-convex subsets of real linear normed spaces, a variety of properties and examples of these functions are shown, an inclusion of Jensen type is also exhibited.

1. Introduction

In this research we introduce the notion of a strongly m-convex set-valued function, which represents a generalization of the usual concept of m-convexity for the real case that can be found in [3] and references therein. The idea of this new approach involves the concepts of strong convexity and m-convexity of set-valued functions. This is the main reason for which we start off by recalling both definitions. Along this paper X, Y will denote any real normed linear spaces, D an m-convex subset of $X\left(\left[\begin{array}{l}1\end{array}\right), B\right.$ the closed unit ball in Y and $n(Y)$ the family of all nonempty subsets of Y.

[^0]Definition 1.1 (4]). Let $c>0$. A set-valued function $F: D \rightarrow n(Y)$ is called strongly convex with modulus c if it satisfies the inclusion

$$
t F(x)+(1-t) F(y)+c t(1-t)\|x-y\|^{2} B \subseteq F(t x+(1-t) y)
$$

for all $x, y \in D$ and $t \in[0,1]$.
Definition 1.2 ([3]). Let $m \in[0,1]$. A set-valued function $F: D \rightarrow n(Y)$ is called m-convex if the inclusion

$$
t F(x)+m(1-t) F(y) \subseteq F(t x+m(1-t) y)
$$

holds for all $x, y \in D$ and $t \in[0,1]$.
Our first definition runs as follows:
Definition 1.3. Let $c>0$ and $m \in[0,1]$. A set-valued function $F: D \rightarrow$ $n(Y)$ is called strongly m-convex with modulus c if

$$
\begin{equation*}
t F(x)+m(1-t) F(y)+c m t(1-t)\|x-y\|^{2} B \subseteq F(t x+m(1-t) y) \tag{1.1}
\end{equation*}
$$

for any $x, y \in D, t \in[0,1]$.
Remark 1.4. Notice that (1.1) is equivalent to

$$
m t F(x)+(1-t) F(y)+c m t(1-t)\|x-y\|^{2} B \subseteq F(m t x+(1-t) y)
$$

with x, y, t as before.
REmARK 1.5. If a set-valued function F is strongly m-convex with modulus c, then it is also m-convex. It follows immediately from the fact that $0 \in B$.

The converse in the foregoing remark is not true. Namely, we have the following.

Example 1.1. The set-valued function $F:[0,1] \subseteq \mathbb{R} \rightarrow n(\mathbb{R})$, given by $F(x)=[0, x]$, is m-convex $([3$, Example 2.17]). But for all $x, y, t \in[0,1]$

$$
\begin{aligned}
t F(x)+ & m(1-t) F(y)+c m t(1-t)\|x-y\|^{2} B \\
& =\left[-c m t(1-t)\|x-y\|^{2}, t x+m(1-t) y+c m t(1-t)\|x-y\|^{2}\right]
\end{aligned}
$$

while that

$$
F(t x+m(1-t) y)=[0, t x+m(1-t) y]
$$

so F can not be a strongly m-convex function.

Example 1.2. If $b>0$ and $f, g:[0, b] \rightarrow \mathbb{R}$ are two real functions, f and $-g$ being strongly m-convex with the same modulus ([2]) and $f \leq g$ on [$0, b]$, it is not difficult to verify (by reasoning as in Example 2.2 from [3]) that the set-valued functions $F_{1}, F_{2}, F_{3}:[0, b] \subseteq \mathbb{R} \rightarrow n(\mathbb{R})$ given by

$$
F_{1}(x)=[f(x), g(x)], \quad F_{2}(x)=[f(x),+\infty), \quad F_{3}(x)=(-\infty, g(x)]
$$

are strongly m-convex (with the same modulus). So, for example, functions $f_{1}, g_{1}:[0,1] \rightarrow \mathbb{R}$ defined as $f_{1}(x)=0$ and $g_{1}(x)=-1$ are clearly m convex ([5, [6]), while functions $f(x)=\frac{1}{2} x^{2}, g(x)=1-\frac{1}{2} x^{2}$ are such that f and $-g$ are strongly m-convex with modulus $c=\frac{1}{2}$; moreover $f \leq g$ on $[0,1]$. Consequently the set-valued function $F:[0,1] \rightarrow n(\mathbb{R})$ defined by $F(x)=\left[\frac{1}{2} x^{2}, 1-\frac{1}{2} x^{2}\right]$ is strongly m-convex with modulus $\frac{1}{2}$, and so is $G(x)=$ $\left[\frac{1}{2} x^{2}-1,-\frac{1}{2} x^{2}\right]$. The graphs of F and G are shown in Figures 1 and 2 respectively.

Figure 1. Graph of F

Figure 2. Graph of G

2. Results

In this section we present some set-properties of the unit ball B. At the same time, a characterization of the family of all the strongly m-convex functions is given and illustrate with an interesting example. We begin with
a lemma related to two well-known properties of convexity whose proofs are omitted.

Lemma 2.1. (1) If $0 \leq \alpha_{1} \leq \alpha_{2}$, then $\alpha_{1} B \subseteq \alpha_{2} B$.
(2) If $\alpha_{1} \alpha_{2} \geq 0$, then $\left(\alpha_{1}+\alpha_{2}\right) B=\alpha_{1} B+\alpha_{2} B$.

Proposition 2.2. A set-valued function $F: D \rightarrow n(Y)$ is strongly m convex with modulus c if and only if
(2.1) $t F\left(A_{1}\right)+m(1-t) F\left(A_{2}\right)+c m t(1-t)\left\|A_{1}-A_{2}\right\|^{2} B \subseteq F\left(A_{1}+m(1-t) A_{2}\right)$
for all $A_{1}, A_{2} \subseteq D$ and $t \in[0,1]$, where $F\left(A_{i}\right)=\left\{F(x): x \in A_{i}\right\} \quad(i=1,2)$ and $\left\|A_{1}-A_{2}\right\|=\inf \left\{\|x-y\|: x \in A_{1}, y \in A_{2}\right\}$.

Proof. (\Rightarrow) Let A_{1}, A_{2} be two fixed but arbitrary subsets of D and $z \in$ $t F\left(A_{1}\right)+m(1-t) F\left(A_{2}\right)+c m t(1-t)\left\|A_{1}-A_{2}\right\|^{2} B$. Then

$$
\begin{equation*}
z \in t F(a)+m(1-t) F(b)+c m t(1-t)\left\|A_{1}-A_{2}\right\|^{2} B \tag{2.2}
\end{equation*}
$$

for some $a \in A_{1}$ and $b \in A_{2}$. Since $0 \leq\left\|A_{1}-A_{2}\right\| \leq\|a-b\|, 0 \leq \operatorname{cmt}(1-$ $t)\left\|A_{1}-A_{2}\right\|^{2} \leq c m t(1-t)\|a-b\|^{2}$ and from Lemma 2.1(1), the inclusion $c m t(1-t)\left\|A_{1}-A_{2}\right\|^{2} B \subseteq c m t(1-t)\|a-b\|^{2} B$ takes place. Hence,

$$
\begin{align*}
& t F(a)+m(1-t) F(b)+c m t(1-t)\left\|A_{1}-A_{2}\right\|^{2} B \tag{2.3}\\
& \quad \subseteq t F(a)+m(1-t) F(b)+c m t(1-t)\|a-b\|^{2} B
\end{align*}
$$

Furthermore, since $t a+m(1-t) b \in t A_{1}+m(1-t) A_{2}$, it is clear that

$$
\begin{equation*}
F(t a+m(1-t) b) \subseteq F\left(t A_{1}+m(1-t) A_{2}\right) \tag{2.4}
\end{equation*}
$$

So, (2.1) follows from (2.2), 2.3), the strong m-convexity of F and (2.4).
(\Leftarrow) Let $x, y \in D$ and $t \in[0,1]$. The strong m-convexity with modulus c of F is obtained by considering in (2.1) the singletons $A_{1}=\{x\}$ and $A_{2}=\{y\}$.

Proposition 2.3. Let $b \in \mathbb{R} \backslash\{0\}$ and $D=[\min \{0, b\}, \max \{0, b\}] \subseteq \mathbb{R}$. If $F: D \rightarrow n(Y)$ is strongly m-convex with modulus c, and $0<n \leq m<1$, then F is strongly n-convex with modulus c.

Proof. If $b<0$, then $D=[b, 0]$. Let $t \in[0,1]$ and $x, y \in D$ with $x \leq y$. So, $x-\frac{n}{m} y \leq x-y \leq 0$ and therefore, $\|x-y\|^{2} \leq\left\|x-\frac{n}{m} y\right\|^{2}$. Since F is strongly m-convex with modulus c, F is m-convex (Remark 1.5). Thus, from [3. Proposition 2.11], Lemma 2.1(1), and the strong m-convexity of F,

$$
\begin{aligned}
t F(x)+ & n(1-t) F(y)+c n t(1-t)\|x-y\|^{2} B \\
& =t F(x)+m(1-t)\left(\frac{n}{m}\right) F(y)+c m t(1-t)\left(\frac{n}{m}\right)\|x-y\|^{2} B \\
& \subseteq t F(x)+m(1-t) F\left(\frac{n}{m} y\right)+c m t(1-t)\left\|x-\frac{n}{m} y\right\|^{2} B \\
& \subseteq F(t x+n(1-t) y)
\end{aligned}
$$

And for $y<x,\|x-y\|^{2} \leq\left\|\frac{n}{m} x-y\right\|^{2}$, hence

$$
\begin{aligned}
n t F(x)+ & (1-t) F(y)+c n t(1-t)\|x-y\|^{2} B \\
& =m t\left(\frac{n}{m}\right) F(x)+(1-t) F(y)+c m t(1-t)\left(\frac{n}{m}\right)\|x-y\|^{2} B \\
& \subseteq m t F\left(\frac{n}{m} x\right)+(1-t) F(y)+c m t(1-t)\left\|\frac{n}{m} x-y\right\|^{2} B \\
& \subseteq F(n t x+(1-t) y)
\end{aligned}
$$

where the last inclusion arises from the strong m-convexity of F and Remark 1.4 .

If $b>0, D=[0, b]$ and the proof runs in a similar way, this time for $x \leq y$, we obtain $\|x-y\|^{2} \leq\left\|\frac{n}{m} x-y\right\|^{2}$, and the result follows from Remark 1.4 , while for $y<x,\|x-y\|^{2} \leq\left\|x-\frac{n}{m} y\right\|^{2}$ and the conclusion follows from 1.1.

For the next proposition, X is a real inner product space, $c c(Y)$ denotes the subfamily of $n(Y)$ of all convex closed sets. We also recall the cancellation law of Rådström ([4]):

Lemma 2.4. Let A, B, C be subsets of X such that $A+C \subseteq B+C$. If B is convex closed and C is nonempty bounded, then $A \subseteq B$.

Proposition 2.5. If $F: D \subseteq X \rightarrow n(Y)$ is m-convex, $c>0$, and there exists a function $G: D \rightarrow c c(Y)$ such $F(x)=G(x)+c\|x\|^{2} B$ for all $x \in D$, then G is strongly m-convex with modulus c.

Proof. Let $x, y \in D$ and $t \in[0,1]$. By the m-convexity of F,

$$
\begin{aligned}
t\left[G(x)+c\|x\|^{2} B\right]+m(1-t) & {\left[G(y)+c\|y\|^{2} B\right] } \\
& \subseteq G(t x+m(1-t) y)+c\|t x+m(1-t) y\|^{2} B
\end{aligned}
$$

which in turn implies, multiplying by $t+m(1-t)$ and applying Lemma 2.1(1),

$$
\begin{align*}
{[t+m(1-} & t)](t G(x)+m(1-t) G(y)) \tag{2.5}\\
& +[t+m(1-t)]\left(c t\|x\|^{2} B+c m(1-t)\|y\|^{2} B\right) \\
& \subseteq[t+m(1-t)] G(t x+m(1-t) y)+c\|t x+m(1-t) y\|^{2} B
\end{align*}
$$

or

$$
\begin{aligned}
& {[t+m(1-t)]\left(t\|x\|^{2}+m(1-t)\|y\|^{2}\right) } \\
&=m t(1-t)\|x-y\|^{2}+\|t x+m(1-t) y\|^{2}
\end{aligned}
$$

So, by this equality, (2.5), and Lemma 2.1(2), we obtain

$$
\begin{gathered}
{[t+m(1-t)](t G(x)+m(1-t) G(y))+c m t(1-t)\|x-y\|^{2} B+c\|t x+m(1-t) y\|^{2} B} \\
\subseteq[t+m(1-t)] G(t x+m(1-t) y)+c\|t x+m(1-t) y\|^{2} B
\end{gathered}
$$

On the other hand, Lemma 2.1 (1) implies

$$
\begin{equation*}
[t+m(1-t)] c m t(1-t)\|x-y\|^{2} B \subseteq c m t(1-t)\|x-y\|^{2} B \tag{2.6}
\end{equation*}
$$

Then, by Lemma 2.4 and 2.6,

$$
\begin{aligned}
{[t+m(1-t)](t G(x)+m(1-t) G(y)} & \left.+c m t(1-t)\|x-y\|^{2} B\right) \\
& \subseteq[t+m(1-t)] G(t x+m(1-t) y)
\end{aligned}
$$

or better,

$$
t G(x)+m(1-t) G(y)+c m t(1-t)\|x-y\|^{2} B \subseteq G(t x+m(1-t) y)
$$

Example 2.1. The set-valued function $F:[0,1] \subseteq \mathbb{R} \rightarrow n(\mathbb{R})$, defined by $F(x)=[0,1]$ is m-convex ([3, Example 2.2]). Moreover, the function $G:[0,1] \subseteq \mathbb{R} \rightarrow c c(\mathbb{R})$ given by $G(x)=\left[\frac{1}{2} x^{2}, 1-\frac{1}{2} x^{2}\right]$, is such that

$$
F(x)=[0,1]=G(x)+\frac{1}{2} x^{2}[-1,1]
$$

Hence, from Proposition 2.5, G is a strongly m-convex function with modulus $1 / 2$. Note that this fact agrees with Example 1.2 .

3. More results

We finish the paper with this section, in which some properties of the union, intersection and sum of strongly m-convex set-valued functions are shown same as a Jensen type inclusion for this class of functions.

Proposition 3.1. Let $F_{1}, F_{2}: D \rightarrow n(Y)$ be two strongly m-convex functions with modulus c, such that

$$
\begin{equation*}
F_{1}(x) \subseteq F_{2}(x) \quad\left(\text { or } F_{2}(x) \subseteq F_{1}(x)\right) \tag{3.1}
\end{equation*}
$$

for each $x \in D$. Then the union function ([3, Definition 2.18]) of F_{1} and F_{2} is also strongly m-convex function with modulus c.

Proof. It is straightforward from assumption (3.1).
The following example shows that the condition (3.1) can not be omitted.
Example 3.1. In Example 1.2 was shown that the functions $F, G:[0,1] \rightarrow$ $n(\mathbb{R})$ defined by $F(x)=\left[\frac{1}{2} x^{2}, 1-\frac{1}{2} x^{2}\right]$ and $G(x)=\left[\frac{1}{2} x^{2}-1,-\frac{1}{2} x^{2}\right]$, are strongly m-convex with modulus $\frac{1}{2}$. Nevertheless, the function $F \cup G$ is not, since it is not m-convex (Remark 1.5). We may notice that its graph (Figure 3) clearly is not an m-convex set ([3, Theorem 2.10]).

For any nonempty subsets A, B, C, D of a linear space and α any scalar, the following properties hold:

- $\alpha(A \cap B)=(\alpha A) \cap(\alpha B)$,
- $A \cap B+C \cap D \subseteq(A+C) \cap(B+D)$,
- If $A \subseteq B$ and $C \subseteq D$, then $A \cap C \subseteq B \cap D$,
with these in mind, proof of following result comes out.

Figure 3. Graph of $F \cup G$

Proposition 3.2. Let $F_{1}, F_{2}: D \rightarrow n(Y)$ be two set-valued functions, such that F_{1} is strongly m-convex with modulus c_{1} and F_{2} is strongly m-convex with modulus c_{2}. Then the intersection function ([3, Definition 2.18]) $F_{1} \cap F_{2}$ is strongly m-convex with modulus c, where $c=\min \left\{c_{1}, c_{2}\right\}$.

Proof. Let $x, y \in D$ and $t \in[0,1]$. From Lemma 2.1(1) it follows that if $c=\min \left\{c_{1}, c_{2}\right\}$, then $c m t(1-t)\|x-y\|^{2} B \subseteq c_{1} m t(1-t)\|x-y\|^{2} B \cap c_{2} m t(1-$ $t)\|x-y\|^{2} B$. Hence,

$$
\begin{aligned}
& t\left(F_{1} \cap F_{2}\right)(x)+m(1-t)\left(F_{1} \cap F_{2}\right)(y)+c m t(1-t)\|x-y\|^{2} B \\
& \subseteq t\left[F_{1}(x) \cap F_{2}(x)\right]+m(1-t)\left[F_{1}(y) \cap F_{2}(y)\right] \\
&+c_{1} m t(1-t)\|x-y\|^{2} B \cap c_{2} m t(1-t)\|x-y\|^{2} B \\
&= t F_{1}(x) \cap t F_{2}(x)+m(1-t) F_{1}(y) \cap m(1-t) F_{2}(y) \\
&+c_{1} m t(1-t)\|x-y\|^{2} B \cap c_{2} m t(1-t)\|x-y\|^{2} B \\
& \subseteq {\left[t F_{1}(x)+m(1-t) F_{1}(y)+c_{1} m t(1-t)\|x-y\|^{2} B\right] } \\
& \cap\left[t F_{2}(x)+m(1-t) F_{2}(y)+c_{2} m t(1-t)\|x-y\|^{2} B\right] \\
& \subseteq F_{1}(t x+m(1-t) y) \cap F_{2}(t x+m(1-t) y) \\
&=\left(F_{1} \cap F_{2}\right)(t x+m(1-t) y)
\end{aligned}
$$

Proposition 3.3. Let $F_{1}, F_{2}: D \rightarrow n(Y)$ be two strongly m-convex functions with modulus c_{1} and c_{2}, respectively. Then the sum function (3, Definition 2.18]) $F_{1}+F_{2}$ is strongly m-convex with modulus $c_{1}+c_{2}$.

Proof. If $x, y \in D$ and $t \in[0,1]$, then

$$
\begin{aligned}
t\left(F_{1}+F_{2}\right)(x) & +m(1-t)\left(F_{1}+F_{2}\right)(y)+\left(c_{1}+c_{2}\right) m t(1-t)\|x-y\|^{2} B \\
= & {\left[t F_{1}(x)+m(1-t) F_{1}(y)+c_{1} m t(1-t)\|x-y\|^{2} B\right] } \\
& +\left[t F_{2}(x)+m(1-t) F_{2}(y)+c_{2} m t(1-t)\|x-y\|^{2} B\right] \\
\subseteq & F_{1}(t x+m(1-t) y)+F_{2}(t x+m(1-t) y) \\
= & \left(F_{1}+F_{2}\right)(t x+m(1-t) y)
\end{aligned}
$$

Proposition 3.4. Let $F_{1}: D \rightarrow n(Y)$ and $F_{2}: D \rightarrow n(Z)$ be two strongly m-convex functions with modulus c_{1} and c_{2}, respectively. Then the Cartesian product function ([3, Definition 2.19]) $F_{1} \times F_{2}$ is strongly m-convex with modulus c, where $c=\min \left\{c_{1}, c_{2}\right\}, B_{Y}, B_{Z}$ are the closed unit balls in Y and Z, and $B=\{(y, z) \in Y \times Z: \max \{\|y\|,\|z\|\} \leq 1\} \subseteq B_{Y} \times B_{Z}$.

Proof. Let $x, y \in D$ and $t \in[0,1]$. Because $c \leq c_{1}, c_{2}$, Lemma 2.1(1) implies

$$
\left.\begin{array}{l}
c m t(1-t)\|x-y\|^{2} B_{Y} \subseteq c_{1} m t(1-t)\|x-y\|^{2} B_{Y} \tag{3.2}\\
c m t(1-t)\|x-y\|^{2} B_{Z} \subseteq c_{2} m t(1-t)\|x-y\|^{2} B_{Z}
\end{array}\right\} .
$$

Taking into account (3.2) and properties of Cartesian product (3)),

$$
\begin{aligned}
& {\left[c m t(1-t)\|x-y\|^{2} B_{Y}\right] \times\left[c m t(1-t)\|x-y\|^{2} B_{Z}\right]} \\
& \quad \subseteq\left[c_{1} m t(1-t)\|x-y\|^{2} B_{Y}\right] \times\left[c_{2} m t(1-t)\|x-y\|^{2} B_{Z}\right] .
\end{aligned}
$$

Then,

$$
\begin{aligned}
& t\left(F_{1} \times F_{2}\right)(x)+m(1-t)\left(F_{1} \times F_{2}\right)(y)+c m t(1-t)\|x-y\|^{2} B \\
& \subseteq \\
& \quad t\left[F_{1}(x) \times F_{2}(x)\right]+m(1-t)\left[F_{1}(y) \times F_{2}(y)\right] \\
& \quad+c m t(1-t)\|x-y\|^{2}\left(B_{Y} \times B_{Z}\right) \\
& =t F_{1}(x) \times t F_{2}(x)+m(1-t) F_{1}(y) \times m(1-t) F_{2}(y) \\
& \quad+c m t(1-t)\|x-y\|^{2} B_{Y} \times c m t(1-t)\|x-y\|^{2} B_{Z}
\end{aligned}
$$

$$
\begin{aligned}
\subseteq & t F_{1}(x) \times t F_{2}(x)+m(1-t) F_{1}(y) \times m(1-t) F_{2}(y) \\
& +c_{1} m t(1-t)\|x-y\|^{2} B_{Y} \times c_{2} m t(1-t)\|x-y\|^{2} B_{Z} \\
= & {\left[t F_{1}(x)+m(1-t) F_{1}(y)+c_{1} m t(1-t)\|x-y\|^{2} B_{Y}\right] } \\
& \times\left[t F_{2}(x)+m(1-t) F_{2}(y)+c_{2} m t(1-t)\|x-y\|^{2} B_{Z}\right] \\
\subseteq & F_{1}(t x+m(1-t) y) \times F_{2}(t x+m(1-t) y) \\
= & \left(F_{1} \times F_{2}\right)(t x+m(1-t) y)
\end{aligned}
$$

We finish the work by presenting a Jensen type inclusion for strongly m convex set-valued functions, for the discrete case. Thereon, we simplify the notation by employing the well-known Delta of Kronecker $\delta_{i j}= \begin{cases}0, & \text { if } i \neq j, \\ 1, & \text { if } i=j\end{cases}$

TheOrem 3.5. Let t_{1}, \ldots, t_{n} be positive real numbers ($n \geq 2$) such that $T_{n}=\sum_{i=1}^{n} t_{i} \in(0,1]$. If $F: D \subseteq X \rightarrow n(Y)$ is a strongly m-convex function with modulus c, then

$$
\begin{array}{r}
\sum_{i=1}^{n} m^{1-\delta_{i 1}} t_{i} F\left(x_{i}\right)+c m \sum_{i=2}^{n} \frac{t_{i}}{T_{i-1} T_{i}}\left\|\sum_{k=1}^{i-1} m^{1-\delta_{k 1}} t_{k} x_{k}-T_{i-1} x_{i}\right\|^{2} B \\
\subseteq F\left(\sum_{i=1}^{n} m^{1-\delta_{i 1}} t_{i} x_{i}\right)
\end{array}
$$

for all $x_{1}, \ldots, x_{n} \in D$.
Proof. The proof runs by induction on n. For $n=2$,

$$
\begin{aligned}
\sum_{i=1}^{2} & m^{1-\delta_{i 1}} t_{i} F\left(x_{i}\right)+c m \sum_{i=2}^{2} \frac{t_{i}}{T_{i-1} T_{i}}\left\|\sum_{k=1}^{i-1} m^{1-\delta_{k 1}} t_{k} x_{k}-T_{i-1} x_{i}\right\|^{2} B \\
& =t_{1} F\left(x_{1}\right)+m t_{2} F\left(x_{2}\right)+c m \frac{t_{2}}{T_{1} T_{2}}\left\|t_{1} x_{1}-T_{1} x_{2}\right\|^{2} B \\
& =t_{1} F\left(x_{1}\right)+m t_{2} F\left(x_{2}\right)+c m \frac{t_{2}}{t_{1}\left(t_{1}+t_{2}\right)}\left\|t_{1} x_{1}-t_{1} x_{2}\right\|^{2} B \\
& =\left(t_{1}+t_{2}\right)\left[\frac{t_{1}}{t_{1}+t_{2}} F\left(x_{1}\right)+m \frac{t_{2}}{t_{1}+t_{2}} F\left(x_{2}\right)+c m \frac{t_{1} t_{2}}{\left(t_{1}+t_{2}\right)^{2}}\left\|x_{1}-x_{2}\right\|^{2} B\right] \\
& \subseteq\left(t_{1}+t_{2}\right) F\left(\frac{t_{1}}{t_{1}+t_{2}} x_{1}+m \frac{t_{2}}{t_{1}+t_{2}} x_{2}\right)
\end{aligned}
$$

where the last inclusion results from the strong m-convexity of F. From Remark 1.5 and [3, Proposition 2.11] we obtain the following inclusion

$$
\begin{aligned}
\left(t_{1}+t_{2}\right) F\left(\frac{t_{1}}{t_{1}+t_{2}} x_{1}+m \frac{t_{2}}{t_{1}+t_{2}} x_{2}\right) & \subseteq F\left(t_{1} x_{1}+m t_{2} x_{2}\right) \\
& =F\left(\sum_{i=1}^{2} m^{1-\delta_{i 1}} t_{i} x_{i}\right)
\end{aligned}
$$

We assume now the result is true for n. So for $n+1$, let t_{1}, \ldots, t_{n+1} be positive real numbers with $T_{n+1}=\sum_{i=1}^{n+1} t_{i} \in(0,1]$, and $x_{1}, \ldots, x_{n+1} \in D$. Then,

$$
\begin{aligned}
& \sum_{i=1}^{n+1} m^{1-\delta_{i 1}} t_{i} F\left(x_{i}\right)+c m \sum_{i=2}^{n+1} \frac{t_{i}}{T_{i-1} T_{i}}\left\|\sum_{k=1}^{i-1} m^{1-\delta_{k 1}} t_{k} x_{k}-T_{i-1} x_{i}\right\|^{2} B \\
&= t_{1} F\left(x_{1}\right)+m t_{2} F\left(x_{2}\right)+c m \frac{t_{2}}{T_{1} T_{2}}\left\|t_{1} x_{1}-t_{1} x_{2}\right\|^{2} B \\
&+\sum_{i=3}^{n+1} m^{1-\delta_{i 1}} t_{i} F\left(x_{i}\right)+c m \sum_{i=3}^{n+1} \frac{t_{i}}{T_{i-1} T_{i}}\left\|\sum_{k=1}^{i-1} m^{1-\delta_{k 1}} t_{k} x_{k}-T_{i-1} x_{i}\right\|^{2} B \\
&=\left(t_{1}+t_{2}\right)\left[\frac{t_{1}}{t_{1}+t_{2}} F\left(x_{1}\right)+m \frac{t_{2}}{t_{1}+t_{2}} F\left(x_{2}\right)+c m \frac{t_{1} t_{2}}{\left(t_{1}+t_{2}\right)^{2}}\left\|x_{1}-x_{2}\right\|^{2} B\right] \\
&+\sum_{i=3}^{n+1} m^{1-\delta_{i 1}} t_{i} F\left(x_{i}\right)+c m \sum_{i=3}^{n+1} \frac{t_{i}}{T_{i-1} T_{i}}\left\|\sum_{k=1}^{i-1} m^{1-\delta_{k 1}} t_{k} x_{k}-T_{i-1} x_{i}\right\|^{2} B \\
& \subseteq\left(t_{1}+t_{2}\right) F\left(\frac{t_{1}}{t_{1}+t_{2}} x_{1}+m \frac{t_{2}}{t_{1}+t_{2}} x_{2}\right)+\sum_{i=3}^{n+1} m^{1-\delta_{i 1}} t_{i} F\left(x_{i}\right) \\
&+c m \sum_{i=3}^{n+1} \frac{t_{i}}{T_{i-1} T_{i}}\left\|\sum_{k=1}^{i-1} m^{1-\delta_{k 1}} t_{k} x_{k}-T_{i-1} x_{i}\right\|^{2} B \\
&=\left(t_{1}+t_{2}\right) F\left(\frac{t_{1}}{t_{1}+t_{2}} x_{1}+m \frac{t_{2}}{t_{1}+t_{2}} x_{2}\right)+m \sum_{i=2}^{n} t_{i+1} F\left(x_{i+1}\right) \\
&+c m \sum_{i=2}^{n} \frac{t_{i+1}}{T_{i} T_{i+1}} \| \sum_{k=1}^{i} m^{1-\delta_{k 1} t_{k} x_{k}-T_{i} x_{i+1} \|^{2} B} \\
&=\left(t_{1}+t_{2}\right) F\left(\frac{t_{1}}{t_{1}+t_{2}} x_{1}+m \frac{t_{2}}{t_{1}+t_{2}} x_{2}\right)+m \sum_{i=2}^{n} t_{i+1} F\left(x_{i+1}\right) \\
&+c m \sum_{i=2}^{n} \frac{t_{i+1}}{T_{i} T_{i+1}}\left\|t_{1} x_{1}+m t_{2} x_{2}+\sum_{k=3}^{i} m^{1-\delta_{k 1}} t_{k} x_{k}-T_{i} x_{i+1}\right\|^{2} B
\end{aligned}
$$

$$
\begin{aligned}
& =\left(t_{1}+t_{2}\right) F\left(\frac{t_{1}}{t_{1}+t_{2}} x_{1}+m \frac{t_{2}}{t_{1}+t_{2}} x_{2}\right)+m \sum_{i=2}^{n} t_{i+1} F\left(x_{i+1}\right) \\
& +c m \sum_{i=2}^{n} \frac{t_{i+1}}{T_{i} T_{i+1}} \|\left(t_{1}+t_{2}\right)\left(\frac{t_{1}}{t_{1}+t_{2}} x_{1}+m \frac{t_{2}}{t_{1}+t_{2}} x_{2}\right) \\
& \\
& \quad+\sum_{k=2}^{i-1} m^{1-\delta_{(k+1) 1} t_{k+1} x_{k+1}-T_{i} x_{i+1} \|^{2} B .}
\end{aligned}
$$

Now we set

$$
\bar{t}_{i}= \begin{cases}t_{1}+t_{2}, & \text { if } i=1 \\ t_{i+1}, & \text { if } i \in\{2, \ldots, n\}\end{cases}
$$

and

$$
\bar{x}_{i}= \begin{cases}\frac{t_{1}}{t_{1}+t_{2}} x_{1}+m \frac{t_{2}}{t_{1}+t_{2}} x_{2}, & \text { if } i=1, \\ x_{i+1}, & \text { if } i \in\{2, \ldots, n\},\end{cases}
$$

then $T_{n+1}=t_{1}+t_{2}+\cdots+t_{n+1}=\bar{t}_{1}+\bar{t}_{2}+\cdots+\bar{t}_{n}:=\bar{T}_{n}$. With this in mind the latter expression can be rewritten as

$$
\bar{t}_{1} F\left(\bar{x}_{1}\right)+m \sum_{i=2}^{n} \bar{t}_{i} F\left(\bar{x}_{i}\right)+c m \sum_{i=2}^{n} \bar{T}_{i-1} \bar{T}_{i}\left\|\sum_{k=1}^{i-1} m^{1-\delta_{k 1}} \bar{t}_{k} \bar{x}_{k}-\bar{T}_{i-1} \bar{x}_{i}\right\|^{2} B
$$

or better,

$$
\begin{equation*}
\sum_{i=1}^{n} m^{1-\delta_{i 1}} \bar{t}_{i} F\left(\bar{x}_{i}\right)+c m \sum_{i=2}^{n} \frac{\bar{t}_{i}}{\bar{T}_{i-1} \bar{T}_{i}}\left\|\sum_{k=1}^{i-1} m^{1-\delta_{k 1}} \bar{t}_{k} \bar{x}_{k}-\bar{T}_{i-1} \bar{x}_{i}\right\|^{2} B \tag{3.3}
\end{equation*}
$$

where $\bar{t}_{1}, \ldots, \bar{t}_{n}>0$ with $\bar{T}_{n}=\sum_{i=1}^{n} \bar{t}_{i} \in(0,1]$ and $\bar{x}_{1}, \ldots, \bar{x}_{n} \in D$. Therefore, by using the inductive hypothesis, 3.3 is a subset of $F\left(\sum_{i=1}^{n} m^{1-\delta_{i 1}} \bar{t}_{i} \bar{x}_{i}\right)$. In conclusion,

$$
\begin{aligned}
\sum_{i=1}^{n+1} m^{1-\delta_{i 1}} t_{i} F\left(x_{i}\right)+c m \sum_{i=2}^{n+1} \frac{t_{i}}{T_{i-1} T_{i}}\left\|\sum_{k=1}^{i-1} m^{1-\delta_{k 1}} t_{k} x_{k}-T_{i-1} x_{i}\right\|^{2} B \\
\subseteq F\left(\sum_{i=1}^{n} m^{1-\delta_{i 1}} \bar{t}_{i} \bar{x}_{i}\right)=F\left(\sum_{i=1}^{n+1} m^{1-\delta_{i 1}} t_{i} x_{i}\right)
\end{aligned}
$$

and the result is true for $n+1$ as well.

References

[1] T. Lara, N. Merentes, Z. Páles, R. Quintero, and E. Rosales, On m-convexity on real linear spaces, UPI J. Math. Biostat. 1 (2018), no. 2, JMB8, 16 pp.
[2] T. Lara, N. Merentes, R. Quintero, and E. Rosales, On strongly m-convex funtions, Math. Eterna 5 (2015), no. 3, 521-535.
[3] T. Lara, N. Merentes, R. Quintero, and E. Rosales, On m-convexity of set-valued functions, Adv. Oper. Theory 4 (2019), no. 4, 767-783.
[4] H. Leiva, N. Merentes, K. Nikodem, and J.L. Sánchez, Strongly convex set-valued maps, J. Global Optim. 57 (2013), no. 3, 695-705.
[5] G. Toader, Some generalizations of the convexity, in: I. Muruşciac and W.W. Breckner (eds.), Proceedings of the Colloquium on Approximation and Optimization, Univ. ClujNapoca, Cluj-Napoca, 1985, pp. 329-338.
[6] G. Toader, On a generalization of the convexity, Mathematica (Cluj) 30(53) (1988), no. $1,83-87$.

Teodoro Lara

Departamento de Física y Matemáticas
Universidad de los Andes
Núcleo "Rafael Rangel"
Trujillo
Venezuela
e-mail: tlara@ula.ve
Nelson Merentes
Universidad Central de Venezuela
Escuela de matemáticas
Caracas
Venezuela
e-mail: nmerucv@gmail.com
Roy Quintero
Department of Mathematical Sciences
Northern Illinois University
DeKalb
USA
e-mail: rquinterocontreras@niu.edu
Edgar Rosales
Departamento de Física y Matemáticas
Universidad de los Andes
Núcleo "Rafael Rangel"
Trujillo
Venezuela
e-mail: edgarr@ula.ve

[^0]: Received: 11.10.2022. Accepted: 24.01.2023. Published online: 07.02.2023.
 (2020) Mathematics Subject Classification: 26A51, 52A30.

 Key words and phrases: m-convex set, strongly m-convex set-valued function, Jensen type inclusion, normed space.
 (C)2023 The Author(s).

 This is an Open Access article distributed under the terms of the Creative Commons Attribution License CC BY (http://creativecommons.org/licenses/by/4.0/1.

